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Abstract We prove that the field equations of the Starobin-
sky model for inflation in a Friedmann–Lemaître–Robertson–
Walker metric constitute an integrable system. The analyti-
cal solution in terms of a Painlevé series for the Starobinsky
model is presented for the case of zero and nonzero spa-
tial curvature. In both cases the leading-order term describes
the radiation era provided by the corresponding higher-order
theory.

1 Introduction

In the so-called modified/extended theories of gravity [1]
new dynamical terms, of geometric origin, are introduced
which force the evolution of the gravitational field equations
in order to explain various phenomena which were studied
by recent observations [2,3]. However, in the modified grav-
itational theories the new terms increase the complexity of
the field equations and even in the simplest models, such as
that of an isotropic and homogeneous universe, the existence
of an analytical solution is not obvious. Although numerical
methods can be applied to approximate the evolution of the
field equations, that is not sufficient for the complete study
of a theory; the analysis of the critical points it is not suf-
ficient to provide us with information for the evolution of a
system far from the critical points. Consequently the exis-
tence of analytical solutions for the field equations has lead
to the application of various techniques from the analysis of
dynamical systems for the study of the integrability.1

One of the simplest modifications of the Einstein–Hilbert
action which consider quantum corrections is the Starobinsky
model of inflation [9] with action integral

S =
∫

d4x
√−g(R + qR2) +

∫
d4x

√−gLm, (1)

1 For the application of the invariant transformations in modified
theories see for instance [4–8] and the references therein.
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where R2 describes the quantum-gravitational effects in the
early universe and Lm is the Lagrangian of the matter source.
The latter action integral corresponds to the family of the so-
called quadratic theories instance [10–12].

The gravitational field equations are of fourth order and in
the case of a spatially flat Friedmann–Lemaître–Robertson–
Walker (FLRW) universe with line element2

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (2)

are calculated to be
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where ρm , pm are the energy density and the pressure of the
matter source. In the case of vacuum the field equations (3)
and (4) admit an unstable (special) nonsingular solution [9].
Moreover, it is important to mention that, when the equation
of state parameter of the matter source, ρm, pm , is that of
an ideal gas, i.e., pm = (γ − 1) ρm , then Eq. (4) can be
integrated to (3), while in general the conservation law ρ̇m +
3H (ρm + pm) = 0 holds.

The action integral (1) corresponds to the f (R) theo-
ries of gravity [13], where f (R) = R + qR2, while a
more general consideration of the Starobinsky model is the3

2 We have assumed that the lapse function in the FLRW line element
is constant, i.e., N (t) = 1 and a (t) denotes the scale factor.
3 For reviews in f (R)-gravity see for instance [14,15], while some
observational constraints can be found in [16–19].
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f (R) = R + qRn theory4 [26] or [27]. Exact solutions
of power-law f (R) theories can be found in [28,29]. The
importance of the Starobinsky model (1) is that it provides
an inflationary scenario which is favored by the observations
[30]. Furthermore, it has been shown that various models
of inflation are identical to the Starobinsky model when the
inflationary phase takes place [31] whereas the Mixmaster
universe provides nonchaotic trajectories [32].

The introduction of a Lagrange multiplier in f (R) theo-
ries [33] can be used to reduce the order of the theory from
a fourth-order to a second-order theory by increasing at the
same time the number of degrees of freedom [34]. In partic-
ular a new field is introduced which is equivalent to that of
a Brans–Dicke scalar field with zero Brans–Dicke parame-
ter [14,35] the so-called O’Hanlon theory [36]. Therefore
the field equations in a FLRW background form a two-
dimensional canonical Hamiltonian system which describes
a particle moving in a flat space while the potential which
forces the evolution of the system is related with the form
of the f (R) function. Because the scalar field description is
that of a Brans–Dicke field the theory is defined in the Jordan
frame. Hence under a conformal transformation a minimally
coupled scalar field is defined and the theory is defined now
in the Einstein frame.5 Therefore the Starobinsky model can
be seen as a mechanical model providing a minimally scalar
field [39] to drive the inflationary phase of the universe; for
a review see [40].

By using the property that the field equations describe a
canonical Hamiltonian system various functions f (R) have
been determined in which the field equations admit conser-
vation laws which are linear or quadratic in the momentum
[8], while recently in [41] it was found that the cosmological
model f (R) = R + qRn passes the singularity test and is
integrable for some values of the power n. However, the case
n = 2, which is that of the Starobinsky model, has been ruled
out and the main reason is that for n �= 2 the field equations
admit singular special solutions following from the Rn term.
This is in contrast to the Starobinsky model, in which the R2

term provides a nonsingular solution as mentioned above.
A specific f (R) theory provides a de Sitter universe if

there exists R = R0 such that the Barrow–Ottewill [42] con-
dition holds,

R0 f
′ (R0) − 2 f (R0) = 0. (5)

It is straightforward to see that, for arbitrary R0, that is, R0 →
R, the latter condition can be seen as a first-order differential

4 There are a plethora of physical theories which have been inspired by
the Starobinsky model of inflation such as in SUGRA or in other grav-
itational theories, for instance see [20–25] and the references therein.
5 For a discussion between these two frames see [37,38] and the ref-
erences therein.

equation with solution the quadratic function f (R) = f0R2,
where f0 is a constant of integration.

2 Integrability of the field equations

In the case of the vacuum the field equations in f (R) = R2

theory are

2a2ȧa(3) − 3(ȧ)4 − aä(aä − 2ȧ2) = 0 (6)

and

2a3a(4) + 4a2ȧa(3) + 3 (ȧ)4 + 3aä(aä − 4(ȧ)2) = 0. (7)

The two equations are not independent and derivation of (6)
gives the fourth-order equation (7). There are various ways
in which Eq. (6) can be written as a first-order ordinary dif-
ferential equation.6 If we select the new dependent variable
w = 1

u
du
dv

and independent variable v, where u = ȧ, v = a,
then Eq. (6) becomes the following Riccati equation:

2
dw

dv
+ 3w2 + 2

w

v
− 3

v2 = 0 (8)

with solution w (v) = v3−w0
v(v3+w0)

, where w0 is a constant of

integration. Therefore it follows that H(t)
H0

= (v2
0a

− 3
2 +a

3
2 )

2
3 ,

where H (t) = ȧ
a , and for initial conditions such that v0 = 0

provides the closed-form solution a (t) � t−1. That is not
the unique case. In order to see that consider now the new
variables {x, y} = {H (t) , d

dt (H (t))}; Eq. (6) takes the form
of the linear equation

2
dy

dx
− y + 6x2 = 0 (9)

with solution y (x) = −2x2 +u1
√
x , that is,

∫ dH
u1

√
H−2a2 =

(t − t0) where, in the limit u1 = 0, it gives H (t) = 1
2(t−t0)

,

that is, a (t) = a0
√

(t − t0). This is an ideal gas solution
which mimics a radiation solution, while it is a singular (spe-
cial) solution. This singular solution is used below in order
to prove the integrability of the Starobinsky model. The exis-
tence of the radiation solution is not a surprise in the sense
that f (R)-gravity can always provide a radiation epoch in the
evolution of the universe [43]. However, the radiation solu-
tion has been investigated before in a higher-order theory
which includes the Starobinsky term as also other terms fol-
low from the Gauss–Bonnet invariant in [44–46]. Moreover
the radiation solution in quadratic theories has been found
that can describes a past isotropic singularity for the Bianchi
I universe [47].

The method that we apply is that of the singularity anal-
ysis and specifically we follow the ARS algorithm [48–50].

6 The field equations (6), (7) admit as point symmetries the ∂t , t∂t and
a∂a vector fields which form the {2A1 ⊗ A1} Lie algebra.
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Singularity analysis is a powerful method which has been
applied in cosmological studies for the reconstruction of the
analytical solution of various models [41,51–54]. We omit
the properties of the singularity analysis and we refer the
reader to the extended review [55].

We continue by firstly applying the method for the
quadratic theory f (R) = R2 and consider now Eq. (7).

We find that the leading-order behavior is the power-law
solution a (t) = a0τ

1/2, where τ = t − t0 and t0 denotes the
position of the singularity. The application of the ARS algo-
rithm shows the resonances to be s1 = −1 , s2 = 0 , s3 = 3

2
and s4 = 5

2 , which means that the analytic solution is
expressed by the right Painlevé series [56]

a (t) = a0τ
1
2 + a1τ + a2τ

3
2 + a3τ

2 +
∞∑
i=4

a4τ
1+i

2 , (10)

where the constants of integration are a0, a3, a5 and the
position of the singularity is t0. However, with the use of
(6) we find that a5 = 0, while the calculation of the first
coefficient constants gives the solution

a (t) = a0τ
1
2 + a3τ

2 + 19

32

(a3)
2

a0
τ

7
2 + 17

264

(a3)
3

(a0)
2 τ 5

+
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j=10

a jτ
1+ j

2 . (11)

For the field equations of the Starobinsky model we apply
the same algorithm and we find the same resonances as those
of the quadratic model, which means that the analytic solution
is given by Eq. (10) or specifically, by calculation of the first
nine coefficient constants, the solution is
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where the constants of integration are again the coefficients
a0, a3, a5 and the position of the singularity is t0, while the
constraint equation (3) gives a5 = 0 or, if we assume the
existence of a dust fluid, that is, pm = 0 and ρm = ρm0a−3,
it follows that ρm0 = 315

2 qa5 (a0)
2. In the latter scenario it

is important to mention that the term a0t1/2 describes the
leading-order behavior.

From the values of the resonances it is easy to see that
the radiation solution is an unstable solution,7 while the field

7 For a discussion of the relation between the values of the resonances
and the stability of the leading-order behavior see [57].

equations of the Starobinsky model for inflation in a spa-
tially flat FLRW spacetime pass the singularity test and are
integrable.

3 Discussion

Singularity analysis is a powerful method to study the inte-
grability of dynamical systems. However, it has a basic disad-
vantage in that it is coordinate dependent. That is the reason
that the Starobinsky model did not pass the singularity analy-
sis in the consideration of [41]. The reason is that in the space
of variables {a, R}, in which usually f (R)-gravity is referred

to, the leading-order behavior, a (t) = a0t
1
2 , provides a sin-

gular behavior for only one of the dynamical variables, while
for the Ricci scalar it is a constant. However, we overpassed
that problem by working directly with the fourth-order dif-
ferential equation and without using the Lagrange multiplier.

We now consider the case of nonzero spatially curved
spacetime. Hence for the action integral (1) the field equa-
tions are derived,

ρm0
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where for the matter source we assumed that of a dust fluid.
We apply the ARS algorithm and we find that the solution

is expressed again by the right Painlevé series (11) where
now the coefficient constants depend also upon the curvature
k. For instance the first terms of the solution are

a (t) = a0τ
1
2 − k

12a0
τ

3
2 + a3τ

2 −
(

a0

72q
+ k2

288 (a0)
3

)
τ

5
2

+ a5τ
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r=6

ā jτ
1+r

2 (15)

where from (13) it follows that ρm0 = 315
2 qa5 (a0)

2 +
30a3qk.
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We conclude that the Starobinsky model for inflation in a
FLRW spacetime with or without spatial curvature is an inte-
grable system. Last but not least, from the singularity analy-
sis we found that the radiation era is described by a unstable
point which is in agreement with the dynamical analysis for
a higher-order theory [44,45].
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