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Abstract We study the dynamics of a bulk viscosity model
in the Eckart approach for a spatially flat Friedmann–
Robertson–Walker (FRW) Universe. We have included radi-
ation and dark energy, assumed as perfect fluids, and dark
matter treated as an imperfect fluid having bulk viscosity.
We also introduce an interaction term between the dark mat-
ter and dark energy components. Considering that the bulk
viscosity is proportional to the dark matter energy density
and imposing a complete cosmological dynamics, we find
bounds on the bulk viscosity in order to reproduce a matter-
dominated era (MDE). This constraint is independent of the
interaction term. Some late time phantom solutions are math-
ematically possible. However, the constraint imposed by a
MDE restricts the interaction parameter, in the phantom solu-
tions, to a region consistent with a null value, eliminating
the possibility of late time stable solutions with w < −1.
From the different cases that we study, the only possible sce-
nario, with bulk viscosity and interaction term, belongs to the
quintessence region. In the latter case, we find bounds on the
interaction parameter compatible with latest observational
data.

1 Introduction

Since the discovery of the present stage of acceleration of
the Universe [1,2] many candidates have been proposed to
explain such an observational result [3–8]. Among them,
the cosmological constant, w� = −1, remains not only as
the simplest alternative but also as consistent with the lat-
est observational data [9]. Despite this, the �CDM model is
not able to explain the results that still point to a phantom
Universe [9], w < −1.

An interesting way to recover accelerated solutions is
by introducing dissipative processes in ordinary fluids. This
approach has been explored in the literature through the mod-
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eling of bulk viscosity in ordinary matter fluids [10–25] in the
context of Eckart [26] or linear [27] and non-linear [28,29]
Israel–Stewart theories.

Following the dissipative approach, in [20] it was shown
that phantom solutions can be obtained by accepting the exis-
tence of bulk viscosity within the Eckart theory in the �CDM
model.1 This result was obtained by using multiple observa-
tional tests and considering that the bulk viscosity of some
fluid depends on its own energy density, namely ζ j = ζ j (ρ j ).
This ansatz avoids the degeneracy problem associated with
the case when the bulk viscosity is taken as ζ j = ζ j (H) [20].
However, in [22], the same scenario was studied, from the
dynamical system point of view, finding that viscous phan-
tom solutions with stable behavior are not allowed in the
framework of complete cosmological dynamics [21,30]. In
the present paper we work along these lines by including an
interaction between the dark matter and the dark energy. This
kind of interaction mechanism has shown to be compatible
with the current data [31]. In the context of viscous fluids, the
interaction between dark matter and dark energy was studied
in [21]. It has been shown that, under the ansatz ζ j = ζ j (H),
low-redshift data favors a positive definite value of the bulk
viscosity, whereas high-redshift data prefers a negative value
of the bulk viscosity. This latter result is in tension with the
local second law of thermodynamics (LSLT) [32,33], which
states that for an expanding Universe ζ ≥ 0 [34].

In the present work we are interested in extending the
results obtained in [20,22] by taking into account an inter-
action term between dark energy and dark matter and, at the
same time, extending the results in [21] by exploring a dif-
ferent functional form for the bulk viscosity.2

The paper is organized as follows: in Sect. 2 we present the
field equation of the model. We take into account the contri-

1 Either the bulk viscosity was acting on the radiation, or on the pres-
sureless matter, and crossing of the phantom divide is possible.
2 Recall that in [21] the ansatz ζ j = ζ j (H) was used, whereas in
[20,22] the bulk viscosity was taken as ζ j = ζ j (ρ j ) in order to avoid
the model degeneration.
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bution of pressureless matter, radiation and dark energy. The
first matter fluid is considered as an imperfect fluid, having
bulk viscosity in the framework of the Eckart theory [26],
the remaining fluid obeying the barotropic equation of state
(EOS). The bulk viscosity coefficient is taken to be propor-
tional to the dark matter energy density. In Sect. 3, we study
the evolution of the field equations from the perspective of
the equivalent autonomous system. We focus our attention on
a particular form for the interaction term between the dark
matter and dark energy components. A detailed discussion
as regards the viability of a complete cosmological dynamics
[21,30] is provided. Important constraints on the bulk viscos-
ity and interaction parameter are obtained. Finally, Sect. 4 is
devoted to our conclusions.

2 The model

We study a cosmological model in a spatially flat FRW back-
ground metric, in which the matter components are radiation,
dark matter and dark energy. We assume that the dark matter
fluid presents a bulk viscosity in the framework of the Eckart
theory, whereas the radiation and dark energy are assumed to
be perfect fluids. Following this set up, the Friedmann con-
straint, the conservation equations for the matter fluids and
the Raychaudhuri equation can be written

3H2 = (ρr + ρdm + ρde) , (1)

ρ̇r = −4Hρr, (2)

ρ̇dm = −3Hρdm + 9H2ζ + Q, (3)

ρ̇de = −3Hγdeρde − Q, (4)

Ḣ = −1

2

(
ρdm + 4

3
ρr + γdeρde − 3Hζ

)
, (5)

where G is the Newton gravitational constant, H the Hubble
parameter, (ρdm, ρr, ρde) are the energy densities of dark
matter, radiation and dark energy (DE) fluid components,
respectively. γde is the barotropic index of the EOS of DE,
which is defined from the relationship pde = (γde − 1)ρde,
where pde is the pressure of DE. The term Q in (3) and (4)
is the interaction term between the dark matter and the dark
energy components, while 9H2ζ in Eq. (3) corresponds to
the bulk viscous pressure of the dark matter fluid, with ζ the
bulk viscous coefficient.

In the literature [10,17,18,25,28,35–38], the usual ansatz3

for the bulk viscous coefficient ζ is

ζ = ξ

(
ρv

ρv0

)s

, (6)

3 In the cases of radiative fluid and Maxwell–Boltzmann gas, the bulk
viscosity coefficient can be obtained accurately due to the dissipation
coefficients and second-order coefficients are known [13,32,39–42]. In
these cases, the bulk viscosity coefficient depends on the temperature,
ζ = ζ(T ).

where s and ξ are arbitrary constants. ρv corresponds to the
energy density of the bulk viscosity fluid and its present day
value is denoted by the subscript 0. In general, this ansatz
leads to a large amplification of the ISW signal [15,17,43].
However, this problem is less severe if s = 0 (ζ = const)
and s = −1/2 [17]. From the dynamical systems point of
view, the choice of s in (6) leads to the following scenarios:
(a) a two-dimensional phase space (see next section) for s =
1/2, (b) a more complex three-dimensional phase space for
s �= 1/2. In order to extend the results obtained in [20,22],
henceforth we will focus our attention in the first case, thus
we assume the bulk viscous coefficient ζ to be proportional
to the energy density of the dark matter component in the
form

ζ = ξ

(
ρdm

ρdm0

) 1
2

, (7)

where ρdm0 is the present day value of the dark matter energy
density.

3 The autonomous system

In order to study the dynamical properties of the system (2)–
(4) and (5), we introduce the following dimensionless phase
space variables to build an autonomous dynamical system:

x = �de ≡ ρde

3H2 , y = �dm ≡ ρdm

3H2 , �r ≡ ρr

3H2 ; (8)

using the Friedmann constraint (1) it is possible to reduce
one degree of freedom, namely �r = 1 − x − y. Then the
equation of motion can be written as

dx

dN
= 3x2γde − 3xγde − 4x2 − 3ξ0x

√
y − xy

+ 4x − Q

3H(t)3 , (9)

dx

dN
= 3xyγde − 4xy − 3ξ0y

3/2 − y2 + 3ξ0
√
y

+ y + Q

3H(t)3 , (10)

where the derivatives are with respect to the e-folding num-
ber N ≡ ln a and we have introduced the dimensionless
parameter

ξ0 = ξ

H0
√

�dm0
, (11)

where H0 and �dm0 are the present day values of the Hubble
parameter and the dark matter dimensionless density param-
eter. In order to guarantee nonviolation of the LSLT [32–34],
ξ0 ≥ 0.

In addition, in order to achieve an autonomous system
from (9) and (10) we must define the interaction function
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Table 1 Location, existence conditions according to the phase space
(15), and stability of the critical points of the autonomous system (13)
and (14) for γde = 0 and z = 3βx . The eigenvalues of the linear pertur-
bation matrix associated to each of the following critical points are dis-

played in Table 2. We have introduced the definitions A =
√

4β + ξ2
0 ,

B =
√

−Aξ0 + 2β + ξ2
0 , C =

√
Aξ0 + 2β + ξ2

0 and D = 8−8β −ζ 2
0

Pi x y Existence Stability

P1 0 0 Always Unstable if β < 4
3

Saddle if β > 4
3

P2 0 1 Always Saddle if β < 1 ∧ 0 < ξ0 < 1 − β

Stable if (β ≤ 1 ∧ ξ0 > 1 − β)

∨ (β > 1 ∧ ξ0 > 0)

P3
1
8 (ξ0(A − 3

√
2B) + D) 1

2 (−Aξ0 + 2β + ξ2
0 ) β ≤ 0 ∧ (4β + ξ2

0 ≥ 0 ∧ 0
< ξ0 ≤ 2)∨(ξ0 > 2∧β+ξ0 ≥ 1)

See discussion in Sect. 3.1.1

P4
1
8 (−ξ0(A + 3

√
2C) + D) 1

2 (Aξ0 + 2β + ξ2
0 ) (0 < ξ0 < 2 ∧ − ξ2

0
4 ≤ β ≤ 1 − ξ0)

∨ (ξ0 = 2 ∧ β = −1)

see discussion in Sect. 3.1.1

Q. If the interaction term is taken as Q = 3H f (ρm, ρde)

[21,44–49], then we can introduce a new function

z ≡ Q

3H3 = z(x, y), (12)

hence, the system (9) and (10) can be written as a two-
dimensional autonomous system,

dx

dN
= 3(x − 1)xγde − 3ξ0x

√
y − x(4x + y − 4) − z, (13)

dy

dN
= 3xyγde − y(4x + y − 1) − 3ξ0(y − 1)

√
y + z. (14)

Imposing the conditions that radiation, dark matter and DE
components be positive, definite, and bounded at all times,
we can define the phase space of Eqs. (13) and (14) as

	 = {(x, y) : 0 ≤ 1 − x − y ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
(15)

Moreover, we can introduce another cosmological parame-
ter of interest, like the deceleration parameter (q = −(1 +
Ḣ/H2)) and the total effective EOS (weff ) in terms of the
dimensionless phase space variables (8):

q = 1

2

(
3xγde − 4x − 3ξ0

√
y − y + 2

)
, (16)

weff = 1

3

(
3xγde − 4x − 3ξ0

√
y − y + 1

)
. (17)

3.1 Dynamics of the autonomous system

The autonomous system (13) and (14) allows one to study the
dynamics of (2)–(4) and (5) for general interaction functions
of the form Q = 3H f (ρm, ρde). However, we will focus our
attention on those interaction functions that lead to recovery
of a critical point associated with a MDE, in order to explain
the structure formation. The latter requirement implies the
existence of a critical point of the form (x, y) = (0, 1). Thus,

simple inspection of (13) and (14) shows that (x, y) = (0, 1)

leads to

z(x = 0, y = 1) = 0. (18)

Some proposed forms of the interaction functions compatible
with (18) are:

(a) Q = 3Hλ
ρmρde

ρm+ρde
→ z(x, y) = 3λ

xy
x+y [47]

(b) Q = 3H(αρm+βρde) → z(x, y) = 3(βx+αy) [44,45]

where, in case (b), α = 0 in order to fulfill condition (18) and
recover a MDE.4 For mathematical simplicity, henceforth we
will only study the second case that leads to [44,45,49,50]

z = 3βx . (19)

We also will restrict our analysis to the case γde = 0. The
full set of critical points of (13) and (14) are summarized in
Table 1, whereas the corresponding eigenvalues of the linear
perturbation matrix are given in Table 2.

3.1.1 Critical points and stability

P1 represents a decelerating solution (q = 1, weff = 1/3)
dominated by the radiation component, �r = 1, and it exists,
unrestricted by the sign/value of the interaction and bulk vis-
cosity parameters. However, its stability behavior depends
on the value of the interaction parameter β, it namely being
(i) unstable if β < 4/3 or (ii) saddle if β > 4/3.

Critical point P2 corresponds to a pure dark matter-
domination period (�m = 1) and always exists.5 If the con-
dition ξ2

0 
 0 is satisfied, then this point corresponds to the

4 See a similar analysis in the case of the ansatz ζi = ζi (H) in [21].
5 Recall that P3, like P1, exists independently of the value/sign of
the bulk viscosity and the existence of interaction between the dark
components. This point has a similar behavior to points 2a in [21] and
P2 in [22].
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Table 2 Eigenvalues and some
basic physical parameters for the
critical points listed in Table 1;
see also Eqs. (16) and (17)

Pi λ1 λ2 �r weff q

P1 4 − 3β sgn(ξ )∞ 1 1
3 1

P2 −3ξ0 − 1 −3(β + ξ0 − 1) 0 −ξ0
1
2 (1 − 3ξ0)

P3 See Appendix A See Appendix A 0 −1 + β
3β
2 − 1

P4 See Appendix B See Appendix B 0 −1 + β
3β
2 − 1

standard matter-domination period, namely weff ≈ 0 and
q ≈ 1/2. Otherwise weff is negative and can behave as an
accelerated solution if ξ0 > 1

3 or even as a phantom solution
if ξ0 > 1. As Tables 1 and 2 show, these accelerated solutions
are possible in the absence of dark energy (x = �de = 0).
From the stability point of view, P3 displays two different
behaviors, that is: (i) saddle if β < 1 ∧ 0 < ξ0 < 1 − β or
(ii) stable if (β ≤ 1 ∧ ξ0 > 1 − β) ∨ (β > 1 ∧ ξ0 > 0).

P3 represents a scaling solution between dark matter and
dark energy components and exists when

(β ≤ 0 ∧ 4β + ξ2
0 ≥ 0 ∧ 0 < ξ0 ≤ 2)

∨ (β ≤ 0 ∧ ξ0 > 2 ∧ β + ξ0 ≥ 1).

A background level, P3 is able to mimic accelerated solu-
tions6 in the phantom and de Sitter regions, namely:

(i) Phantom region (weff < −1)

1. Saddle if 0 < ξ0 ≤ 2 ∧ − ξ2
0
4 ≤ β < 0; see Fig. 1 for

more details.
2. Saddle if ξ0 > 2 ∧ 1 − ξ0 ≤ β < 0; see Fig. 2 for

more details.

(ii) de Sitter region (weff = −1)

1. Only if β = 0. We do not consider this case here
because that means a null interaction between dark
matter and dark energy.7

The critical point P4 corresponds to a scaling solution
between dark matter and dark energy. This point exists
in the region

(
0<ξ0 <2 ∧−ξ2

0

4
≤β ≤1−ξ0

)
∨ (ξ0 =2 ∧ β = −1) .

In the existence regions, P4 is able to mimic only accel-
erated solutions, namely

(iii) Phantom region (weff < −1)

1. Stable if 0 < ξ0 ≤ 1 ∧ − ξ2
0
4 ≤ β < 0.

6 Unlike the previous critical points (P1–P2), it is not possible to repro-
duce, in the region of existence, decelerated solutions such as pressure-
less matter (weff = 0) or radiation (weff = 1/3).
7 The case with β = 0 was studied in [22].

Fig. 1 Saddle (λ1 < 0 and λ2 > 0) region for P3 in the phantom region
case 1. See the corresponding eigenvalues (λ1, λ2) in Appendix A

2. Saddle if 1 < ξ0 < 2∧− ξ2
0
4 ≤ β ≤ 1−ξ0 in a narrow

region in the parameter space (ξ0, β), as Fig. 3 shows,
otherwise it is stable.

3. If ξ0 = 2 ∧ β = −1 then weff = −2, being an
unrealistic value for the effective EOS parameter.

(iv) de Sitter region (weff = −1)

1. As in P3, β = 0 leads to a de Sitter solution. As
we mentioned before, this is discarded because it
requires a null interaction between dark matter and
dark energy.8

(v) Quintessence region (−1 < weff < −1/3)

1. Stable if 0 < ξ0 ≤ 1
3 ∧ 0 < β < 2

3 .

2. Saddle if 1
3 < ξ0 < 1 ∧ 0 < β ≤ 1 − ξ0 in a narrow

region in the parameter space (ξ0, β), as Fig. 4 shows,
otherwise is stable.

8 Recall that the null interaction case was developed in [22].
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Fig. 2 Saddle (λ1 < 0 and λ2 > 0) region for P3 in the phantom region
case 2. See the corresponding eigenvalues (λ1, λ2) in Appendix A

Fig. 3 Saddle (λ1 < 0 and λ2 > 0) region for P4 in the phantom region
case 2. See the corresponding eigenvalues (λ1, λ2) in Appendix B

3.1.2 Cosmological evolution

According to current observational data, any model that aims
to make a complete description of the evolution of the Uni-
verse must follow the complete cosmological paradigm [21,
22,30]. This paradigm imposes transitions between three dif-
ferent evolution eras from early times to late times, namely:
(i) radiation-dominated era (RDE), (ii) matter-dominated era
(MDE) at intermediate stage of evolution, and (iii) era of

Fig. 4 Saddle (λ1 < 0 and λ2 > 0) region for P4 in the quintessence
region case 2. See the corresponding eigenvalues (λ1, λ2) in Appendix B

accelerated expansion. Every one of these statements can
be translated into a critical point connected by heteroclinic
orbits [51–54].

The condition for a purely RDE (�r = 1) is always satis-
fied by P1, independently of the value of the bulk viscosity
parameter ξ0. Its unstable behavior, given that β < 4/3, guar-
antees that it can be the source of any solution in the phase
space.

For intermediate stages of cosmic evolution, the presence
of MDE is needed in order to describe the formation of struc-
tures. This matter-dominated period can be recovered by P2.
This critical point exists independently of the value of the
bulk viscosity parameter but a background level, for a non-
null value of ξ0, it behaves as a decelerating solution9 if
0 < ξ0 < 1/3. If the bulk viscosity takes a sufficiently small
value, ξ0 ≈ 0, it is possible to recover weff ≈ 0 and q ≈ 1/2.
In order to bound the possible values for ξ0 to fulfill the latter
statement, we will use recent constraints on the dark matter
EOS, which state that −0.000896 < wdm < 0.00238 at the
3σ level [55] using the latest Planck data release [9].10 Thus,
only a tiny contribution of bulk viscosity is allowed in order
to recover a true MDE with P2:

0 ≤ ξ0 < 0.000896, (20)

9 As the existence of this critical point is also independent of the
interaction between dark matter and dark energy, these results recover
the behavior of P2 in [22].
10 Stricter limits on wdm were placed by [56] using large-scale cos-
mological observations. Among others, similar constraints on wdm are
found in [57,58].
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Fig. 5 Vector field in the plane (x , y) for the autonomous system
(13) and (14) with γde = 0. The free parameters have been chosen
as (ξ0, β) = (0.0008, 0.038). In this case, the quintessence solution,
P4, is the late time attractor of the system, representing an accelerated
solution (weff = −0.96). The transition from the RDE (P1) to P4 allows
for the selection of appropriate initial conditions to recover a true MDE
(P3) with weff 
 0 according to condition (20) [55]

these constraints on ξ0 are also consistent with those obtained
in [18,19] in the absence of interaction between dark matter
and dark energy. As we mentioned in Sect. 3.1.1, P2 is able
to reproduce an accelerated solution given that ξ0 > 1/3.
However, as Tables 1 and 2 show, this possible behavior has
to be ruled out because of the impossibility of finding another
critical point.

Concerning the late time evolution of the Universe, the
model has two more critical point capable of providing accel-
erated solutions, namely P3 and P4. Both represent scaling
solutions between dark matter and dark energy. As was dis-
cussed in Sect. 3.1.1, from the mathematical point of view, it
is possible to obtain phantom, de Sitter and quintessence solu-
tions with saddle or stable behaviors depending of the values
of the free parameters (ξ0, β). If the interaction parameter is
negative (β < 0), meaning energy transfer from dark matter
to dark energy, it is possible to obtain a late time transition
between two phantom solutions: P3 case (i)1 (saddle) → P4

case (iii)1 (stable). This transition requires −ξ2
0 /4 ≤ β < 0,

but if we also demand previous stages of RDE and MDE we
must impose condition (20), leading to an almost null value
for the interaction parameter,

− 2.00704 × 10−7 < β < 0, (21)

thus the phantom solutions P3 and P4 tend to de Sitter solu-
tions weff = −1 (β = 0). The rest of the late time phan-

tom solutions demand very large values of the bulk viscosity
parameter, ξ0 > 1, compared to those allowed by (20) in
order to recover a true MDE; hence they are ruled out.

The only possible late time scenario with a non-null
value of the interaction parameter corresponds to a stable
quintessence solution (P4). This solution requires

0 < ξ0 ≤ 1

3
∧ 0 < β <

2

3
.

If we impose the condition (20) to ensure a true MDE and
take into account the latest constraint on the value of the dark
energy EOS [9], the following tiny region is obtained for the
interaction parameter:

0 < β ≤ 0.039. (22)

Figure 5 shows some example orbits in the plane (x = �de,
y = �m) to illustrate the above scenario.

4 Concluding remarks

In this work we studied the dynamics of model of the Uni-
verse filled with radiation, dark matter and dark energy. The
dark matter component was treated as an imperfect fluid hav-
ing bulk viscosity, whereas the remaining fluids were con-
sidered as perfect fluids. The bulk viscosity was taken as

proportional to the dark matter density ζ ∝ ρ
1
2
m [20] and we

introduce an interaction term between the dark matter and
the dark energy components with the objective of extending
the previous results developed in [22]. This new term was
taken as Q = 3Hρde [44,45,49,50].

Recall that the ansatz on the bulk viscosity used in [21,50]
(ζ ∝ H ) is different from the one used in this work. Thus the
results obtained now are new compared with those obtained
in [21,50] and an extension to those obtained in [22] by the
introduction of the interaction term.

We performed a dynamical system analysis of the model
in order to investigate its asymptotic evolution and behavior.
The imposition of a transition from a RDE to an accelerated
dominated solution, passing through a true MDE reduces the
possible values of the bulk viscosity parameter to a tiny region
0 ≤ ξ0 < 0.000896. This finding extends those obtained in
[18,19,22] with no interaction between dark matter and dark
energy.

The presence of an interaction between dark matter and
dark energy allows one, from the mathematical point of view,
to obtain stable (saddle) late time accelerated solutions in the
phantom, de Sitter and quintessence regions. However, the
requirement of a true MDE imposes strong constraints on
the interaction parameter β in the case of late time phantom
solutions. In both cases, regardless of the direction of energy
transfer between dark matter and dark energy, the interaction
parameter is consistent with a null value; hence the de Sitter
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solution will be the late time attractor. Moreover, the impossi-
bility of having late time accelerated solutions, caused solely
by the viscous matter (P2), found in [22] with β = 0, was
extended to this new scenario with interaction between dark
matter and dark energy.

The only favorable scenario with a non-null value of the
interaction parameter, 0 < β ≤ 0.039, is described by the
late time stable quintessence solution P4. This solution is
capable of fulfilling the complete cosmological paradigm,
that is, a transition P1(RDE) → P2 (MDE) → P4. Recall
that this quintessence solution is compatible with the latest
constraint on the values of the dark energy EOS [9].
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Appendix A: Eigenvalues of critical point P3

The eigenvalues of P3 are

λ1 = −
√

−18Aξ5
0 + 3F5ξ4

0 − 6F4ξ3
0 + 6F3ξ2

0 + 24F2ξ0 + 8F1 + 9ξ6
0

4
√

2B

− 3Aξ2
0

4
√

2B
+ 3β + 3βξ0

2
√

2B
+ 3ξ3

0

4
√

2B
+ 3ξ0

2
√

2B
− 7

2
(23)

λ2 =
√

−18Aξ5
0 + 3F5ξ4

0 − 6F4ξ3
0 + 6F3ξ2

0 + 24F2ξ0 + 8F1 + 9ξ6
0

4
√

2B

− 3Aξ2
0

4
√

2B
+ 3β + 3βξ0

2
√

2B
+ 3ξ3

0

4
√

2B
+ 3ξ0

2
√

2B
− 7

2
(24)

where

A =
√

4β + ξ2
0 , (25)

B =
√

−Aξ0 + 2β + ξ2
0 , (26)

F1 = (7 − 6β)2B2 − 24β(3β2 − 7β + 4), (27)

F2 = A(15β2 − 32β + 16) + √
2(3β2 − 3β + 1)B, (28)

F3 = 3
√

2A(β − 2)B − 42β2 + 124β − 58, (29)

F4 = 2A(6β − 1) + 3
√

2(β − 2)B, (30)

F5 = 3A2 + 24β − 4. (31)

Appendix B: Eigenvalues of critical point P4

The eigenvalues of P4 are

λ1 = −
√

18Aξ5
0 + 3F10ξ4

0 + 6F9ξ3
0 − 6F8ξ2

0 − 24F7ξ0 + 8F6 + 9ξ6
0

4
√

2C

+ 3Aξ2
0

4
√

2C
+ 3β + 3βξ0

2
√

2C
+ 3ξ3

0

4
√

2C
+ 3ξ0

2
√

2C
− 7

2
, (32)

λ2 =
√

18Aξ5
0 + 3F10ξ4

0 + 6F9ξ3
0 − 6F8ξ2

0 − 24F7ξ0 + 8F6 + 9ξ6
0

4
√

2C

+ 3Aξ2
0

4
√

2C
+ 3β + 3βξ0

2
√

2C
+ 3ξ3

0

4
√

2C
+ 3ξ0

2
√

2C
− 7

2
, (33)

where

A =
√

4β + ξ2
0 , (34)

C =
√
Aξ0 + 2β + ξ2

0 , (35)

F6 = (7 − 6β)2C2 − 24β(3β2 − 7β + 4), (36)

F7 = A(15β2 − 32β + 16) + √
2(−3β2 + 3β − 1)C, (37)

F8 = 3
√

2A(β − 2)C + 42β2 − 124β + 58, (38)

F9 = 2A(6β − 1) − 3
√

2(β − 2)C, (39)

F10 = 3A2 + 24β − 4. (40)
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