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Abstract The purpose of this paper is to study the transport
equation and its coupling with the Maxwell equation in the
framework of Rn gravity. Using Müller–Israel–Stewart the-
ory for the conduction of dissipative fluids, we analyze the
temperature, heat flux, viscosity and thermal conductivity in
the scenario of relaxation time. All these thermodynamical
variables appear in the form of a single factor whose influ-
ence is discussed on the evolution of relativistic model for
the heat conducting collapsing star.

1 Introduction

The evolution of gravitational collapse and self-gravitating
systems has been widely discussed in General Relativity
(GR). This type of study usually is based upon perturbing
the system by changing its equilibrium state. The tendency
of the evolution of the object is studied as soon as it departs
from the equilibrium state. This method of perturbation con-
sists of only linear terms by ignoring the quadratic and higher
order terms. In such cases, the evolution processes of the self-
gravitating systems may take place on the hydrostatic time
scale and a quasi-static approximation could fail. Then it is
necessary to study the evolution of the system immediately
after its departure from the equilibrium state on a time scale
of the order of relaxation times. The relaxation process may
change the final outcome of the gravitational collapse drasti-
cally. There are particular cases of the collapsing spheres in
the literature, where relaxation time may cause the bounce
or collapse of the evolving system [1].

The applications of the electromagnetic field in astronomy
and astrophysics is an active research domain. A lot of work
has been devoted to a discussion of the collective effects of
electromagnetic and gravitational fields. For example, the rel-
ativistic jets are a natural outcome of some of the most violent

a e-mail: rizwa_math@yahoo.com

and spectacular astrophysical phenomena, such as the core
collapse of massive stars in gamma-ray bursts (GRBs) and
the accretion onto supermassive black holes in active galactic
nuclei (AGN) [2]. It is generally accepted that these jets are
powered electromagnetically by the magnetized rotation of
a central compact object, i.e., a black hole or neutron star.
The main source of power of AGN and GRB jets is the rota-
tional energy of the central black hole [3,4] and its accretion
disk. The naturally occurring low mass density and hence
high magnetization of black-hole magnetospheres suggests
that the relativistic jets originate directly from the black-hole
ergosphere. As the plasma is attracted towards the compact
object, it is accelerated to relativistic speeds and the in-falling
material typically forms an accretion disc around the com-
pact object [5]. Plasma thermalization processes within the
accretion disc are thought to accelerate charged particles and
launch jets through shocks [6].

The phenomenology of gravitational collapse is of great
interest in modified gravity theories. In particular, f (R) grav-
ity is more popular due to its straightforward generalization
of GR and its cosmological applications to accommodating
the early [7] or late time [8] acceleration of the universe. It is
supposed that f (R) gravity can produce some kind of repul-
sive force similar to that of dark energy in Einstein gravity.
Thus, the question arises whether such a kind of repulsive
effect in f (R) gravity can hinder the gravitational collapse
and the formation of black holes. Different aspects of gravi-
tational collapse and black-hole formation for the spherically
symmetric solution in f (R) theory have been explored [9];
however, the dynamical and transport process of forming
black holes in f (R) gravity through gravitational collapse
has not widely been discussed. This work may contribute to
explore such questions.

Many choices for the function f (R) have appeared in the
literature which aimed to explain dark energy and accel-
erating universe [10]. However, in this paper, we restrict

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4929-z&domain=pdf
mailto:rizwa\protect _math@yahoo.com


374 Page 2 of 7 Eur. Phys. J. C (2017) 77 :374

ourselves to a power-law form of f (R) gravity, that is,
f (R) = Rn . This model has great physical significance,
being determined by the presence of Noether symmetries in
the interaction Lagrangian [11]. Earlier, this model was con-
strained by a solar system test and in the attempt to explain
the accelerating universe [12]. However, to obtain analytical
or qualitative insight on exact solutions, it is perfectly accept-
able model to study f (R) theory as a toy model. Also, the
applications of this model are directed to the study of the dark
matter by using spherically symmetric solutions via Noether
symmetries [13]. Such an approach shows that Rn type mod-
els are compatible with the spherically symmetry, which is
closely associated with the Birkhoff theorem. The validity of
this theorem is directly related to the physical properties of
a self-gravitating system, e.g., stability and stationarity etc.
[14].

In fact, the relations between the fundamental plane
parameters of galaxies and the corrected Newtonian poten-
tial, coming from Rn , can be found and justified from a physi-
cal point of view to fit the observations [15]. Furthermore, the
excellent agreement of the theoretical and observed rotation
curves and the values of the stellar mass-to-light ratios with
the predictions of population synthesis models make us feel
confident that Rn gravity may represent a good candidate to
solve both the dark energy problem on cosmological scales
and the dark matter one on galactic scales with the same value
of the slope n of the higher order gravity Lagrangian [16].

In this paper, we discuss the transport equation of gravita-
tional collapse along with the Maxwell source in Rn gravity.
We derive the general transport equation for the f (R) = Rn

model and then fix n = 2 as well to write some results
because the R2 term could work effectively at the infrared
scale. In Sect. 2, the modified Einstein field equations for the
Rn gravity combined with the Maxwell source are presented.
In Sect. 3, we will formulate the dynamical equations. The
central problem, the transport equation, is analyzed in Sect. 4
and results are provided in the last section.

2 Field equations for Rn gravity and Maxwell source

The 4-dimensional (μ, ν = 0, 1, 2, 3) action in f (R) grav-
ity along with the Maxwell source and matter Lagrangian is
defined as

S = 1

2

∫
d4x

√−g

(
f (R)

κ
− �

2π

)

+
∫

d4xLm(gμν,�m), (2.1)

where κ stands for the coupling constant and � = 1
4 F

μνFμν

is the Maxwell invariant and Lm is the Lagrangian for the
matter source depending upon the gμν and the matter field.
The Maxwell equations in a gravitational field enhance the

gravity background by the mass–energy relationship. Deriv-
ing the field equations by varying the above action with
respect to gμν , we get the following set of field equations:

fR Rμν − 1

2
f (R)gμν − ∇μ∇ν fR + gμν� fR

= κ(Tm
μν + Eμν), (2.2)

whereTm
μν = − 2√−g

δLm
δgμν . The above equations can be written

in the standard format as follows:

Gμν = κ(T D
μν + Tm

μν + Eμν), (2.3)

where the quantities on the right hand side follow:

T (D)
μν = 1

κ

(
f − R f,R

2
gμν + ∇μ∇ν f,R − gμν� f,R

)
,

(2.4)

Tm
μν = (ρ + p)uμuβ − pgμν + qμuν + qνuμ, (2.5)

Eμν = 1

4π

(
−Fγ

μ Fνγ + 1

4
Fγ δFγ δgμν

)
. (2.6)

Here qu denotes the heat flow vector satisfying qμuμ, the
quantity Fμν = 
ν,μ − 
μ,ν is called the field strength
tensor and 
μ is the electro magnetic tensor. In terms of this
strength tensor, the field equations for the Maxwell source
can be written as

Fμν

;ν = μ0 J
μ, (2.7)

F[μν;γ ] = 0, (2.8)

Jμ = ρ(t, r)Vμ. (2.9)

The quantities Jμ, μ0, Vμ and ρ are the four-current, mag-
netic permeability, the four-velocity and the charge density,
respectively. In this paper, we assume that the charge is at
rest and hence the magnetic field is 0, so that


μ = 
(t, r)δ0
μ. (2.10)

We consider a spherically symmetric spacetime with gen-
eral metric components A, B, andC as a function of time and
radial coordinates. This interior metric represent the matter
source which is undergoing dissipative process causing the
gravitational collapse. This interior matter is bounded by a
spherical surface � and is given by

ds2− = A2dt2 − B2dr2 − C2(t, r)(dθ2 + sin2 θdφ2).

(2.11)

For the metric exterior to the boundary surface, we consider
a spacetime represented in the form of a total charge Q and
a total mass M of the collapsing matter inside the �. This is
given by

ds2+ =
(

1 − 2M(ν)

r
+ Q2

r

)
dν2 + 2drdν

− r2(dθ2 + sin2 θdφ2). (2.12)
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For the general interior spacetime, the Maxwell field equa-
tions will take the form

∂2


∂r2 −
(
B ′

B
+ A′

A
− 2C ′

C

)
∂


∂r
= 4πρB2A, (2.13)

∂

∂t

(
∂


∂r

)
−

(
Ḃ

B
+ Ȧ

A
− 2Ċ

C

)
∂


∂r
= 0. (2.14)

The derivatives with respect to time and radius are denoted
by a dot and a prime, respectively. Following the conserva-
tion law of the four-current, i.e., Jμ; μ = 0, we obtain the
expression for the charge and the electric field intensity per
unit surface area as follows:

q(r) = 2π

∫ r

0
ρBC2dr, (2.15)

E(t, r) = q

4πC2 . (2.16)

We consider the background model f (R) = Rn to formu-
late the field equations using the interior spacetime metric.
The non-zero components of the field equations are as fol-
lows:

G00 = κ

nRn−1

[
ρA2 + A2

κ

{
(1 − n)Rn

2

+ n(n − 1)[(n − 2)Rn−3R′2 + R′′]
B2

+
(

2Ċ

C
− Ḃ

B

)
n(n − 1)Rn−2 Ṙ

A2

+
(

2C ′

C
− B ′

B

)
n(n − 1)Rn−3R′

B2

}
+ 2πE2

]
,

(2.17)

G01 = κ

nRn−1

[
−q AB + 1

κ

(
n(n − 1)[(n − 2)Rn−3R′ Ṙ

+Rn−2 Ṙ′] − A′

A
[n(n − 1)Rn−2 Ṙ]

− Ḃ

B
[n(n − 1)Rn−2R′]

)]
, (2.18)

G11 = κ

nRn − 1

[
pr B

2 − 2πE2 − B2

κ

{
(1 − n)Rn

2

+ n(n − 1)Rn−2 Ṙ

A2 ×
(
Ȧ

A
+ 2Ċ

C

)

−{n(n − 1)[(n − 2)Rn − 3Ṙ + Rn−2 R̈]}A2

+
(
A′

A
+ 2C ′

C

)
n(n − 1)Rn−2R′

B2

}
− 2πE2

]
,

(2.19)

G22 = κ

nRn−1

[
p⊥C2 − C2

κ

{
(1 − n)Rn

2

− n(n − 1)[(n − 2)Rn−3 Ṙ + Rn−2 R̈]
A2

+ n(n − 1)[(n − 2)Rn−3R′2 + Rn−2R′′

B2

+ nRn−1

A2

(
Ȧ

A
− Ḃ

B
+ Ċ

C

)

+
(
A′

A
− B ′

B
+ C ′

C

)
n(n − 1)Rn−2R′

B2

}
+ 2πE2

]
.

(2.20)

To discuss the collapsing matter inside the star, the proper
time, proper radial derivatives and the collapsing velocity of
the dissipative fluid can be written

DT = 1

A

∂

∂t
, DC = 1

C ′
∂

∂r
U = DTC = Ċ

A
, (2.21)

where the velocity is always considered negative to represent
collapse. The time derivative of the collapsing velocity, the
acceleration, DTU , can be calculated using Eqs. (2.19) and
(2.21) as follows:

DTU = A′

AB
Ẽ − κ

2nRn−1

×
[
p − 1

κ

{
−n(n − 1)[(n − 2)Rn−3 Ṙ + Rn−2 R̈]

A2

+ n(n − 1)Rn−2 Ṙ

A2

(
Ȧ

A
+ 2Ċ

C

)

+n(n−1)Rn−2R′

B2

(
A′

A
+2C ′

C

)
+ (1−n)Rn

2

}]
.

(2.22)

Ẽ has been given in terms of the Misner and Sharp mass
function m as

Ẽ =
[

1 +U 2 + 2m

C

]1/2

. (2.23)

3 Transport equation

To study the transport equation, first we need to formulate
the dynamical equations of the collapsing fluid by using con-
tracted Bianchi identities achieved by taking the covariant
derivative with respect to the four-velocity Vα and four vec-

tor χα = B−1δα
1 along the radial direction, [

(m)

T αβ +
(D)

T αβ +
Eαβ ];βVα = 0 and [

(m)

T αβ+
(D)

T αβ+T αβ ];βχα = 0, respectively.
The resulting lengthy equations obtained from these identi-
ties are given in the appendix. Extracting the term A′

AB (ρ+ p)
from Eq. (2.22), we get

A′

AB
(ρ + p) = (ρ + p)

Ẽ
DTU + (ρ + p)κ

2nRn−1 Ẽ

×
[
p − 1

κ

{
n(n − 1)Rn−2 Ṙ

A2
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×
(
Ȧ

A
+ 2Ċ

C

)
+ (1 − n)Rn

2

+ n(n − 1)Rn−2R′

B2

(
A′

A
+ 2C ′

C

)

− n(n − 1)[(n − 2)Rn−3 Ṙ + Rn−2 R̈]
A2

}]
.

(3.1)

Replacing this term in Eq. (5.7), we get the following expres-
sion for the acceleration of the collapsing fluid:

(ρ + p)DTUr = −(ρ + p)

[
κpr

2nRn−1

− 1

2nRn−1

{
(1 − n)Rn

2
− DT

(
n(n − 1)Rn−2 Ṙ

A

)

+ nRn−1DTC

C
+ Ẽ

B

(
A′

A
+ 2C ′

C

)
nRn−1DC R

}]

− Ẽ

[(
DT B

B
− DTC

C

)
× 2q − DTq

]

− Ẽ2DC p + Ẽ

κB
SRn ,

where we denote by SRn the term as appearing purely due to
Rn gravity. Explicitly, it is written in the Appendix.

To derive the equation for the heat flux, we use the Müller–
Israel–Stewart theory which helps us to write the thermal con-
ductivity in terms of a linear combination of various fluxes,
e.g., the four-velocity, heat flux, etc. This theory has been
conceived in a series of papers by Israel and Stewart [17–19]
followed by work of Müller [20]. The study of the transport
equation obtained from this theory provides the information
as regards the transfer of mass, heat and momentum during
the collapse of the matter. The equation is given by

τhαβuγ qβ;γ + qα

= −ηhαβ(T,β + aβT ) − 1

2
ηT 2

(
τuβ

ηT 2

)
;β
qα. (3.2)

Here hαβ = gαβ −uαuβ is the projection tensor whereas the
notation η, τ , T and aβT denotes the thermal conductivity,
the relaxation time, the temperature and the Tolman inertial
term with aα = uα;βuβ being the acceleration, respectively.
The non-zero and independent component of the above equa-
tion is given by

τ q̇ = −q A − 1

2
ηqT 2

(
τ

ηT 2

)·

− 1

2
τq

(
Ḃ

B
+ 2

Ċ

C

)
+ ηA2

B

(
T

A

)′
. (3.3)

Eliminating the expression for the quantity, A′
A , from Eq. (3.1)

and then substituting it in Eq. (2.23), we obtain

DTq = −ηT 2q

2τ
DT

(
τ

ηT 2

)
− q

2

(
DT B

B
+ 2DTC

C
+ 1

τ

)

+ ηẼ

τ

(
DCT − DTU

τ Ẽ2

)
− ηT

τ Ẽ

[
κpr

2nRn−1

− 1

2nRn−1

{
− DT

(
n(n − 1)Rn−2 Ṙ

A

)

+ nRn−1DTC

C
+ (1 − n)Rn

2

+ Ẽ

B

(
A′

A
+ 2C ′

C

)
nRn−1DC R

}]
. (3.4)

To see the effects of the heat flux on the dissipative process
of the collapsing fluid, we use this version of the transport
equation in Eq. (5.8) and fix n = 2 to obtain

(ρ + p)

[
1 − ηT

τ(ρ + p)

]
DTU

= −
[

1 − ηT

τ(ρ + p)

] (
ρ + p

4R

) [
κp

4R

+ 1

4R

{
DT

(
2Ṙ

A

)
+ R2

2
− 2RDTC

C

− ˜2RE

B

(
A′

A
+ 2C ′

C

)
DC R

}]

+ Ẽ

[
ηT 2q

2τ
DT

(
τ

ηT 2

)
− Ẽ2DC p

q

2

(
DT B

B

+ 2DTC

C
+ 1

τ

)
+ ηẼ

τ
DCT

]
+ Ẽ

κB
SR2 . (3.5)

This equation yields the energy transport in a star. There
are three ways of energy transfer from hot to cold layers of
the star, i.e., conduction, radiation and convection. Usually,
photons carry energy from the hot interior core of a collapsing
star to the outer cold space. If photons/radiation are unable to
transfer the total energy of the hot interior star to the surface
of the star, then the method of convection is used to process
energy transfer. In the method of convection, hotter gases rise
to the upper levels of the star surfaces to radiate their energy
and meanwhile cooler gases sink towards the hot interior to
collect energy. The third way of the transport energy is the
conduction method in which each atom transfers its energy
to its neighbouring atoms; however, this method is usually
ignored due to its low efficiency.

4 Discussion and results

In this paper, we have discussed the dynamics of the dissi-
pative fluid after its departure from the hydrostatic equilib-
rium by using the transport equation of a radiating charged
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fluid. We have adopted the power-law version of f (R) the-
ory which could fit well the observations and encourages
further investigation on Rn gravity from both the theoretical
and observational points of view [21]. The field equations
have been derived for Rn theory and Maxwell source. The
conservation equations for the matter yielded two types of
dynamical equations. These dynamical equations give the
information as regards the dynamics of the collapsing fluid
and also are further used in the transport equation for Müller–
Israel–Stewart theory of dissipative fluids to get the hydro-
static equilibrium evolution equation.

It is found that the resulting evolution equation (4.1) criti-
cally depends on a factor composed of thermodynamic vari-
ables. On the left hand side of this equation, the term DTU
is the acceleration, whereas the product term (ρ + p) is the
inertial mass density. Thus by Newton’s law, the right hand
side term represents the gravitational force term along with
the repulsive term SR2 . To interpret this, we assume that the
gravitational force term overcomes the effect of repulsive
term; then we see that both sides of the equation are affected
by the factor 1 − ηT

τ(ρ+p) . Also, the same factor appears on
the right hand side of the equation and hence represents the
consistency of the equivalence principle. If we denote this
factor by β, then we may have the following possibilities:

(i) If 0 < β < 1, then the inertia of heat causes a decrease
in the inertial and gravitational mass densities due to a
fractional factor. If the evolution proceeds in such a way
that β → 1, then the effective inertial mass density of
the fluid element approaches 0. For a very small value
of the relaxation time at present time, we may specu-
late that β may increase substantially in a pre-supernova
event. In fact, at the last stages of a massive star evo-
lution, the decrease of inertial densities would prevent
the propagation of photons and neutrinos [22].

(ii) If β → 0, then there is no effect on the inertial mass
density and gravitational force. In addition, this case
may lead to the fact that ηT → 0. If this happens, then
the core becomes degenerate, starts to cool and the star
must become a white dwarf. This case may be fitted
to small bodies, such as Saturn, which is stable against
the gravitational collapse. If we gave Saturn a slight
squeeze, both the gravitational force and the pressure
within its core would increase. The gravitational force
would rise simply as the inverse-square of the radius,
but the force of the pressure would rise faster than the
inverse-square of the radius. This imbalance of forces
would cause Saturn to expand back to its equilibrium
radius regardless of how cold Saturn grows.

(iii) If β > 1, then it changes sign and hence the gravita-
tional force term becomes positive implying a reversal
of collapse. Consequently, this case may stop the col-
lapse and make the star explode. If this does not happen,

the collapse would lead to a region of instability. This
mechanism is assumed to cause type II supernovae.

(iv) The case when β = 1: we get the critical point during
gravitational collapse. In this case, the force terms on
the right hand side of the evolution equation will also
be 0 and we are left with a constraint equation,

ηT 2q

2τ
DT

(
τ

ηT 2

)
− Ẽ2DC p

q

2

×
(
DT B

B
+ 2DTC

C
+ 1

τ

)

+ ηẼ

τ
DCT = Ẽ

κB
SR2 . (4.1)

This equation represents the dissipative regime of the
collapsing sphere immediately after its departure from
the equilibrium state on a time scale of the relaxation
time τ . If we suppose that, before hydrostatic equilib-
rium, there is no dissipation, then all terms on the left
hand side will vanish due to the vanishing of q and η. At
the moment of hydrostatic equilibrium, the relaxation
time influences the evolution process. Some particular
values of the relaxation time may cause the bounce or
collapse of the sphere [23,24].

If the inertial mass density (ρ+ p) will be 0 for the perfect
fluid case, then the discussion will be the same as for the
factor ηT

τ(ρ+p) when it approaches 1. It is mentioned that we
are evaluating the system immediately after its leaving the
equilibrium state, hence the thermodynamical variables are
hard to interpret numerically, however, as a guess, the values
may be [η] ≈ 1037, [T ] ≈ 1013, [τ ] ≈ 10−4, [ρ] ≈ 1012

[22]. In general, the obtained results represent a general self-
gravitating dissipative fluid model.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

5 Appendix

For the model f (R) = Rn , the derivatives of d f
dR = fR used

in the field equation are given by

ḟ R = n(n − 1)Rn−2 Ṙ (5.1)

f ′
R = n(n − 1)Rn−2R′ (5.2)

f̈ R = n(n − 1)[(n − 2)Rn−3 Ṙ + Rn−2 R̈] (5.3)

ḟ ′
R = n(n − 1)[(n − 2)Rn−3R′ Ṙ + R(n − 2)Ṙ′] (5.4)

f ′′
R = n(n − 1)[(n − 2)Rn−3R′2 + Rn−2R′′]. (5.5)
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The first dynamical equation, [
(m)

T αβ +
(D)

T αβ + Eαβ ];βVα =
0:

ρ̇

A
+ q ′

B
+ q

B

(
A′

A
+ 2C ′

C

)
+ (ρ + p)

A

(
Ḃ

B
+ 2Ċ

C

)

+ A

κ

[
1

A2B2 ×
{
n(n − 1)(n − 2)Rn−3R′ Ṙ

+ Rn−2 Ṙ′ − A′

A
n(n − 1)Rn−2 Ṙ

− Ḃ

B
n(n − 1)Rn−2R′

}]
,1

+ A

κ

{
n(n − 1)

A2B2 (n − 2)Rn−3R′2

− n(n − 1)Rn−2 Ṙ

A2

(
Ḃ

B
− 2Ċ

C

)

− n(n − 1)Rn−2R′

B2

(
B ′

B
− 2C ′

C

)

+ (1 − n)Rn

2A2

}
,0

+ Ȧ

κA2

{
(1 − n)Rn

2A2

+ n(n − 1)

A2B2 (n − 2)Rn−3R′2 − n(n − 1)Rn−2 Ṙ

A2

×
(
Ḃ

B
− 2Ċ

C

)
− n(n − 1)Rn−2R′

B2

(
B ′

B
− 2C ′

C

)}

+ Ḃ

κAB

{
n(n − 1)

B2 [(n − 2)Rn−3R′2 + Rn−2R′′]

− n(n − 1)Rn−2 Ṙ

A2 ×
(
Ȧ

A
+ Ḃ

B

)
+ n(n − 1)

A2

×[(n − 2)Rn−3 Ṙ + Rn−2 R̈] −
(
A′

A
+ B ′

B

)

× n(n − 1)Rn−2R′

B2

}
+ 2Ċ

κAC

{
n(n − 1)

A2 [(n − 2)

× Rn−3 Ṙ + Rn−2 R̈] + n(n − 1)Rn−2 Ṙ

A2

(
Ċ

C
− Ȧ

A

)

− n(n − 1)Rn−2R′

B2

(
A′

A
− C ′

C

)}

+ 1

κAB2

(
n(n − 1)[(n − 2)Rn−3R′ Ṙ + Rn−2 Ṙ′]

− n(n − 1)Rn−2 Ṙ
A′

A
− n(n − 1)Rn−2R′ Ḃ

B

)

×
(

2A′

A
+ B ′

B
+ C ′

C

)
= 0. (5.6)

The second dynamical equation, [
(m)

T αβ+
(D)

T αβ+T αβ ];βχα =
0:

p′

B
+ q̇

A
+ 2q

A

(
Ḃ

B
+ Ċ

C

)
+ A′

AB
(ρ + p)

− B

κ

[{
n(n − 1)

A2B2 × [(n − 2)Rn−3R′ Ṙ + Rn−2 Ṙ′]

− n(n − 1)Rn−2
(
A′

A
Ṙ + Ḃ

B
R′

)}
,0

+
{

(1 − n)Rn

2B2 − n(n − 1)

A2 [(n − 2)Rn−3 Ṙ + Rn−2 R̈]

+
(
Ȧ

A
+ 2Ċ

C

)
× n(n − 1)Rn−2 Ṙ

A2 + B2

n(n − 1)Rn−2R′

×
(
A′

A
+ 2C ′

C

)}
,1

+ A′

AB2 ×
{
n(n − 1)

A2

×[(n − 2)Rn−3 Ṙ + Rn−2 R̈] − n(n − 1)Rn−2 Ṙ

A2

+
(
Ȧ

A
+ Ḃ

B

)
× n(n − 1)

B2 [(n − 2)Rn−3R′2 + Rn−2R′′]

− n(n − 1)Rn−2R′

B2

(
A′

A
− B ′

B

)}

+ 2B ′

B3

(
A′

A
− C ′

C

){
(1 − n)Rn

2A2

+ n(n − 1)[(n − 2)Rn−3 Ṙ + Rn−2 R̈]
A2

+ A′

A
n(n − 1)Rn−2 Ṙ − Ḃ

B
n(n − 1)Rn−2R′

− n(n − 1)Rn−2 Ṙ

A2

(
Ȧ

A
+ Ḃ

B

)

− n(n − 1)Rn−2R′

B2

(
A′

A
+ B ′

B

)}

+ 2Ċ

C A2

{
n(n − 1)

A2 [(n − 2)Rn−3 Ṙ

+ Rn−2 R̈] + n(n − 1)Rn−2 Ṙ

A2

(
Ċ

C
− Ȧ

A

)

− n(n − 1)Rn−2R′

B2

}
+ 1

A2B2

× [n(n − 1)(n − 2)Rn−3R′ Ṙ + Rn−2 Ṙ′]
−

(
Ȧ

A
+ 3Ḃ

B
+ 2Ċ

C

)]
= 0, (5.7)

SRn =
[(

DT A

A
− DT B

B
− 2DTC

C

){
n(n − 1)

× DT R
n−2R′ − A′

A
nRn−1DT

×
(
n(n − 1)Rn−2R′DT B

B

)}

+
{

2nRn−1 × DTC

C
− DT

(
n(n − 1)Rn−2 Ṙ

A

)

+ Ẽ

B

(
A′

A
+ 2C ′

C

)
nRn−1DC R

}

,1
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+ A′

A

{
DT

(
n(n − 1)Rn−2 Ṙ

A

)

+ n(n − 1)

B2 [(n − 2)Rn−3R′2 + Rn−2R′′]

− n(n−1)Rn−2R′

B2

(
A′

A
+ B ′

B

)
−nRn−1DT BDT

B

}

+ 2C ′

C

{
n(n − 1)

B2 × [(n − 2)Rn−3R′2 + Rn−2R′′]

− nRn−1DT

(
DT B

B
+ DTC

C

)
− n(n − 1)

B2

− Rn−2R′
(
B ′

B
+ C ′

C

)}

+ 1

A2

{
n(n − 1)[(n − 2)Rn−3R′ Ṙ + Rn−2 Ṙ′]

− n(n − 1)Rn−2
(
Ṙ
A′

A
− R′ Ḃ

B

)}
,0

]
. (5.8)

SR2 =
[(

DT A

A
− DT B

B
− 2DTC

C

)

{
2DT R

′ − A′

A
2RDT

(
2R′DT B

B

)}

+
{

4R
DTC

C
+ 2RDC R

Ẽ

B

(
A′

A
+ 2C ′

C

)

−DT

(
2Ṙ

A

)}
,1

+ A′

A

{
DT

(
2Ṙ

A

)

+2R′′

B2 − 2R′

B2

(
A′

A
+ B ′

B

)
− 2RDT BDT

B

}

− 2C ′

C

{
2R′′

B2 − 2DT

(
DT B

B
+ DTC

C

)

−R′
(
B ′

B
+ C ′

C

)}

− 2

A2

{(
Ṙ
A′

A
− R′ Ḃ

B

)
+ Ṙ′

A2

}
,0

]
. (5.9)
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