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Abstract The aim of this paper is to investigate the sta-
ble/unstable regimes of the non-static anisotropic filamentary
stellar models in the framework of f (R, T, RμνTμν) grav-
ity. We construct the field equations and conservation laws
in the perspective of this model of gravity. The perturbation
scheme is applied to the analysis of the behavior of a partic-
ular f (R, T, RμνTμν) cosmological model on the evolution
of cylindrical system. The role of the adiabatic index is also
checked in the formulations of the instability regions. We
have explored the instability constraints in the Newtonian
and post-Newtonian limits. Our results reinforce the signif-
icance of the adiabatic index and dark source terms in the
stability analysis of celestial objects in modified gravity.

1 Introduction

The accelerated expansion of the cosmos has become clearly
manifest after the discovery of unexpected reduction in the
detected energy fluxes coming from supernovae of type Ia
[1,2]. Other observational data like cosmic microwave back-
ground radiations, large scale structures and galaxy red shift
surveys [3,4] also provide evidence in this favor. These obser-
vational data led one to propose an enigmatic form of force,
dubbed dark energy (DE), which takes part in the expansion
phenomenon and dominates overall the energy density of the
cosmos. Despite some very solid claims about the existence
of DE, its unknown nature is the substantial puzzle in cosmol-
ogy. The idea of modified gravitational theories is obtained by
extending the standard Einstein–Hilbert (EH) action, which
has gained much fame in order to demonstrate the secrets of
cosmic accelerating expansion.

There exist various theories of modified gravity such as
f (R) gravity with R the Ricci scalar, f (T ) gravity in which
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T is the torsion scalar, f (R, T ) gravity with T the trace
of energy-momentum tensor, f (G) gravity in which G rep-
resents the Gauss–Bonnet invariant and f (R, T, Q) grav-
ity (where Q = Rλσ T λσ ) etc. Nojiri and Odintsov [5]
reviewed various versions of modified gravity models that
could explain DE dominance in this accelerating cosmos.
Cognola et al. [6] introduced some viable formulations of
f (R) DE models and classified them into four main streams.
Nojiri and Odintsov [7] studied some important aspects of
f (R) gravity in order to make them well consistent with
observational data. Bamba et al. [8] discussed the role of DE,
through modified cosmic models, in the expansion of our
accelerating cosmos. Durrer and Maartens [9] investigated
the idea that some f (R) models could lead to new schemes
to test out the credibility of general relativity itself on cos-
mological scales. Bhatti et al. [10] discussed the dynamical
instability of a non-static cylindrical cosmic configuration by
using f (T ) gravity and found that additional curvature con-
ditions generate the stability of an expanding stellar frame.

Harko et al. [11] used f (R, T ) theory of gravity and pre-
sented the corresponding equations of motion for the mas-
sive particles through the variational principle in f (R, T )

theory. The generalization of f (R, T ) gravity is f (R, T, Q)

gravity, where Q = Rλσ T λσ shows the non-minimal cou-
pling between matter and geometry [12]. Haghani et al. [13]
obtained the field equations by using a Lagrange multiplier
in the f (R, T, Q) theory of gravity. Odintsov and Sáez-
Gómez [14] studied f (R, T, Q) gravity with a non-minimal
association between matter and gravitational fields and con-
cluded that the ensuing modified gravity contains additional
points which would recast the possible cosmological evo-
lution. Elizalde and Vacaru [15] evaluated some exact off-
diagonal cosmological models in f (R, T, Q) gravity. Baf-
fou et al. [16] used the perturbation technique and performed
a stability analysis with the help of de Sitter and power
law models through numerical simulations in f (R, T, Q)

gravity.
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Gravitational collapse is a fundamental and highly dis-
sipative phenomenon leading to structure formation in our
universe. Chandrasekhar [17] studied the dynamical insta-
bility of an oscillating spherically symmetric model by using
a perfect fluid and found the instability limits in terms of
the adiabatic index. Herrera et al. [18] analyzed the dynam-
ical instability of dense stars with zero expansion scalar
in a spherically symmetric configuration and found insta-
bility limits that are independent of adiabatic index. Cem-
branos et al. [19] studied gravitational collapse in f (R)

gravity and found this phenomenon to possibly work as a
key tool to constrain modified gravity models that describe
late time cosmological acceleration. Yousaf et al. [20,21]
investigated the irregularity constituents for spherical self-
gravitating stars in the presence of an imperfect matter distri-
bution within f (R, T ) gravity and found that the complexity
of matter increases with the increase of anisotropic stresses.
Yousaf [22] explored collapsing spherical models support-
ing a vacuum core in a �-dominated era within the stellar
interior.

The subject of exploring the cosmic filamentary celestial
objects has been a focus of great attention of many astro-
physicists [23–29]. On a large cosmic scale, it has been
analyzed that matter is usually configured to make large
filaments. These stellar structures have been found to be
very clear characteristics of the interstellar medium. They
may give rise to galaxies upon contraction. Motivated by
several simulations and observational results, the stability
analysis of cosmic filaments with more realistic assump-
tions has received great interest. Binney and Tremaine [30]
have linearized the Vlasov equation about the steady phase
of the relativistic interior and solved the resulting eigen-
value equation in order to discuss the dynamical stabil-
ity of collision-less celestial structures supported by the
Vlasov–Poisson formulations. Chavanis [31] has extended
their results in the context of non-linear dynamical stabil-
ity and explored the problem of stability of barotropic as
well as collision-less stellar systems via the maximization
of a Casimir functional (or H-function) with fixed values
of energy and mass. Quillen and Comparetta [32] assumed
a constant linear mass density and approximately evaluated
a dispersion relation in the background of the tidal galaxy
tail.

Myers [33] has discussed the evolution of some observed
characteristics of cores and filaments and concluded that
during the contraction of host filaments, the core grows
in mass and radius, and this phenomenon stops if the sur-
rounding filament gas will no longer exist, making further
accretion impossible. Breysse et al. [34] carried out an ana-
lytical approach with the detailed perturbation background
and investigated the stability of polytropic fluid filaments.
They found that the instabilities of the cosmic fluid fila-
ments could be enhanced by introducing a tangential fluid

motion of the system. Sharif and Manzoor [35] studied the
dynamical instability of the axially symmetric stellar struc-
ture with reflection degrees of freedom coupled with locally
anisotropic fluid configurations in self-interacting Brans–
Dicke gravity and obtained stability conditions through
the adiabatic index in both the N and the pN approxima-
tions. Birnboim et al. [36] performed a stability analysis
in planar, filamentary and spherical infall geometries for
the existence of a virialized gas in one-, two- and three-
dimensional (3D) gravitational collapse and concluded that
cosmic filaments are likely to host halos under some con-
straints.

Recently, we have investigated the anisotropic spherical
collapse in the background of f (R, T, Q) gravity and dis-
cussed the stability of compact stars by taking into account
the particular viable model with perturbation technique. We
also examined that adiabatic index �1 has significant role
in the dynamical instability of these massive stars [37]. The
motivation of this paper is to explain the mathematical as
well as physical features of self-gravitating cylindrical celes-
tial objects within the framework of the f (R, T, Q) the-
ory of gravity. Particularly, some properties of viable mod-
ified gravity model are discussed to create the expansion
and DE consequences in cosmos. This paper is organized
as follows: We provide the basic formalism of f (R, T, Q)

gravity in Sect. 2. Section 3 deals with the dynamics of
cylindrical self-gravitating collapsing model in which for-
mation of field equations and conservation laws by linear
perturbation technique and instability constraints at New-
tonian (N) and post-Newtonian (pN) limits are investi-
gated. Finally, we conclude our main results in the last sec-
tion.

2 The formalism of f (R, T, Q) gravity

The formalism of f (R, T, Q) gravity is based on the con-
tribution of non-minimal coupling of geometry and matter.
Here R in the EH action is replaced with an arbitrary func-
tion of R, T and Rγ δT γ δ . In [13] modified EH action is
demonstrated in the following way:

I f (R,T,Q) = 1

2

∫
d4x

√−g[ f (R, T, Rλσ T
λσ ) + Lm], (1)

where Lm expresses the relative Lagrangian density of matter
distribution then the respective energy-momentum tensor is
expressed as

T (m)
λσ = − 2√−g

δ(
√−gLm)

δgλσ
. (2)

On varying the modified action Eq. (1), with metric tensor
gλσ , the following field equations are obtained:
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− Gλσ ( fQLm − fR)

− gλσ

{
f

2
− � fR − R

2
fR − 1

2
∇π∇ρ( fQT

πρ) − Lm fT

}

+ 2 fQ Rπ(λT
π

σ) + 1

2
�( fQTλσ ) − ∇π∇(λ[T π

σ) fQ]

− 2
(
fT g

πρ + fQ Rπρ
) ∂2Lm

∂gλσ ∂gπρ

− T (m)
λσ ( fT + R

2
fQ + 1) − ∇λ∇σ fR = 0, (3)

where ∇π and Gλσ indicates covariant derivative and
Einstein tensor, respectively, with � = gλσ ∇λ∇σ as a
d’Alembert operator. From Eq. (3), one can obtain the expres-
sion of trace as in [37]. In the framework of [11] the matter
Lagrangian has no specific distinction for perfect fluid, and
the corresponding second variation was neglected in their cal-
culations. Equation (3) can be rewritten in GR perspective as
follows:

Rλσ − R

2
gλσ = Gλσ = eff

Tλσ , (4)

where the effective energy-momentum tensor Tλσ
eff has the

following form:

Tλσ
eff = 1

( fR − fQ Lm)

[(
fT + 1

2
R fQ + 1

)
T (m)

λσ

+
{
R

2

(
f

R
− fR

)
− Lm fT − 1

2

× ∇π∇ρ( fQT
πρ)

}
gλσ − 1

2
�( fQTλσ )

− (gλσ � − ∇λ∇σ ) fR − 2 fQ Rπ(λT
π
σ)

+∇π∇(λ[T π
σ) fQ] + 2( fQ Rπρ + fT g

πρ)
∂2Lm

∂gλσ ∂gπρ

]
.

On taking Q = 0 in the above equation, f (R, T, Q) gravity
would reduce to f (R, T ) theory. However, in the case of
vacuum it leads to f (R) gravity theory and consequently we
will obtain GR results whenever f (R) = R.

3 Anisotropic matter distribution and cylindrical field
equations

We consider the three-dimensional (3D) timelike hypersur-
face, �, that would demarcate the 4D manifoldW into couple
of regions, i.e., exterior W+ and interior W−. The interior
region of relativistic stellar system is given by the following
cylindrically symmetric spacetime:

ds2− = −A2(t, r)(dt2 − dr2) + B2(t, r)dz2 + C2(t, r)dφ2.

(5)

For the representation of cylindrical symmetry, the following
ranges are imposed on the coordinates: −∞ ≤ t ≤ ∞, 0 ≤
r,−∞ < z < ∞, 0 ≤ φ ≤ 2π. We number the respective
coordinates x0 = t , x1 = r , x2 = z and x3 = φ. We assumed
C = 0 at r = 0, which represents a non-singular axis. The
spacetime for W+ is [38]

ds2+ = −e2(γ−υ)(dν2 − dρ2) + e−2υρ2dφ2 + e2υdz2, (6)

where γ and υ are the functions of ν and ρ, while the coordi-
nates are numbered as xβ = (ν, ρ, φ, z). The corresponding
vacuum field equations provide

ρ(υ2
ν + υ2

ρ) = f̃ − R̃ f̃R

2 f̃ R
e2(γ−υ), (7)

2ρυνυρ = γν, (8)

υνν − υρ

ρ
− υρρ = e2(γ−υ)

4ρ

(
f̃ − R̃ f̃R

f̃R

){
ρe−4υ + e2γ

ρ

}
,

(9)

where subscripts ρ and ν show partial differentiations with
respect to ρ and ν, respectively and tilde indicates that the
corresponding values are evaluated with constant R, T and
Q conditions. It has been proved by Senovilla [39] that mod-
ified extra curvature terms on the boundary surface should
be constant. Due to this, we have evaluated the above equa-
tions with constant R, T and Q. These equations suggest the
existence of a gravitational field. We assume anisotropic and
non-dissipative collapsing matter in the cylindrical geometry,
whose energy-momentum tensor is

Tλσ = (Pr + μ)VλVσ + Pr gλσ − KλKσ (Pr − Pφ)

−SλSσ (Pr − Pz), (10)

where μ is the energy density which is the eigenvalue of
Tλσ for eigenvector Vλ, while Pφ, Pz, Pr are the principal
stresses. The spacetime (5) is the canonical form for cylin-
drical symmetry, defined as usual by the 2D group that defines
the cylindrical symmetry. The unitary vectors Vλ, Lλ, Sλ, Kλ

are configured so as to render a canonical orthonormal tetrad
in which a hypersurface orthogonal 4-velocity vector is Vλ.
Further, the two vectors Sλ and Kλ are tangent to the orbits of
the 2D group that preserves cylindrical geometry and Lλ is
orthogonal to the 4-velocity Vλ and to these orbits. It is wor-
thy to stress that we are considering an Eckart frame where
fluid elements are in the state of rest. The four-vectors obey
the following relations:

V λVλ = −1, K λKλ = 1 = SλSλ,

V λKλ = V λSλ = K λSλ = 0. (11)

We choose the fluid to be comoving in a given coordinate
system; therefore, we have
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Vλ = −Aδ0
λ, Kλ = Cδ3

λ, Lλ = Aδ1
λ and Sλ = Bδ2

λ,

(12)

The four-acceleration vector isaλ = Vλ;σV σ , witha = A′
A2 as

a scalar associated with the four-acceleration. The expansion
scalar, (� = V λ

;λ), for our cylindrical spacetime leads to

� = 1

A

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
, (13)

where an overdot represents the time derivative. The shear
tensor σλσ is

σλσ = V(λ;σ) + a(λVσ) − 1

3
�hλσ ,

where hλσ is a projection tensor with hλσ = gλσ + VλVσ .
The shear tensor can also be expressed as follows:

σλσ = σs

(
SλSσ − hλσ

3

)
+ σk

(
KλKσ − hλσ

3

)
,

where

σs = − 1

A

(
Ȧ

A
− Ḃ

B

)
, σk = − 1

A

(
Ȧ

A
− Ċ

C

)
. (14)

The non-zero modified gravitational field equations for our
cylindrical line element associated with matter distribution
(10) take the form

1

A2

[
Ċ Ḃ

BC
− C ′′

C
− B′′

B
− B′C ′

BC
+ α1

]
= eff

μ, (15)

(
B′
B

+ C ′
C

)
Ȧ

A
− Ċ ′

C
− Ḃ′

B
+
(
Ḃ

B
+ Ċ

C

)
A′
A

= 0, (16)

B′C ′
BC

− B̈

B
− ḂĊ

BC
− C̈

C
+ α1 = eff

Pr , (17)
(
B

A

)2 [
β1 + C ′′

C
− C̈

C

]
= eff

Pz,

(
C

A

)2 [
β1 + B′′

B
− B̈

B

]
= eff

Pφ,

(18)

where

α1 =
(
Ċ

C
+ Ḃ

B

)
Ȧ

A
+
(
B′
B

+ C ′
C

)
A′
A

,

β1 = Ȧ2

A2 − A′2
A2 − Ä

A
+ A′′

A
,

eff
μ = 1

fR − fQLM

[
LM fT − 1

2
( f − R fR) + μχ1 + μ̇χ2

+ μ̈

2A2 fQ + μ′′
2A2 fQ + μ′χ3 + P ′′

r

2A2 fQ (19)

+Prχ4 + P ′
r

{
f ′
Q

A2 − 5A′
2A3 fQ

}

− fQ
2A2B

(Ṗz Ḃ + P ′
z B

′) − Ṗr
Ȧ

A3 fQ + Pzχ5

+Pφχ6 − fQ
2A2

(
Ṗφ

Ċ

C
− P ′

φ

C ′
C

)

− ḟ R
A2

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)

− f ′
R

A2

(
A′
A

− B′
B

− C ′
C

)
+ f ′′

R

A2

]
,

eff
Pr = 1

fR − fQLM

[
1

2
( f − R fR) − LM fT + f̈ R

A2 ψ1

+ μ̇

(
5 Ȧ

2A3 fQ −
˙fQ
A2

)

− f ′
Rψ2 + Prχ7 − μ̈

2A2 fQ + μχ8 + μ′A′
2A3 fQ

− P̈r
2A2 fQ + Pzχ9 + Pφχ10

+ fQ
2A2

{
Ṗz

Ḃ

B
− P ′

z
B′
B

+ Ṗφ
Ċ

C
− P ′

φ

C ′
C

}
+ Ṗrχ11 + P ′

rχ12

]
,

eff
Pz = 1

fR − fQLM

×
[

1

2
( f −R fR)−LM fT +μ̇χ14+μχ13− μ̈

2A2 fQ+ μ′A′
2A3 fQ

(20)

+ Prχ15 + Ȧ Ṗr
2A3 fQ + P ′

r

(
5A′
2A3 fQ −

f ′
Q

A2

)

− P ′′
r

2A2 fQ + Pzχ16 + P ′
zχ17 − Ṗz

×χ18 − P̈z
2A2 fQ + P ′′

z

2A2 fQ + Pφχ19

+ fQ
2A2

(
Ṗφ

Ċ

C
− P ′

φ

C ′
C

)
+ ψ3

]
, (21)

eff
Pφ = 1

fR − fQLM

×
[

1

2
( f − R fR) − LM fT + μ̇χ14 + μχ13 − μ̈

2A2 fQ + μ′A′

2A3 fQ

+ Prχ15 + Ȧ Ṗr
2A3 fQ + P ′

r

(
5A′

2A3 fQ − f ′
Q

A2

)

− P ′′
r

2A2 fQ + Pzχ20 + P ′
φχ23 + Ṗφ

×χ22 − P̈φ

2A2 fQ + P ′′
φ

2A2 fQ + Pφχ21 + fQ
2A2

(
Ṗz

Ḃ

B
− P ′

z
B ′

B

)
+ ψ4

]
,

(22)

where a prime stands for the ∂
∂r operator and the quantities

χi contain combinations of metric variables and their deriva-
tives as mentioned in the appendix. The value of R for the
spacetime is given as

R = 2

A2

[(
Ä

A
+ B̈

B
+ C̈

C

)
−
(
A′′

A
+ B ′′

B
+ C ′′

C

)
+ 1

A2 (A′2 − Ȧ2)
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+ 1

BC
(ḂĊ − B ′C ′)

]
. (23)

3.1 Viability of f (R, T, Q) model and junction conditions

In this subsection, we shall deal with the hydrodynamics
of cylindrical stellar collapse by using dynamical equations.
The expression of covariant derivative of effective energy-
momentum tensor is

∇λTλσ = 2

R fQ + 2 fT + 1

×
[
∇σ (Lm fT ) + ∇σ ( fQ RπλTπσ ) − 1

2
( fT gπρ + fQ Rπρ)

× ∇σ T
πρ − Gλσ ∇λ( fQLm)

]
, (24)

which would lead to two equations of motion in f (R, T, Q)

theory. Making use of Gλσ
;σ = 0 and Eqs. (15)–(18) along

with λ = 0, 1, the above equation gives

eff
μ̇

A
+ �

[
eff
μ + 1

3

(
eff
Pr + eff

Pz + eff
Pφ

)]
+ 1

3

(
eff
Pz − eff

Pr

)
(2σs − σk)

+ 1

3

(
eff
Pφ − eff

Pr

)
(2σk − σs) + Z1 = 0, (25)

∇ eff
Pr − 1

A

[(
eff
Pz − eff

Pr

)
B ′

B
+
(

eff
Pφ − eff

Pr

)
C ′

C

]
+
(

eff
μ − eff

Pr

)

× a + Z2 = 0, (26)

where the superscript “eff” indicates the presence of f (R, T, Q)

terms in the matter variables and the expressions of Z1 and
Z2 are mentioned in the appendix in Eqs. (A1) and (A1).
The quantities Z1 and Z2 are due to the non-conserved diver-
gence of the energy-momentum tensor. The dynamical equa-
tions could help to explain the hydrodynamics of locally
anisotropic cylindrical relativistic massive bodies. It is wor-
thy to mention that the theoretically designed stellar models
are of importance if they are stable against instabilities and
fluctuations. Now, we will explain the dynamic instability of
anisotropic and non-dissipative relativistic cylindrical geom-
etry by using a particular f (R, T, Q) model [40],

f (R, T, Q) = αR2 + βQ, (27)

where α and β are constants. The model with αRn + βQm

is the generalization of the above-mentioned f (R, T, Q)

model, in which m and n are constants. In order to deal with
this theory free from Ostrogradski instabilities, one should
take n �= 1. However, this model will generate a stable theory
for m = 1, by giving the EH term including the canonical
scalar field having a non-minimal variation coupling of the
Einstein tensor. The model with n = 2 and m = 1 along
with constant β could help to understand the dynamics and
evolution of the inflationary cosmos. For the particular value

of the constant α, i.e., α = 1
6M2 [41] with M = 2.7 × 10−12

GeV, this model behaves as a substitute of DM. In the case of
α = 0, there is a geometry–matter association due to the cou-
pling between the stress-energy tensor and the Ricci scalar.
Yousaf et al. [37] studied this model with n = 2,m = 1
and discussed the stability of compact stars in an anisotropic
spherical configuration by taking β > 0 along with α = 1

6M2 .
For the smooth matching of Eqs. (5) and (6) over �, we

shall use junction conditions proposed by Darmois [42] as
well as Senovilla [39] for f (R, T, Q) theory. Since we have
assumed a timelike hypersurface, we impose r =constant in
Eq. (5) andρ(ν) in the exterior metric (10). In this framework,
the first fundamental form yields

dτ
�= e2γ−2υ

{
1 −
(

dρ

dν

)2
}1/2

dν = Adt, (28)

B
�= eυ, C

�= e−υρ, (29)

with 1 − ( dρ
dν

)2
> 0. Here, the notation overset � indicates

that the corresponding equations and quantities are evaluated
on the hypersurface, �. The second fundamental form yields

e2γ−2υ [νττ ρτ − ρττ ντ − {ντ (γρ − υρ) + ρτ (γν − υν)}
× (ν2

τ − ρ2
τ )] �= −A′

A2 , (30)

e2υ(ρτυν + ντυρ)
�= BB ′

A
,

e−2υρ2
(

ρτυν + ντυρ − ντ

ρ

)
�= −CC ′

A
. (31)

By making use of Eqs. (28)–(31), the field equations and after
some manipulations, we obtain

eff
Pr

�= 0. (32)

From Eq. (4), one can write the following form:

Gλσ = 1

( fR − fQ Lm)

[(
fT + 1

2
R fQ + 1

)
T (m)

λσ

+
{
R

2

(
f

R
− fR

)
− Lm fT − 1

2
× ∇π∇ρ( fQT

πρ)

}
gλσ

− 1

2
�( fQTλσ ) + ∇λ∇σ fR + gπν∇π∇ν(Tλσ fQ)

− gλσ � fR + 2 fQ RTλσ

]
,

which can be transformed to

�λσ = 1(
1 + fT + 5

2 R fQ

)
[
( fR − fQ Lm)Gλσ

− 1

2
( f − R fR)gλσ + Lm fT gλσ + 1

2
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×∇π∇ρ( fQT
πρ)

}
gλσ

− 1

2
�( fQTλσ ) − ∇λ∇σ fR + gλσ � fR

]
, (33)

where �λσ indicates a tensor associated with bulk matter. In
a Gaussian normal coordinate system, we have

ds2 = dy2 + γabdxadxb,

in which the boundary surface is at y = 0. In this context,
the Ricci scalar takes the form

R = 2∂yK − 4

3
K 2 − K ∗

abK
∗ab − R̃, (34)

where Kab is the extrinsic curvature at the hypersurface,
tilde shows the constant choice of the Ricci scalar evaluated
through induced spacetime, while K ∗

ab and K are the traceless
and trace components of the extrinsic curvature, respectively.
The value of the extrinsic curvature can be expressed through
γab as Kab = −1/2 × ∂yγab. The Einstein tensor yields

Gyy = −1

2
(Kλσ K

λσ + R̃ − K 2),

Gyσ = −∇ν(K
ν
σ − δν

σ K ),

Gλσ = ∂y(Kλσ − Kγλσ ) + 1

2
γλσ (KμνK

μν + K 2)

+G̃λσ − 3KKλσ + 2K ν
λKνσ .

Now, we split Eq. (33) into two tensorial quantities,

�λσ = Qλσ + Lλσ , (35)

where

Qλσ = ( fR − fQ Lm)Gλσ + Lm fT gλσ − 1

2
( f − R fR)gλσ , (36)

Lλσ = 1

2
∇μ∇ν( fQT

μν)gλσ − 1

2
�( fQTλσ ) − ∇λ∇σ fR + gλσ � fR .

(37)

The components of Eq. (36) are obtained as follows:

Qyy = Gyy fR − fQ LmGyy + 1

2
(R fR − f ),

Qyβ = fRGyβ − fQ LmGyβ,

Qαβ = fRGαβ − fQ LmGαβ + Lmγαβ fT − 1

2
( f − R fR)γαβ,

while Eq. (37) provides us with the following relations:

Lyy = −K ∂y fR + �̃ fR − 1

2
�̃( fQTαβ) + K

2
∂y( fQT

αβ),

Lyβ = −∂β∂y fR − Kμ
β ∂μ fR − 1

2
�̃( fQTyβ),

Lαβ = −∇̃αβ + Kαβ∂y fR + 1

2
γαβ [∇̃μν( fQT

μν) − Kμν∂y( fQT
μν)],

− 1

2
�̃( fQTαβ) + γαβ [�̃ fR + ∂yy fR − K ∂y fR].

Now, we compute the ya and yy components of Eq. (35),
which after some simplifications give rise to

∂y[(Kλσ − Kγλσ ) fR + γλσ fQQ∂y Q + γλσ fRR∂y R] = 0.

(38)

Upon integration across the hypersurface, Eq. (38) yields

[(Kλσ − Kγλσ ) fR + γλσ fQQ∂y Q + γλσ fRR∂y R]|+− = 0.

(39)

The integration of Eq. (34) gives R|+− = 0, while the trace
and traceless components of Eq. (39) give rise to

f,RR[∂y R|+− = 0, f,RRK
∗
λσ |+− = 0, f,QQ[∂y Q|+− = 0,

K |+− = 0, (40)

along with

R|+− = 0, Q|+− = 0, γλσ |+− = 0, (41)

provided the matching conditions for the f (R, T, Q) theory
of gravity in which f,RR �= 0 and f,QQ �= 0 should be
satisfied. The details of this approach in f (R) gravity have
been mentioned in [39,43,44]. Equation (32) arises due to
the Darmois junction conditions, which indicates that the
effective radial pressure on � is zero. Equations (40) and (41)
over � are required for the continuity of R and Q invariants
even for matter in thin shells.

3.2 Perturbation scheme

In order to discuss the stability of cylindrical celestial objects,
we shall explore the perturbed form of field as well as the
dynamical equations in this section. A perturbation deals with
small variations in a physical system resulting by gravita-
tional effects of other stellar objects. Therefore, in the recent
few decades, researchers were very keen to analyze the stabil-
ity of the cosmic stellar filaments against oscillatory motion
induced by perturbations. Here, we use the linear perturba-
tion scheme with a very small perturbation parameter ε so
that one can neglect its second and higher powers. Initially,
the celestial system is considered to be in hydrostatic equilib-
rium, but as time passes, it is subject to oscillatory motion. All
the metric functions and fluid parameters can be perturbed
[18],

A(t, r) = Ao(r) + εω(t)a(r), μ(t, r) = μo(r) + εμ̄(t, r),

B(t, r) = Bo(r) + εω(t)b(r), Pr (t, r) = Pro(r) + ε P̄r (t, r),
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C(t, r) = Co(r) + εω(t)c(r), Pφ(t, r) = Pφo(r) + ε P̄φ(t, r),

R(t, r) = Ro(r) + εω(t)d(r), Pz(t, r) = Pzo(r) + ε P̄z(t, r).
(42)

By using the above perturbation technique along with the
junction conditions (32), (40) and (41), Eq. (17) can be exe-
cuted in terms of a second order partial differential equation,

ω̈ − χ2ω
�= 0, (43)

where

χ2 =
[(

B ′
o

Bo
+ C ′

o

Co

)(
a

Ao

)′
+
(
A′
o

Ao
+ C ′

o

Co

)(
b

Bo

)′

+
(
B ′
o

Bo
+ A′

o

Ao

)(
c

Co

)′]
×
(

b

Bo
+ c

Co

)−1

.

The most general solution of the above equation is given by

ω(t) = c1 exp(χ t) + c2 exp(−χ t), (44)

where c1 and c2 are arbitrary constants. Equation (44) indi-
cates two solutions that are independent from each other.
Here, we wish to explore unstable regimes of a collapsing
stellar anisotropic system. Due to this, we consider our stel-
lar filament to be in static equilibrium at large past time, i.e.,
ω(−∞) = 0; then with the passage of time it enters into the
present state and goes forward in the phase of gravitational
collapse by decreasing its areal radius. Such a model could
be achieved only by taking c1 = −1 along with c2 = 0. This
would describe the monotonically decreasing configuration
of the solution as time passes.

The most general solution of Eq. (43) includes oscillat-
ing and non-oscillating functions that correspond to stable
and unstable configurations of stellar anisotropic filament,
respectively. The choice c1 = +1 is exactly equivalent to
the case if one absorbs the sign in a, b, c and d. Our aim is
to explore instability regimes of collapsing stellar interiors;
therefore, we have to restrict our perturbations a, b, c and d
on the boundary surface as positive definite in order to make
χ2 > 0. (This assumption has been made by a number of
astrophysicists [18,35,45–50] to discuss unstable limits of
collapsing stellar populations.) The required solution asso-
ciated with Eq. (43) can be achieved by taking c1 = −1 and
c2 = 0 as

ω(t)
�= − exp (χ t). (45)

The perturbed configuration of f (R, T, Q) model is

f = [αR2
o + βQo] + ε2αω(t)d(r)Ro, (46)

where

Ro = − 2

Ao

[
A′′
o

Ao
+ B ′′

o

Bo
+ C ′′

o

Co
− A′2

o

Ao
+ B ′

oC
′
o

BoCo

]
.

By using above perturbation scheme, the static forms of
f (R, T, Q) field equations are

G(S)
00 = 1

2αRo + βμo

×
[
μoχ1o + μ′

oχ3o + Proχ4o + Pzoχ5o + Pφoχ6o

+α

2

(
4R′′

o

A2
o

+ R2
o − 4R′

oψ2o

)
+ β

2A2
o

×
(

μ′′
o + P ′′

ro + P ′
zo

B′
o

Bo
+ P ′

φo
C ′
o

Co
− 5P ′

ro
A′
o

Ao

)
− β

2
Qo

]
, (47)

G(S)
11 = 1

2αRo + βμo

×
[
μoχ8o + P ′

roχ12o + Proχ7o + Pzoχ9o + Pφoχ10o

− α

2
(R2

o−4R′
oψ2o)+ β

2A2
o

(
μ′
o
A′
o

2Ao
−P ′

zo
B′
o

Bo
− P ′

φo
C ′
o

Co

)
+ β

2
Qo

]
,

(48)

G(S)
22 = 1

2αRo + βμo

×
[

1

2
(βQo − αR2

o) + μoχ13o + Proχ15o + Pzoχ16o + P ′
zoχ17o

+ Pφoχ14o + ψ3o + β

2A2
o

×
(

μ′
o
A′
o

Ao
+ 5P ′

ro
A′
o

Ao
− P ′′

ro + P ′′
zo − P ′

φo
C ′
o

Co

)]
, (49)

where the superscript (S) indicates the static form of the
Einstein tensors. Their expressions are given in the appendix
as Eqs. (A2)–(A4). However, the perturbed configurations of
these equations are

Ḡ00 = 1

2αRo + βμo

[
ω(αdRo + μox1 + Prox4

+ Pzox5 + Pφox6 + μ′
ox3) + μ̄χ1o

+ μ̇χ2o + μ̄′χ3o + P̄rχ4o + P̄zχ5o + P̄φχ6o + β

2Ao

×
(

¨̄μ + μ̄′′ + P̄r
′′ − 5P̄r

′ A′
o

Ao

+ P̄φ
′C ′

o

Co
+ P̄z

′ B ′
o

Bo

)
− ωβ

A2
o

×
(
aμ′′

o

Ao
+ aP ′′

ro

Ao
+ bP ′

zoB
′
o

2B2
o

+ aP ′
zoB

′
o

AoBo
+ bP ′

zo

2Bo

+ P ′
φo

c′

2Co
+ cPφoC ′

o

2Coz
+ aPφoC ′

o

2AoCo

)
+ 5ωP ′

ro
β

2

(
b

A3
o

)′

+ 2αω

(
d ′′

A2
o

− 2R′′
o

A3
o

+ R′
oy2 + d ′ψ2o

)

− 2αω̇dψ1o

]
− 2αωd + βμ̄

2αRo + βμo

eff
μo, (50)
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Ḡ11 = 1

2αRo + βμo

[
ω(Prox7 − αdRo + μox8

+ Pzox9 + Pφox10 + P ′
rox12

− 2αR′
oy2) + 2αd

ω̈

A2
o

− β

2A2
o

×
(

¨̄Pr + ¨̄μ − μ̄
A′
o

Ao
+ P̄φ

′C ′
o

Co
+ P̄z

′ B ′
o

Bo

)
+ P̄r

×χ7o + μ̄χ8o + P̄zχ9o + P̄φχ10o + ˙̄Prχ11o + P̄r
′
χ12o

+ ωβ

2A2
o

(
μ′
oa

′

Ao
+ 2a

× P ′
zoB

′
o

AoBo
− 3μ′

oa

A2
o

+ bP ′
zoB

′
o

B2
o

− b′P ′
zo

Bo
+ cP ′

φoC
′
o

C2
o

)]

− 2αωd + βμ̄

2αRo + βμo

eff
Pzo, (51)

Ḡ22 = 1

2αRo + βμo

[
ω(μox13 − αRod + Prox15 + Pzox16

+ P ′
zox17 + Pφox19 + y3)

+ μ̄χ13o + ˙̄μχ14o + P̄rχ15o + P̄zχ16o

+ P̄z
′
χ17o − P̄zχ18o + P̄φχ19o

+ β

2A2
o

(
μ̄′ A′

o

Ao
− ¨̄μ + P̄r

′ A′
o

Ao
− P̄r

′′ − ¨̄Pz + P̄z
′′ − P̄φ

′C ′
o

Co

)

+ ωβ

2A2
o

{
μ′
oa

′

Ao
− 3μ′

oa
A′
o

A2
o

+ 5P ′
ro

a′

Ao

− 15P ′
roa

A′
o

A2
o

+ aP ′′
ro

Ao
− aP ′′

zo

Ao

+ P ′
φo

C ′
o

Co

(
c

Co
+ 2

Ao
− 1

)}]
− 2αωd + βμ̄

2αRo + βμo

eff
Pzo, (52)

Ḡ33 = 1

2αRo + βμo

[
ω(μox13 − αRod + Prox15

+ Pzox20 + P ′
zox23 + Pφox21 + y4)

− β

2A2
o

(
μ′
oa

′

Ao
− 3μ′

oa

A2
o

+ 5a′P ′
ro

Ao

− 15P ′
ro

a

A2
o

+ P̄r
′′ + 2aP ′′

ro + bP ′
zo

× B ′
o

Bo
+ aPzo′

B ′
o

AoBo
− b′P ′

zo

Bo
− 2aP ′′

zo

A0

)

+ μ̄χ13o + ˙̄μχ14o + P̄rχ15o + P̄zχ20o

+ P̄φχ21o + ˙̄Pφχ22o + P̄φ
′
χ23o

]
− 2αωd + βμ̄

2αRo + βμo

eff
Pφo, (53)

where the overbar shows the perturbed form of the Ein-
stein tensors and they are written in the appendix as
Eqs. (A5)–(A8). In the case of hydrostatic equilibrium,
the second dynamical equation has the following
form:

1

Ao

eff
Pro

′ + A′
o

A2
o

(
eff

μo + eff
Pro

)
+ B ′

o

AoBo

(
eff
Pro − eff

Pzo

)

+ C ′
o

AoCo

(
eff
Pro − eff

Pφo

)
+ Z2o = 0, (54)

while their non-static forms are

eff˙̄μ + ω̇η = 0, (55)

1

Ao

[
eff

P̄r
′ + ωa

Ao

{
eff
P ′
ro + B ′

o

Bo

(
eff
Pzo − eff

Pro

)

+C ′
o

Co

(
eff

Pφo − eff
Pro

)
+
(

eff
μo + eff

Pro

)

×
(
a′

a
− 2A′

o

Ao

)}
+ ω

{(
eff
Pro − eff

Pzo

)(
b

Bo

)′

+
(

eff
Pro − eff

Pφo

)(
c

Co

)′
− B ′

o

Bo

×
(

eff

P̄z −
eff

P̄r

)
−
(

eff

P̄φ +
eff

P̄r

)
C ′
o

Co

+
(

eff
μ̄ +

eff

P̄r

)
A′
o

Ao

}]
+ ω Z̄2 = 0, (56)

where

η = eff
μo

(
a

Ao
+ b

Bo
+ c

Co

)
+ eff

Pro

(
a

Ao
+ b

Bo

)
+ c

Co

eff
Pφo + Ao Z̄1.

Against a non-static environment, the scalar variables asso-
ciated with expansion and shear tensors are found as follows:

�̄ = ω̇

Ao

(
a

Ao
+ b

Bo
+ c

Co

)
, σ̄s = ω̇

Ao

(
b

Bo
− a

Ao

)

σ̄k = ω̇

Ao

(
c

Co
− a

Ao

)
.

3.3 Stability analysis

Here, we want to discuss the stability of cylindrical anisotropic
compact objects in terms of the stiffness parameter �1. The
Harrison–Wheeler equation of state [51] has a great impact
in this context; it forms a relationship between the pressure
components and energy density given as

P̄i = μ̄
Pi0

μ0 + Pi0
�1. (57)

Then Eq. (55) can be rewritten as follows:

eff˙̄μ = −ω̇η.
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The integration of this equation gives

eff
μ̄ = −ωη. (58)

Using the above value of μ̄ eff in Eq. (57), we obtain

eff

P̄r = −�1

eff
Proηω

(
eff

μo + eff
Pro)

,
eff

P̄z = −�1

eff
Pzoηω

(
eff

μo + eff
Pzo)

,

eff

P̄φ = −�1

eff
Pφoηω

(
eff

μo + eff
Pφo)

. (59)

Substituting the values from Eqs. (58) and (59) in Eq. (54),
the corresponding modified collapse equation turns out to be

�1

⎡
⎣

eff
Pro

eff
μo + eff

Pro

{
η

(
B ′
o

Bo
+ C ′

o

Co
− A′

o

Ao

)
− η′

+ η

(
eff

μo + eff
Pro)

(
eff

μo

′
+ eff

Pro
′
)

}
− η

×
eff
Pro

′

eff
μo + eff

Pro

+ η
B ′
o

Bo

eff
Pzo

eff
μo + eff

Pzo

+ η
C ′
o

Co

eff
Pφo

eff
μo + eff

Pφo

⎤
⎥⎦ = − a

Ao

eff
Pro

′

+ eff
Pro

{
aB ′

o

AoBo
− C ′

o

Co
+ a′

a
− 2A′

o

Ao
−
(

b

Bo

)′
−
(

c

Co

)′}

+ eff
Pzo

{(
b

Bo

)′
− aB ′

o

AoBo

}
+ eff

Pφo

×
{(

c

Co

)′
− C ′

o

Co

}
+ eff

μo

(
a′

a
− 2A′

o

Ao

)
+ ηA′

o

Ao
+ Ao Z̄2. (60)

In a given equation, the terms including the adiabatic index
�1 would generate pressure and counter gravitational effects,
while the remaining terms work as the generator of the grav-
ity force. The effects, produced by principal stresses and
f (R, T, Q) gravity terms intervened by the fluid have great
relevance in the analysis of gravity forces.

3.3.1 N approximations

Here, we compute the instability for the cylindrical interior
system in the N limit with the theory of gravity induced by
the αR2 + βQ model. In the N regime, we shall consider a
flat background metric, which leads to weak field approxi-
mations. Therefore, we take

A0 = 1, B0 = 1.

Since we are dealing with the compact configurations of cos-
mic stellar filament, we may assume that the energy density of
the matter content is much greater than the pressure compo-
nents. Due to this, we shall consider the following constraint

in our calculation in the N limit:

μ0 	 Pi0.

It was demonstrated by Chandrasekhar [17] and Herrera
et al. [18] that all the terms coming in the stability conditions
should be positive definite. Therefore, to attain the instabil-
ity regions of the cylindrical stellar system, we consider each
term in the respective collapse equation to be positive. The
collapse equation (60) takes the form

[
eff

μo

(
a + b + c

Co

)
+ Z̄1

]
�1 = eff

μo (a′/a) + � + Z̄2,

where

� = b′
(

eff
Pzo − eff

Pro

)
+
(

eff
Pφo + eff

Pro

)
C ′
o

Co

−
(

c

Co

)′ ( eff
Pφo + eff

Pro

)
− a

eff
Pro

′
(61)

includes anisotropic effects for the onset of instability
regimes in cylindrical compact objects.

Now, we recall the work of Chandrasekhar [17], who
checked the collapsing behavior of a perfect spherical star
with the help of the numerical value of �1. He found three
possibilities as regards the N limits of the star. These are:

1. The effects of the star weight will be stronger than pres-
sure, once the system satisfies �1 < 4/3 condition. This
would eventually lead the body to enter into collapse
state.

2. The initial compression would lead the system towards
hydrostatic equilibrium if �1 = 4/3.

3. Further, the limit �1 > 4/3 indicates that the influence of
pressure on the stellar dynamics is much greater than the
star’s weight, thereby increasing the resulting outward
force. Then the system will move towards equilibrium
and is said to be dynamically stable.

Keeping in mind the same analysis for f (R, T, Q) theory
of gravity, the evolving cylindrical anisotropic stellar object
will be in the phase of hydrostatic equilibrium whenever it
satisfies

�1 = | eff
μo (a′/a) + � + Z̄2|

| eff
μo

(
a + b + c

Co

)
+ Z̄1|

. (62)

If the effects of | eff
μo (a′/a)+�+Z̄2| and | eff

μo

(
a + b + c

Co

)
+

Z̄1| are equal, then

�1 = 1 (63)
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will give us the condition of hydrostatic equilibrium for the
cylindrically symmetric anisotropic interiors. However, if the

role of | eff
μo (a′/a)+�+ Z̄2| is less significant than | eff

μo
(
a+

b + c
Co

)+ Z̄1|, then the relation

�1 <
| eff
μo (a′/a) + � + Z̄2|

| eff
μo

(
a + b + c

Co

)
+ Z̄1|

(64)

shows that the given system is in an unstable region and the
range of the adiabatic index would be (0, 1). If the modified

gravity forces generated by | eff
μo (a′/a) + � + Z̄2| are higher

than that of | eff
μo
(
a + b + c

Co

)+ Z̄1|, then this will make the
system enter the stable window. This means that the forces
of anti-gravity and principal stresses produce the stability
constraint in the N region:

�1 > 1.

This state is said to be dynamically stable.

3.3.2 pN approximations

In order to attain the pN instability constraints, we consider
Ao(r) = 1 − φ, Bo(r) = 1 + φ with effects up to O(φ),
where φ(r) = m0

r . In this context, the collapse equation (60)
yields the following value of �1:

�1 = FpN

EpN
, (65)

where

FpN =
eff
Pro

eff
μo + eff

Pro

×
⎡
⎢⎣−η′

pN + ηpN

⎧⎪⎨
⎪⎩
C ′
o

Co
+

eff
μ′
o

eff
μo + eff

Pro

+ φ′(1 − φ)

×
eff
Pzo

eff
μo + eff

Pzo

+ 2φ′ + C ′
o

Co

eff
Pφo

eff
μo + eff

Pφo

⎫⎬
⎭
⎤
⎦ ,

EpN = −a(1 + φ)
eff
Pro

′
+ S1(

eff
Pro − eff

Pzo)

+ S2(
eff
Pro − eff

Pφo) + S3(
eff

μo + eff
Pro),

−φ′(1 + φ)ηpN + (1 − φ)Z̄2.

The anisotropic cosmic filament will enter into the window
of stable configurations, once the modified gravity forces
generated by FpN are greater than that of EpN. In that case, the

stability of the relativistic system is ensured by the following
pN limit:

�1 >
FpN

EpN
. (66)

However, if during evolution the system attains the state at
which FpN = EpN, then the system will cease to be in the
regime of equilibrium. At that time, the cylindrical system
will no longer be in the evolutionary phases. One can deal
with such a situation by considering Eq. (65). The constraint
for instability can be entertained by the anisotropic cylindri-
cal compact system, if the impact of FpN is less than EpN.
This would give

�1 <
FpN

EpN
. (67)

This pN instability limit depends upon the contribution of
principal stresses and counter gravity terms related with �1

and f (R, T, Q) gravity. This also indicates the significance
of hydrostatic equilibrium factors in the study of dynamical
unstable regimes of our system.

4 Concluding remarks

In the framework of modified gravity, the stability problem
of massive objects has appeared to be a main concern in rel-
ativistic astrophysics. In this paper, we have analyzed the
instability ranges of a self-gravitating cylindrical collapsing
model in the f (R, T, Q) gravity structure. We have investi-
gated the field equations for cylindrical symmetric spacetime
for an anisotropic and non-dissipative matter distribution. In
this aspect, the dynamical equations are developed by using
the contraction of the Bianchi identities. The perturbed pro-
file of the field, the dynamical equations and the kinematical
quantities are evaluated by imposing the perturbation scheme
on the matter and geometric variables.

Initially, we have assumed that our cylindrical system is
in hydrostatic equilibrium. However, as time passes, it goes
into the oscillating phase. Therefore, the resulting equations
are applied to construction of the collapse equation, which
is further analyzed in the N and pN limits. Against this
background, the adiabatic index assisted by the equation of
state has been used to quantify the stiffness of the matter
composition. Also, we have considered a feasible model of
f (R, T, Q) theory and examined its impact in the dynam-
ical evolution of locally anisotropic celestial system. It is
noticed that additional curvature terms appear because of the
modification in the gravity model, which are the major cause
of obstacles in evolving celestial objects. Consequently, the
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evolving cosmic filament systems are more stable due to their
non-attractive behavior.

It is noted that, for the stability of isotropic spherical rela-
tivistic bodies, the particular numerical value of the stiffness
parameter, i.e., 4

3 , was calculated by Chandrasekhar [17].
Since then, many astrophysicists have tried to examine the
instability regimes for various celestial geometries. We have
observed the critical role of the adiabatic index in the descrip-
tion of unstable/stable regimes. We also examined how �1

depends upon the static configuration of geometry and matter
as well as on the additional terms which appear due to matter–
curvature coupling. It is noted that the system will remain
unstable whenever it sticks to the range as specified in Eqs.
(64) and (67) for the N and pN limits, respectively. When the
system is unable to remain in the above-mentioned ranges,
it will enter the stable or equilibrium phase. It should be
noted that in the absence of non-minimal coupling of matter
and geometry, these results boil down to f (R, T ) outcomes.
However, in the case of vacuum, one can get the result of
f (R) gravity.
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Appendix A

The quantities χi and ψ appearing in Eqs. (19)–(22) are

χ1 = 1 + fT + fQ
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A

×
(
Ḃ

B
+ Ċ
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2C

)

− f̈Q
2A2 , χ11 = − fQ

2A2

(
3
Ȧ
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B

(
Ċ
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ḟQ − C ′

C
f ′
Q

)
,

χ20 = fQ
A2

(
B ′2

B2 − Ḃ2
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Ḃ

B
+ 5Ċ
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The expressions Si appearing in Eq. (65) are
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The quantities Z1 and Z2 in Eqs. (25) and (26) are
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The static configurations of the Einstein tensors appearing in
Eqs. (47)–(49) are
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The non-static perturbed configurations of Einstein tensors
appearing in Eqs. (50)–(53) are
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