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Abstract We find that a recently proposed interaction
involving the vorticity current of electrons, which radia-
tively induces a photon mass in 3 + 1 dimensions in the
low-energy effective theory, corresponds to confining strings
(linear potential) between electrons.

The formal theory of superconductivity was developed on
the principle of Cooper pair formation [1–5]. According to
this principle, the interaction between electrons and phonons
generate an effective electron–electron interaction limited to
a shell in momentum space around the Fermi surface. When
this mutually attractive interaction overcomes the Coulomb
repulsion, bound pairs may form. In conventional supercon-
ductivity, the bound pair of electrons which possess mutually
opposite momenta are in an s-wave state (spin singlet) [1–
5]. In this case, the theory has a local order parameter of
spin zero and the system undergoes spontaneous symmetry
breaking. However, there are superconductors which do not
seem to exactly follow the above description. For instance, in
the case of topological superconductor, the system may not
have any local order parameter like in the Ginzburg–Landau
description [6,7]. Furthermore, in an unconventional super-
conductor the pair states can have non-zero spin. Although a
spinorial order parameter was first discovered in superfluid
He-3 [8], unconventional superconductivity can be realized
in many heavy fermionic compounds. It is well known today
that spin interactions, and particularly spin–orbit coupling,
play an important role in the physics of topological mat-
ter [9]. It has also been shown that long range spin–spin
interactions can be induced by collective excitations, like
phonons [10].
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As is well known, the expulsion of magnetic field from
superconductors, or Meissner effect, is described by the Lon-
don equations,

∂μ Jν − ∂ν Jμ = λ Fμν. (1)

In conventional superconductors, this is implemented by an
underlying model of symmetry breaking, in which a complex
Higgs field H of charge 2e acquires a vacuum expectation
value v. Then the azimuthal part of H , which may be written
as eiφ and is the Nambu–Goldstone mode of the symmetry
breaking, is responsible for a current

Jμ = 4i ev2 e−iφDμe
iφ, Dμ = ∂μ − 2ie Aμ. (2)

This current is gauge invariant and reduces the London equa-
tion to an identity, with λ = 8e2v2.

It is by now well known that there is a ‘dual’ ansatz for the
current which does not require symmetry breaking. Instead
of a complex scalar field with a vacuum expectation value,
an antisymmetric tensor field Bμν is introduced, with field
strength Hμνλ = ∂μBνλ + ∂νBλμ + ∂λBμν, [11] and the
current is defined to be Jμ = εμνλρHνλρ. Then the continuity
equation ∂μ Jμ = 0 becomes an identity, and Eq. (1) can be
derived as field equations from the Lagrangian [12,13]

S =
∫

d4x

(
−1

4
FμνF

μν + 1

12
HμναH

μνα

+m

4
εμνλρBμνFλρ

)
, (3)

with λ = 2 m2. This is usually referred to as a topological
mass generation mechanism for the photon because of the
B∧F interaction term [14], which by itself is an Abelian ver-
sion of a similar term in many four dimensional topological
quantum field theories. This interaction is a four dimensional
generalization of the Chern–Simons term in three dimen-
sions [15–17], but unlike the latter it does not break P and T .
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Chern–Simons theory finds application in three dimen-
sional condensed matter physics, in particular in describ-
ing fractional quantum Hall effect [18]. The action corre-
sponding to Eq. (3) is a mixed Chern–Simons theory in
three dimensions, and it has been used in quantum hall
systems and in superconductors with a gap in the single
particle spectrum [6]. This description relies on the dual-
ity between the BF action of Eq. (3) and the Abelian
Higgs model, albeit with a frozen Higgs degree of free-
dom. In four dimensions however, there is a subtle dis-
tinction between the two dual theories, because Bμν can
in principle have couplings which have no analogue in the
Higgs picture. It has been argued in [7] that this implies
that superconductors described by BF theory are different
from the usual kind. Indeed, the four dimensional theory
of Eq. (3) has proven very difficult to implement in real-
istic systems. This difficulty is based on the lack of a sensi-
ble interaction between fermions and the Bμν field, namely,
one that is invariant under the vector gauge transformation
Bμν → Bμν + ∂μχν − ∂νχμ.

It was shown recently that such an interaction could
be constructed, provided Bμν was coupled to a non-local
fermion current. Such a coupling induces the B ∧ F term
at one loop level even if it is not present in the origi-
nal Lagrangian [19], and the pseudovector charge density
of the non-local current can be interpreted as the vortic-
ity field of the fermion. In other words, a mass for the
photon is induced by the non-local interactions, produc-
ing an alternative low-energy effective theory of supercon-
ductivity, valid for energy scales well below an ultravio-
let cut-off 
. The induced photon mass is cut-off depen-
dent, being proportional to m log 
2

m2 , with m the fermion
mass.

The form of the coupling between fermions and the Bμν

field raises an interesting question. Just as the ordinary gauge
potential couples to worldlines of charged particles, the anti-
symmetric tensor gauge field Bμν couples naturally to world-
sheets swept out by strings. Interactions between strings can
be thought of as being mediated by the B field, just as inter-
actions between charged particles can be thought of as being
mediated by vector gauge fields, as has been known from
the early days of string theory. Now that we have a coupling
between the B field and fermions, a coupling which is not
localized at a point, the question naturally arises as to whether
the system contains stringlike objects, and what such strings
would be made of.

In this letter we derive the remarkable result that the static
potential between a pair of fermions in this theory has a com-
ponent that is linear and attractive, independent of the charge
of the fermions. For a pair of electrons, this is like a Cooper
pair connected by a confining string.

The result is fairly easy to obtain. We start with the parti-
tion function

Z =
∫

DBD ADψ̄ Dψ ei S (4)

for the action [19]

S =
∫

d4x

[
−1

4
FμνF

μν + 1

12
HμνλH

μνλ + ψ̄(iγμ∂μ − m)ψ

+g m εμνλσ Bμν

∂λ

� ψ̄γσ ψ + eAμψ̄γ μψ

]
. (5)

Here ψ(x) is a charged fermion of mass m interacting
with electromagnetic gauge field Aμ with coupling e, and
also with an anti-symmetric tensor field Bμν with coupling
g. This action is invariant under the aforesaid vector gauge
symmetry in addition to the usual U (1) gauge symmetry.
Therefore, in order to perform the integrals over Bμν and Aμ,
we add the gauge fixing terms − 1

2ζ
(∂μBμν)2 − 1

2η
(∂μAμ)2

to the Lagrangian.
Integrating over the A and B fields, we get

Z = N
∫

Dψ̄ Dψ ei S[ψ,ψ̄], (6)

where

S[ψ, ψ̄] = Sd[ψ,m] + 1

2

∫
d4k

(2π)4

[
Jσ (−k)

e2

k2 Jσ (k)

− g2 Jμν(−k)
gμ[ρ gλ]ν

k2 Jρλ(k)

]

= Sd[ψ,m] + Sa[ψ, ψ̄] + Sb[ψ, ψ̄]. (7)

Sd[ψ,m] consists of the kinetic and mass terms of the
fermion, and in writing the other two terms we have used
the fact that both Jμ and Jμν are conserved currents.

The antisymmetric tensor current Jμν is defined to be what
couples to Bμν in Eq. (5), and it is easy to see that it is related
to the fermion current Jμ by

Jμν(k) = −m εαμνσ

ikα

k2 Jσ (k), (8)

which when inserted into the last term of Eq. (7) gives

Sb[ψ, ψ̄] = 2
∫

d4k

(2π)4 Jσ (−k)
g2m2

k4 Jσ (k). (9)

To obtain the form of the potential in non-relativistic limit,
we expand the fermion fields in terms of annihilation and
creation operators ar (p) and a†

r (p) etc. We note that in the
non-relativistic limit, only the J 0 component will contribute
to the effective action of Eq. (7) because J i is made of the
lower components of Dirac spinors and thus can be neglected
for energies much lower than their mass. Therefore, the lead-
ing contribution from this term is
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∫
d3 p

(2π)3

d3 p′

(2π)3

d3q

(2π)3

d3q ′

(2π)3

∑
r,s

a†
r (q

′)ar (q)

×
[

e2

(p − p′)2 + 2
g2m2

(p − p′)4

]
a†
s (p

′)as(p). (10)

In the non-relativistic limit, we keep terms only to the
lowest order in the 3-momenta so that we can write p =
(m,p), p′ = (m,p′), and

(p − p′)2 ≈ −|p − p′|2. (11)

What we have calculated in Eq. (10) is an effective scattering
amplitude for electron–electron interaction. The static poten-
tial has an extra factor of (−1) compared to this [20], which
means that in three dimensional momentum space the static
potential has the form

V (k) = e2

|k|2 − 2
g2m2

|k|4 , (12)

where k = p − p′.
The Fourier transform of V (k) gives the expression for

the static potential in three dimensional coordinate space,

V (r) = e2

4πr
+ g2m2r

2π
. (13)

The force resulting from the static potential given in Eq. (13)
has the form

−∇V (r) =
(

e2

4πr2 − g2m2

2π

)
r̂. (14)

The first term in Eq. (14) is the Coulomb force which is
repulsive for the electron–electron interaction. But the sec-
ond term, which comes from a confining linear potential and
is independent of the electric charges of the fermions, is
attractive for the electron–electron interaction. Following the
idea of “Cooper instability” [1,2], we can say that the attrac-
tive interaction generates a kind of pairing between elec-
trons. For chargeless fermions, this pairing would be respon-
sible for gauge-invariant mass generation of Bμν similar to
Schwinger mechanism [21,22], by shifting the pole of the
Bμν field. When the fermions couple also to Aμ, it generates
an effective B ∧ F interaction. This shows that although the
fermions are confined by linear confining potential, the inter-
acting field Bμν is not confined, rather it would behave as a
short-ranged force field.

The action in Eq. (5) we started with describes low-energy
effective interactions of the system. So the exact descrip-
tion of the interactions at very short distance scale may not
be possible. However, we may make an estimation of the
scale below which photons become short ranged. This can
be thought of as the separation of the pair, or a ‘correlation

length’ rcor, which can be estimated by setting the net force
to zero,

1

r2
cor

= 2g2m2

e2 . (15)

At rcor, the potential has the value egm
2
√

2π
.

We may think of the potential of Eq. (13) as describing
a system of two spins (electrons) connected by a string of
fixed length. If the length of the string exceeds the value
given in Eq. (15), the attractive linear potential dominates,
and the spins are attracted to each other. If they come closer
than rcor, the Coulomb repulsion dominates, leading to the
spins moving away from each other. We can also expect that
the effect of interactions with other nearby spins could mod-
ify the structure of the string. As is clear from Eq. (10) the
attractive interaction is independent of spin, so the Cooper
pair wave function can have degenerate spin combinations

C1 | ↑, ↑〉 + C01 | ↑, ↓〉 + C02 | ↓, ↑〉 + C−1 | ↓, ↓〉.
(16)

Here the coefficients in general are functions of space time
coordinates and orbital angular momentum. This indicates
the system can be in a spin one or spin zero superconducting
phase.

How does our work relate to, or differ from, earlier work?
It is obvious that the confining potential of Eq. (13) must
appear when the interacting charged particles are connected
by a flux tube or string. The Kalb–Ramond field Bμν also
arises naturally in such situations. For example, in the con-
text of confining strings in gauge theories [23–25], or in a
field theoretic description of topological matter [26,27], the
antisymmetric tensor field Bμν originates from the conden-
sation of topological charge in compact U(1) gauge theory.
In these cases one finds flux tubes carrying electric (or mag-
netic, or both electric and magnetic) flux. The model we have
considered differs from these in both respects. The B field,
and its non-local coupling with fermions which was our start-
ing point in this investigation, must arise from some under-
lying theory in terms of an effective action, but the details
of that process is not clear. More importantly, it is not clear
what corresponds to flux tubes in this model, since electric
charge is unconfined, and what couples to the B field does
not appear to be magnetic charge. Further, the B interaction
does not appear to give rise semi-classically to topological
defects. While the current which couples to Bμν corresponds
to the vorticity of the fermion field in a semi-classical pic-
ture, this does not lead to a winding number for a given pair
of fermions. The effective potential of Eq. (13) comes from
a purely quantum calculation, and in that regard our results
are perhaps closest in spirit to the ideas of [28].

To summarize, in this letter we have described a model
which exhibits an unconventional pairing of fermions, and
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at the same time produces Meissner effect at low energy by
a radiatively induced effective B ∧ F interaction. This pro-
cess does not involve any spontaneous symmetry breaking
by any local order parameter [6,29]. It could be useful as a
description of unconventional superconductors which expels
magnetic field from the bulk but pairs fermions by flux tubes
or something analogous. The main result of our paper is that
the effective potential between two pairing electrons has a
part which is linear and attractive, which means that the
theory is in a confining phase. According to the ’t Hooft–
Mandelstam [30,31] description of confinement, the system
must be in a disordered state [32]. So the non-existence of
local order parameter is natural here, although following
order–disorder duality, it may be possible to describe the
confining system by a dual order parameter. In the present
case we have not found such a dual order parameter yet, but
Eq. (16) shows that pair formation due to the confinement
mechanism would create a kind of ordering.
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