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Abstract The spectra and wave functions of heavy–light
mesons are calculated within a relativistic quark model which
is based on a heavy-quark expansion of the instantaneous
Bethe–Salpeter equation by applying the Foldy–Wouthuysen
transformation. The kernel we choose is the standard com-
bination of linear scalar and Coulombic vector. The effec-
tive Hamiltonian for heavy–light quark–antiquark system is
calculated up to order 1/m2

Q . Our results are in good agree-
ment with available experimental data except for the anoma-
lous D∗

s0(2317) and Ds1(2460) states. The newly observed
heavy–light meson states can be accommodated successfully
in the relativistic quark model with their assignments pre-
sented. The D∗

s J (2860) can be interpreted as the |13/2D1〉
and |15/2D3〉 states being members of the 1D family with
J P = 1− and 3−.

1 Introduction

Great experimental progress has been achieved in studying
the spectroscopy of heavy–light mesons in the last decades
[1–8]. In the charm sector several new excited charmed
meson states were discovered in addition to the low-lying
states. For DJ mesons, the excited resonances D(2740)0,
D∗(2760) [1], DJ (2580)0, D∗(2650) and D∗(3000) [2] were
found in the D(∗)π invariant mass spectrum by the BaBar and
LHCb Collaborations. For DsJ mesons, besides the well-
established 1S and 1P charmed-strange states, the excited
resonances DsJ (2632) [3], DsJ (2860) [4], DsJ (2700) [5]
and DsJ (3040) [6] were observed in the D(∗)K invariant
mass distribution by the two collaborations. In the b-flavored
meson sector, several excited states were studied in exper-
iment as well as the ground B and Bs meson states [9].
The strangeless resonances BJ (5840)0 and B(5970)0 were
found in the Bπ invariant mass spectrum by the LHCb
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and CDF Collaborations, respectively [10,11]. The stranged
B∗
s J (5850) were observed in the B(∗)K invariant mass dis-

tribution by the OPAL Collaboration [12].
The heavy–light meson spectroscopy plays an important

role in understanding the strong interactions between quark
and antiquark. Meanwhile, it provides a powerful test of the
various phenomenological quark models inspired by QCD.
Heavy–light mesons have been investigated extensively in
relativistic quark models [13–19], where many relativistic
potential models are constructed by modifying or relativizing
nonrelativistic quark potential models and additional phe-
nomenological parameters are employed. For the heavy–
light system one needs a model that can retain the rela-
tivistic effects of the light quark. In this work we resort
to the originally relativistic Bethe–Salpeter equation [20].
The Bethe–Salpeter approach was widely used in studying
mesons so as to embody the relativistic dynamics [21–26].
It is rather difficult to solve the Bethe–Salpeter equation for
meson states, especially when considering states with large
angular momentum quantum number. In order to study the
spectrum of heavy–light mesons systematically, we choose
to reduce the Bethe–Salpeter equation in the first place.

In our previous work [27], we apply the instantaneous
approximation and obtain an equation equivalent to the
Bethe–Salpeter equation. The Hamiltonian for the heavy–
light quark–antiquark system is expanded to order 1/mQ by
applying the Foldy–Wouthuysen transformation to the equiv-
alent equation. We find that the leading Hamiltonian is actu-
ally not Dirac-like. The interaction we derive is essentially
different from the Breit interaction [28–30]. In this paper we
extend and improve our study of the spectrum of the heavy–
light mesons D, Ds , B and Bs . The running of the coupling
constant is considered. Moreover, the 1/m2

Q correction is
calculated. Many papers have only considered the leading
1/mQ term in the heavy-quark expansion [27,31–34]. Our
calculation shows that the 1/m2

Q corrections to the masses
of the mesons are around 50 MeV, which is too large to be
neglected. The parameters in the equations are determined
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by fitting the masses of the 1S and 1P meson states pre-
sented by particle data group (PDG) [9], while the states
beyond 1P are calculated as a prediction. We find that in
the Bethe–Salpeter formalism the linear confining parame-
ter, i.e. the string tension, actually depends on the masses of
the constituent quark and antiquark in mesons. The large dis-
crepancy between experimental data and our previous work
is decreased in this work. The newly observed heavy–light
meson states can be accommodated successfully in our pre-
dicted spectra.

This paper is organized as follows. In the next section, we
have a brief review of the relativistic quark model. Section
3 is for the solution of the wave equation and the perturba-
tive corrections. In Sect. 4 we have numerical results and
discussions. The last section is for a brief summary.

2 The model

According to the conventional constituent-quark model, the
mesons can be seen as a composition of a quark and an anti-
quark. In the Bethe–Salpeter formalism, the eigenequation
for quark–antiquark systems has the general form [20]

(p/1 − m1)χ(p1, p2)(p/2 + m2)

= 1

(2π)4

∫
d4 p′

1d
4 p′

2K (p1, p2; p′
1, p

′
2)χ(p′

1, p
′
2), (1)

where p1 and p2 relate to the total momentum P and the
relative momentum p, as follows:

p1 = α1P − p, α1 = m1

m1 + m2
, (2)

p2 = α2P + p, α2 = m2

m1 + m2
. (3)

Using the energy-momentum conservation, i.e. p′
1 + p′

2 =
p1 + p2, Eq. (1) can be simplified as

(p/1 − m1)χ(p, P)(p/2 + m2)

=
∫

d4 p′

(2π)4 K (p, p′, P)χ(p′, P). (4)

Here we choose the interaction kernel as the standard
Coulomb-plus-linear form, which is one-gluon-exchange
(OGE) dominant at short distances with linear confinement
at long distances. If one applies the instantaneous approxi-
mation, i.e. neglecting the frequency dependence, the kernel
can be written as

K (p, p′, P) = γ (1) · γ (2)Vv(−k2) + Vs(−k2), (5)

where the transferred momentum k is defined as

k = p − p′. (6)

Since the interaction kernel K ( p, p′, P) is no longer depen-
dent on p′0, we can perform the integration over p′0 in
Eq. (4). After transforming the instantaneous Bethe–Salpeter
equation into coordinate space, the wave function of the
eigenequation decouples from the time coordinate [35–37].

In our previous work [27], with the help of projection
operators for the wave function we found that the instanta-
neous Bethe–Salpeter equation is equivalent to the following
equation:

(
ω1+ω2+ 1

2
(h1+h2)U (r)

1

2
(h1+h2) − h1E

)
φ(r) = 0,

(7)

where the superscript “1” and “2” stand for the heavy quark
Q and the light antiquark q̄ in the Qq̄ meson, respectively.
The operators in the above equation are defined as

ωi ( p) =
√
p2 + m2

i , i = 1, 2, (8)

hi ( p) = Hi ( p)
ωi ( p)

, i = 1, 2, (9)

with the free Dirac Hamiltonians

H1( p) = β(1)m1 − α(1) · p, (10)

H2( p) = β(2)m2 + α(2) · p. (11)

Inserting Eqs. (10) and (11) into (9), we can verify the relation

h2
i ( p) = 1, i = 1, 2. (12)

The interaction potentialU (r) in Eq. (7) is directly derived
from the instantaneous Bethe–Salpeter equation and closely
related to the interaction form we assumed in the kernel. It
can be written as

U (r) = U1(r) +U2(r) (13)

with

U1(r) = β(1)β(2)Vs(r) + Vv(r), (14)

U2(r) = −1

2

[
α(1) · α(2)+(α(1) · r̂)(α(2) · r̂)

]
Vv(r),

(15)

where V (r) and V (−k2) are related to each other according
to Fourier transformation.

The instantaneous Bethe–Salpeter equation as an integral
equation is equivalent to a less complicated differential equa-
tion shown in Eq. (7) but it is still difficult to solve. For heavy–
light systems, the heavy-quark effective theory is applied. It
is reasonable to consider the heavy-quark expansion, i.e. the
1/mQ expansion. One can reduce the equivalent eigenequa-
tion by calculating the interactions of the heavy–light quark–
antiquark meson order by order.
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Our goal can be achieved by employing the Foldy–
Wouthuysen transformation [38]. The operators involved in
Eq. (7) can be divided into two sets: the “odd” O and the
“even” E . The name “odd” denotes the operators couple the
large and small components of the Dirac spinor, while the
“even” operators are diagonal with respect to the large and
small components. The main idea of the Foldy–Wouthuysen
transformation is to apply a unitary transformation U which
retains the “even” operators and eliminates the “odd” opera-
tors. If one writes the original Hamiltonian as

H = β m + E + O, (16)

according to Foldy and Wouthuysen, one obtains the trans-
formed Hamiltonian:

H̃ = U−1H U

= βm + E + β

2m
O2 + 1

8m2 [ [O, E], O ] + · · · (17)

The reduction by performing the Foldy–Wouthuysen
transformation on Eq. (7) has been detailed in our previous
work [27]. Instead of βm being the main term in the common
Dirac Hamiltonian shown in Eq. (16), the dominant term is
βE in our case:

− h1E = α(1) · p − β(1)m1

ω1
E

= −β(1)E + α(1) · p
ω1

E − β(1)

(
m1

ω1
− 1

)
E .

(18)

The reduction result is calculated to order 1/mQ in our
previous work [27]. With the similar procedure, here we
extend the result to order 1/m2

Q . By inserting the “odd”
and “even” operators of Eq. (7) into Eq. (17), we obtain the
Hamiltonian expansion. After the Foldy–Wouthuysen trans-
formation, we have

H̃ = H̃0 + H̃ ′ (19)

with

H̃0 = ω1 + ω2 + 1

2
(1 + h2)U1

1

2
(1 + h2) . (20)

The perturbative term H̃ ′ consists of various terms of order
1/mQ and 1/m2

Q . We divide it into three parts:

H̃ ′ = H̃ ′
1 + H̃ ′

a + H̃ ′
b, (21)

where

H̃ ′
1 = 1

2
(1 + h2)

{
−α(1) · p

2m1
, U2

}
1

2
(1 + h2) , (22)

H̃ ′
a = 1

2
(1 + h2)

α(1) · p
2m1

U1
α(1) · p

2m1

1

2
(1 + h2)

−1

2
(−3 + h2)

p2

8m2
1

U1
1

2
(1 + h2) + h.c., (23)

H̃ ′
b = 1

2
(1 + h2)U2

1

2
(1 + β(1)h2)U1

α(1) · p
4Em1

+ h.c.

+1

2
(1 + h2)U2

1

2
(β(1) + h2)

α(1) · p
4Em1

U1
1

2
(1 + h2)

+ h.c. (24)

We can simplify the above equations by inserting an identity
matrix (γ

(1)
5 )2 = 1 between two odd operators of the heavy

quark, with the help of the relations {γ5, β} = 0, [γ5, α] =
0, γ5α = � and the substitutions β(1) → 1, �(1) → σ (1).
Moreover, we can take the substitution h2 → 1 if h2 appears
at the ends of the expression of H̃ ′ as in Eqs. (22–24), since
the corrections of H̃ ′ are calculated as a perturbation to H̃ ′

0.
With the considerations above, we obtain our final Hamil-

tonian

H = H0 + H ′, (25)

where the leading order Hamiltonian H0 has the form

H0 = ω1 + ω2 + 1

2
(1 + h2)U1

1

2
(1 + h2) , (26)

and the subleading Hamiltonian H ′ to order 1/m2
Q can be

written as

H ′ = H ′
1 + H ′

a + H ′
b, (27)

with

H ′
1 = −1

2

{
σ (1) · p
m1

, Ũ2

}
, (28)

H ′
a = 1

4

σ (1) · p
m1

Ũ1
σ (1) · p
m1

+ 1

8

{
p2

m1
, U 1

}
, (29)

H ′
b = 1

4E

(
Ũ2

1

2
(1 − h2)Ũ1

σ (1) · p
m1

+ h.c.

)

− 1

4E

(
Ũ2

1

2
(1 − h2)

σ (1) · p
m1

U1 + h.c.

)
, (30)

the interaction potentials U 1(r), Ũ1(r) and Ũ2(r) in the
above equations are defined as

U1(r) = Vv(r) + β(2)Vs(r), (31)

Ũ1(r) = Vv(r) − β(2)Vs(r), (32)
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Ũ2(r) = −1

2

[
σ (1) · α(2) + (σ (1) · r̂)(α(2) · r̂)

]
Vv(r).

(33)

The leading order Hamiltonian H0 we obtain for the
heavy–light quark–antiquark system in Eq. (26) is not Dirac-
like as in Refs. [33,39]. We have

HDirac
0 = ω1 + H2( p) + Vv(r) + β(2)Vs(r). (34)

Its form is more like the form used in relativized quark models
[13,40,41]. As for the double-heavy system, we have h2 → 1
and β(2) → 1, then Eq. (26) can be reduced to

HSchr
0 = ω1 + ω2 + Vv(r) + Vs(r), (35)

which is the Schrödinger formalism extensively used in non-
relativistic or semirelativistic quark models.

3 Solution of the wave equation

In this section we solve the eigenequation of the leading order
Hamiltonian H0 in Eq. (26). Before doing this we would like
to discuss the properties of the solution of the eigenequation
associated with H0.

The eigenequation of H0 can be written as

(
ω1 + ω2 + 1

2
(1 + h2)U1

1

2
(1 + h2) − E

)
ψ = 0; (36)

the above equation is equivalent to

h2

(
ω1 + ω2 + 1

2
(1 + h2)U 1

1

2
(1 + h2) − E

)
ψ = 0,

(37)

which is equivalent to

(
ω1 + ω2 + 1

2
(1 + h2)U1

1

2
(1 + h2) − E

)
h2ψ = 0.

(38)

From Eqs. (36) and (38), we have

h2ψ = cψ, (39)

and since (h2)
2 = 1,

c = ±1. (40)

When we take c = −1, Eq. (36) is transformed to

(ω1 + ω2 − E)ψ = 0, (41)

which is not the correct eigenequation for the bound systems
we are interested in. Thus we only have c = +1. This is the
reason for the substitution h2 → 1 we use in the last section.

If all the eigenfunctions of H0 for bound states satisfy the
relation

h2ψ = ψ, (42)

the eigenfunction set of H0 is not complete.
A complete set is needed to construct the identity opera-

tor 1 = ∑
i |ψi >< ψi | in order to calculate the perturba-

tive correction of H ′
b. Thus we construct a new Hamiltonian.

Inspired by the relation h2ψ = ψ we transform the potential
term in Eq. (36) as

1

2
(1 + h2)U 1

1

2
(1 + h2)

= 1

4

(
U 1 + h2U 1 +U 1h2 + h2U 1h2

)

⇒ 1

4

(
U1h2 + h2U 1 +U 1h2 + h2U 1

)

= 1

2
{h2, U 1},

then the new Hamiltonian we construct can be written as

H0 = ω1 + ω2 + 1

2
{h2, U 1}. (43)

It is easy to verify that the eigenfunction set of the new Hamil-
tonian includes both subsets:

h2ψ
+ = ψ+ and h2ψ

− = −ψ−, (44)

where the subset {ψ+} is identical to the eigenfunction set
associated with the original Hamiltonian H0 in Eq. (36).

Now we turn to solving the eigenequation associated with
the new Hamiltonian H0, that is,

(
ω1 + ω2 + 1

2
{h2, U 1} − E

)
ψ(r) = 0. (45)

In the heavy–light quark–antiquark system, we treat the
heavy quark as a static source, while the light one is described
relativistically by a Dirac spinor. It is easy to verify that H0

commutes with all the elements of the standard operator set
{ j2, jz, K , Sz} associated with the free Dirac Hamiltonian.
Then the eigenstates of H0 can be labeled by the quantum
number set {n, j,m j , k, s} corresponding to the operator set.

The quantum number k can have two opposite values for
an eigenstate with quantum number j :

k = ±( j + 1/2), for l = j ± 1/2. (46)
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The leading order invariant mass E (0) can be determined by
quantum numbers n, j and k, or equivalently by n, j and l.
The parity of the bound states is determined by P = (−1)l+1.

The Dirac spinor with quantum numbers j m j and l can
be written as


(r) =
⎛
⎝ g(r) y

m j
j,lA

(θ, ϕ)

i f (r) y
m j
j,lB

(θ, ϕ)

⎞
⎠ , (47)

where the subscripts lA and lB stand for l and 2 j − l, respec-
tively. The complete expression of y

m j
j,l (θ, ϕ) can be found

in Ref. [34].
For a bound state of a quark and an antiquark the wave

function will effectively vanish when the distance between
them is large enough. We designate such a large typical dis-
tance as L . Then the heavy quark and light antiquark bounded
in the meson can be viewed as restricted in a limited space,
0 < r < L . Thus we can expand the radial functions f (r)
and g(r) by spherical Bessel functions associated with the
distance L:

g(r) =
N∑
i=1

gi
N A
i

jlA

(
aA
i r

L

)
, (48)

f (r) =
N∑

α=1

fα
N B

α

jlB

(
aB
α r

L

)
, (49)

where Nn and an are the module and the nth root of the
spherical Bessel function jl(r), respectively.

Inserting Eqs. (9) and (11) into (43), we can rewrite H0 in
the matrix form

H0 =
(

ω1 + ω2

ω1 + ω2

)
+ 1

2

(
Ha Hb

Hc Hd

)
+ h.c., (50)

where h.c. stands for Hermitian conjugate and the operator
elements are

Ha = m2

ω2
(Vv + Vs), (51)

Hb = σ · p
ω2

(Vv − Vs), (52)

Hc = σ · p
ω2

(Vv + Vs), (53)

Hd = m2

ω2
(Vs − Vv). (54)

According to Eqs. (48) and (49) we can rewrite the eigenequa-
tion of H0 in the representation of the state basis constructed
from spherical Bessel functions. In this representation the
operator H0 can be written in its matrix form:

H0 =
(

< ω1 + ω2 >i j

< ω1 + ω2 >αβ

)

+1

2

(
< Ha >i j < Hb >iβ

< Hc >α j < Hd >αβ

)
+ h.c. (55)

The matrix elements of H0 in the above equation can be
calculated by applying the relation

(σ · p) y
m j
j,l± = ±i

(
k ± 1

r
± d

dr

)
y
m j
j,l∓ , (56)

lA = l+, lB = l−, (57)

and the eigenequation [27]


(p) jl(kr)Ylm(r̂) = 
(k) jl(kr)Ylm(r̂), (58)

where 
(p) is a pseudo-differential operator function and

(k) is a normal function, p and k stand for the modules of
momentum operator p and momentum k, respectively.

With the normalization condition we easily obtain the
matrix elements of H0. For the operators regarding the energy
of the motion, we have

〈ω1( p) + ω2( p)〉i j =
[

ω1

(
aA
i

L

)
+ ω2

(
aA
i

L

) ]
δi j ,

(59)

〈ω1( p) + ω2( p)〉αβ =
[

ω1

(
aB
α

L

)
+ ω2

(
aB
α

L

) ]
δαβ.

(60)

In order to write down the expressions of the elements asso-
ciated with the interaction potential in a compact form we
introduce a symbolic notation:

〈
Ô
〉
m,lA;n,lB

=
∫ L

0
dr r2 jlA

(
aA
mr

L

)
Ô jlB

(
aB
n r

L

)
.

(61)

Then we have

〈Ha〉i j = 1

N A
i N A

j

m2

ω2

(
aA
i
L

) < Vv + Vs >i,lA; j,lA , (62)

〈Hb〉iβ = 1

N A
i N B

β

1

ω2

(
aA
i
L

)

×
〈(

k − 1

r
− d

dr

)
(Vv − Vs)

〉
i,lA;β,lB

, (63)

〈Hc〉α j = 1

N B
α N A

j

1

ω2

(
aBα
L

)

×
〈(

k + 1

r
+ d

dr

)
(Vv + Vs)

〉
α,lB ; j,lA

, (64)
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〈Hd〉αβ = 1

N B
α N B

β

m2

ω2

(
aBα
L

) 〈Vs − Vv〉α,lB ;β,lB . (65)

After calculating every element of the Hermitian matrix of
H0 we diagonalize the Hermitian matrix and obtain eigen-
values and eigenvectors. The eigenvalue of the matrix is the
eigenenergy of H0, while the eigenvector is associated with
the coefficients gi , fα , which are defined in Eqs. (48) and
(49). That is to say, the eigenequation shown in Eq. (45) is
solved and the corresponding eigenenergy and eigenfunction
are obtained.

Here we turn to discussing the perturbative corrections of
H ′ defined in Eq. (27). The perturbative term H ′ does not
commute with the standard operators introduced for the free
Dirac Hamiltonian, but it still commutes with the total angu-
lar momentum operator J = j + S and the parity operator
P of the bound state.

Thus the quantum number set associated with the total
Hamiltonian H = H0+H ′ can be denoted by {n, J, MJ , P}.
By using Clebsch–Gordan coefficients the total wave func-
tion of the heavy–light quark–antiquark bound state can be
decomposed as follows:



(0)
n,k, j;J,MJ

(r) =
∑
m j ,s

C J,MJ
j,m j ;1/2,s

×
(

gn,k, j (r) y
m j
j,lA

(θ, ϕ)

i fn,k, j (r) y
m j
j,lB

(θ, ϕ)

)
⊗ χs, (66)

with which the corrections and mixings caused by H ′ can be
calculated perturbatively. The 1/mQ and 1/m2

Q perturbative
terms are given in Eqs. (28)–(30).

The properties of the eigenfunctions of H0 are of great help
in calculating the perturbative corrections. We have already
used h2 → 1 to get rid of the h2 at the ends of the perturbative
terms. As for the h2 sandwiched in H ′

b, h2 → ±1 can be
applied due to Eq. (44). H ′

b can be rewritten as

H ′
b = 1

4E
Ũ2

1

2
(1 − h2)

(
Ũ1

σ (1) · p
m1

− σ (1) · p
m1

U1

)
+ h.c.

(67)

Here we define two operators:

Â = Ũ2,

B̂ = Ũ1(σ
(1) · p) − (σ (1) · p)U1.

Then we have

H ′
b = 1

4m1E
Â

1

2
(1 − h2)B̂ + h.c. (68)

As discussed at the beginning of this section the eigen-
function set of H0 can be divided into two parts {ψ+, ψ−},
where ψ+ and ψ− represent the physical and unphysical

states, respectively. Inserting the identity operator consisting
of the complete set of H0 in Eq. (68) we obtain

H ′
b = 1

4m1E
Â

1

2
(1 − h2)

∑
i

|ψi >< ψi |B̂ + h.c.

= 1

4m1E

∑
m

Â|ψ−
m >< ψ−

m |B̂ + h.c. (69)

The correction in first order perturbation can be written as

En,l, j,J = E (0)
n,l, j + δE (1)

n,l, j,J + δE (2)
n,l, j,J , (70)

where

δE (2)
n,l, j,J = δE (a)

n,l, j,J + δE (b)
n,l, j,J . (71)

From Eq. (69), the correction of H ′
b for ψ+

n can be written as

δE (b)
n,l, j,J = 1

2m1E
(0)
n,l, j

∑
m

< ψ+
n | Â|ψ−

m >< ψ−
m |B̂|ψ+

n >

= 1

2m1E
(0)
n,l, j

∑
m

Anm Bmn . (72)

With the eigenfunctions we obtain the 1/mQ and 1/m2
Q cor-

rections can be calculated. Then the masses of all the different
J P states are determined.

4 Numerical results and discussions

The vector and scalar potentials are chosen to have a Coulom-
bic behavior at short distance and a linear confining behavior
at long distance. They can be written in a simple form:

Vv(r) = −4αs(r)

3r
, (73)

Vs(r) = b r + c. (74)

The running coupling constant αs(r) in the vector potential
is derived from the coupling constant αs(Q2) in momentum
space via Fourier transformation. It can be parametrized in a
more convenient form [13]:

αs(r) =
∑
i

αi
2√
π

∫ γi r

0
e−x2

dx, (75)

where αi and γi are parameters which can be fitted according
to the behavior of the running coupling constant at short dis-
tance predicted by QCD. The behavior of αs(r) is depicted in
Fig. 1. In this work we use the same αs(r) given in Ref. [13],
where the αi and γi parameters have the values α1 = 0.25,
α2 = 0.15, α3 = 0.20, and γ1 = 1/2, γ2 = √

10/2,
γ3 = √

1000/2.
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Fig. 1 The behavior of the running coupling constant αs(r) with the
critical value αcritical

s = 0.6

There are two free parameters in the scalar potential. One
is the string tensor constant b which characterizes the con-
finement of the quark–antiquark system. The other is a phe-
nomenological constant c which is adjusted to give the cor-
rect ground state energy level of the heavy–light meson state.
The behavior of the parameters b in our model is quite differ-
ent from those in usual quark models. The slope parameter
b is the most essential parameter in all the different kinds of
phenomenological quark models where the linear confine-
ment is assumed. The parameter b determines the structure
of the calculated spectrum, more specifically, it determines
the Regge trajectories and the energy gaps between radial
excitations. But unlike the Dirac Hamiltonian in Eq. (34) or
the Schrödinger Hamiltonian in Eq. (35), the Hamiltonian
for the heavy–light meson states in the Bethe–Salpeter for-
malism has a different form for the interaction potential, that
is,

1

2
(1 + h2)

(
Vv(r) + β(2)Vs(r)

) 1

2
(1 + h2) ,

where h2 has the form

h2 = m1

ω2
β(2) + α(2) · p

ω2
. (76)

In the above equation the diagonal part, i.e. the “even” opera-
tor, is the chief contributor to the eigenvalue of the eigenequa-
tion. If m2 tends to infinity the Hamiltonian degenerates into
the nonrelativistic case. But if m2 tends to 0 an additional
factor 1/4 will appear and it weakens the ability of the con-
finement parameter b in Vs(r) to elevate the energy levels of
the excitations. That is to say, in the Bethe–Salpeter formal-
ism the energy level is also sensitive to the light-quark mass
mq . The experimental data shows that the mass splitting is
similar in the D and Ds mesons. For example, the energy
gaps between 13/2P2 and 11/2S0 states are

1 2 3 4

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Δ
E

(G
eV

)

mq (GeV)

Fig. 2 The energy gap �E as a function of the light-quark mass in the
D meson. The dashed, dotted and solid lines stand for the Schrödinger,
Dirac and Bethe–Salpeter formalisms, respectively

mD(13/2P2) − mD(11/2S0) = 595 MeV,

mDs (1
3/2P2) − mDs (1

1/2S0) = 603 MeV.

Thus in the Bethe–Salpeter formalism different slope param-
eters are required to coordinate with different constituent-
quark masses in order to recover the structure of the heavy–
light meson spectra. This is also true for the radial excitations.
In Fig. 2, the energy gap �E between the first radial excita-
tion and the ground state is depicted as a function of mq . We
take the D meson as an example to illustrate the dependence
on the quark mass. The values of the parameters, which are
fitted for the D meson spectrum, are fixed except for the
light-quark mass of the D meson.

From the different shapes of the dashed, dotted and solid
lines according to the three schemes, i.e. the Schrödinger,
Dirac and Bethe–Salpeter formalisms, one can find:

• When mq is taken large enough the three schemes tend to
give the same value for the energy gap �E . It indicates
the equivalence of the three schemes when dealing with
double-heavy mesons.

• In the region mq < 1 GeV, which is the case for heavy–
light mesons, the three schemes give quite different val-
ues for the energy gap. It has the pattern �ESchr >

�EDirac > �EB−S . In order to give the same energy gap
for a specific meson the confinement parameter should be
chosen as bSchr < bDirac < bB−S . The literature supports
this sequence. For instance, bSchr is taken as 0.175 GeV2

[41], 0.180 GeV2 [13], bDirac is taken as 0.257 GeV2

[34], 0.309 GeV2 [28], while bB−S can be taken up to
0.400 GeV2 in this work.

• In the Schrödinger and Dirac schemes the energy gap
changes slowly over mq . This is especially true when mq

is less than 1 GeV. �ESchr and �EDirac can be viewed
as constants. In the Bethe–Salpeter scheme, �EB−S

changes drastically over mq . From the experimental data
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we know that the �E are not sensitive to their light quark
masses. For example, the �E for both D and Ds mesons
are around 0.7 GeV. Thus bSchr and bDirac can be taken
as a constant, while bB−S varies with the quark mass.

Our analysis suggests that in the Bethe–Salpeter formalism
the string tension b depends on the masses of the quark and
antiquark, especially the light ones. Besides the potential
parameters four quark mass parameters are employed to fit
the heavy–light meson spectra. With all the considerations
above our best fitting of the parameters gives the following
values:

mu,d = 0.398 GeV,

ms = 0.598 GeV,

mc = 1.450 GeV,

mb = 4.765 GeV,

b =

⎧⎪⎪⎨
⎪⎪⎩

0.390 GeV2 for cq̄ system,

0.421 GeV2 for bq̄ system,

0.300 GeV2 for cs̄ system,

0.316 GeV2 for bs̄ system,

c = −0.320 GeV.

In Sect. 3 two numerical parameters L and N are introduced
in our calculation. In principle, if the distance L and the size
of the expansion basis N are taken to ∞, we can obtain the
exact solution of the wave equation. Our calculation shows
the solution is stable when L > 5 fm, N > 50. In this
work they are taken as L = 10 fm, N = 150. The size
of the matrix of H0 in Eq. (55) is 300 × 300. Since a lot
of integrals are involved the Gauss–Legendre quadrature is
widely used in our numerical calculation. The spectra of the
heavy–light D, Ds , B, Bs mesons are fitted based on the
data given by PDG [9]. In this work we take the masses
of the well-established 1S and 1P heavy–light meson states
as our input for fitting the parameters. After the fitting the
highly excited states beyond 1P are also calculated in the
spectra and we identify the newly observed highly excited
meson states in our model. The numerical results for the
spectra of D, Ds mesons are presented in Table 1, while the
B and Bs mesons are presented in Table 2. The calculated
spectra are in good agreement with the experimental data.
Our results are compared with the results of two other rel-
ativistic models [34,39]. One is derived by a quasipotential
approach and the other is obtained by reducing the Bethe–
Salpeter vertex function. The result in this work is improved
compared with our previous work [27]. Taking the mass dif-
ference between the pseudoscalar state and the vector state
for example, as shown in Table 1, in our previous work, we
have

mD∗ − mD = 167 MeV,

mD∗
s
− mDs = 161 MeV,

while in this work we have

mD∗ − mD = 137 MeV,

mD∗
s
− mDs = 143 MeV,

the discrepancy from experimental data is decreased for D,
D∗, Ds and D∗

s states as well as other states.
Theoretical deviations from experimental data mainly

occur in the Ds meson sector, specifically, the D∗
s0(2317)

and Ds1(2460) resonances. Our calculations for the two res-
onances are about 100 GeV higher than their masses mea-
sured in the experiment. The discrepancy may be ascribed
to the instantaneous approximation, the naive assumption of
the kernel or the α2

s (r) contributions, i.e. the loop corrections.
However, it is more likely to find an explanation beyond the
naive quark model [42]. The masses of the two resonances
predicted by the constituent-quark model are generally 100–
200 MeV higher than experiments [33,34,43–45]. The mass
of D∗

0 , 2318±29 MeV is almost identical to the mass of D∗
s0,

2317.8±0.6 MeV. It cannot be explained in the conventional
quark model if the difference between the two anomalous res-
onances in the model is merely their light-quark masses ms

andmu,d . In this work the confinement parameter b takes dif-
ferent values for different systems but it still is not capable
to explain the small mass difference of the two resonances.

As D∗
s0 and Ds1 lie just below the DK and D∗K threshold,

respectively, the authors in Ref. [46] have suggested that the
two resonances may be D∗

s0(DK ) and Ds1(D∗K ) molecular
states, while in Refs. [47–49], D∗

s0 and Ds1 are considered
as cs̄ states which are significantly affected by mixing with
the DK and D∗K continua. In Ref. [50], the authors sug-
gest that the discrepancy of the calculated masses in quark
models can be qualitatively understood as a consequence of
self-energy effects due to strong coupled channels. In Refs.
[51–53] the interpretation of the heavy J P (0+, 1+) spin mul-
tiplet as the parity partner of the ground-state (0−, 1−) mul-
tiplet is proposed. Both theoretical and experimental efforts
are required in order to fully understand the nature of the
anomalous D∗

s0(2317) and Ds1(2460) states.
As for the D mesons, in the mass region 2500–3000

MeV several resonances are measured by the LHCb Col-
laboration [2]. The assignments of these states are listed in
the upper part of Table 1, where the resonances DJ (2740),
D∗

J (2760), DJ (3000) are identified as n = 1 states and
the resonances DJ (2580), D∗

J (2650), D∗
J (3000) are iden-

tified as radially exited states with n = 2. In our predicted
spectrum for D meson, DJ (2740) and D∗

J (2760) are iden-
tified as the |15/2D2〉 state with J = 2− and the |15/2D3〉
state with J = 3−, respectively. Our best assignment for
D∗

J (3000) is the |17/2F3〉 state and DJ (3000) the |23/2P2〉
state, although in Ref. [2] they favor the natural and unnatural
parity, respectively. The last two resonances DJ (2580) and
D∗

J (2650) are identified as the first radial excitations of the
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Table 1 Spectra for D and Ds
mesons. The comparison of the
result in this work with our
previous work and other
theoretical results in Refs.
[34,39] is presented. All units
are in MeV

n j L J Meson Eexpt. [2,9] This work Previous
work [27]

Ref. [39] Ref. [34]

11/2S0 D 1869.62 ± 0.15 1871 1859 1871 1868

11/2S1 D∗ 2010.28 ± 0.13 2008 2026 2010 2005

11/2P0 D∗
0 (2400)0 2318 ± 29 2364 2357 2406 2377

11/2P1 2507 2529 2469 2490

13/2P1 D1(2420) 2421.3 ± 0.6 2415 2434 2426 2417

13/2P2 D∗
2 (2460) 2464.4 ± 1.9 2460 2482 2460 2460

13/2D1 2836 2852 2788 2795

13/2D2 2881 2900 2850 2833

15/2D2 DJ (2740)0 2737.0 ± 3.5 ± 11.2 2737 2728 2806 2775

15/2D3 D∗
J (2760)0 2760.1 ± 1.1 ± 3.7 2753 2753 2863 2799

15/2F2 3122 3107 3090 3101

15/2F3 3139 3134 3145 3123

17/2F3 D∗
J (3000)0 3008.1 ± 4.0 2980 2942 3129 3074

21/2S0 DJ (2580)0 2579.5 ± 3.4 ± 5.5 2594 2575 2581 2589

21/2S1 D∗
J (2650)0 2649.2 ± 3.5 ± 3.5 2672 2686 2632 2692

21/2P0 2895 2902 2919 2949

21/2P1 2983 2999 3021 3045

23/2P1 2926 2932 2932 2995

23/2P2 DJ (3000)0 2971.8 ± 8.7 2965 2969 3012 3035

23/2D1 3230 3228 3228

23/2D2 3259 3260 3307

25/2D2 3159 3139 3259

25/2D3 3176 3160 3335

25/2F2 3455 3425

25/2F3 3465 3444 3551

27/2F3 3346 3301

11/2S0 D±
s 1968.49 ± 0.32 1964 1949 1969 1965

11/2S1 D∗±
s 2112.3 ± 0.5 2107 2110 2111 2113

11/2P0 D∗
s0(2317) 2317.8 ± 0.6 2437 2412 2509 2487

11/2P1 Ds1(2536) 2535.12 ± 0.13 2558 2562 2574 2605

13/2P1 Ds1(2460) 2459.6 ± 0.6 2524 2528 2536 2535

13/2P2 D∗
s2(2573) 2571.9 ± 0.8 2570 2575 2571 2581

13/2D1 D∗
s1(2860)− 2859 ± 12 ± 6 ± 23 [7] 2885 2873 2913 2913

13/2D2 2923 2916 2961 2953

15/2D2 2857 2829 2931 2900

15/2D3 D∗
s3(2860)− 2860.5 ± 2.6 ± 2.5 ± 6.0 [7] 2871 2852 2971 2925

15/2F2 3172 3128 3230 3224

15/2F3 3184 3152 3266 3247

17/2F3 3107 3049 3254 3203

21/2S0 DsJ (2632) 2632.5 ± 1.7 [3] 2647 2624 2688 2700

21/2S1 D∗
s1(2710) 2708 ± 9+11

−10 [5] 2734 2729 2731 2806

21/2P0 2945 2918 3054 3067

21/2P1 DsJ (3040) 3044 ± 8+30
−5 [6] 3028 3017 3154 3165

23/2P1 3009 2994 3067 3114

23/2P2 3047 3031 3142 3157

23/2D1 3277 3247 3383

123



312 Page 10 of 14 Eur. Phys. J. C (2017) 77 :312

Table 1 continued
n j L J Meson Eexpt. [2,9] This work Previous

work [27]
Ref. [39] Ref. [34]

23/2D2 3305 3278 3456

25/2D2 3260 3217 3403

25/2D3 3274 3237 3469

25/2F2 3508 3449

25/2F3 3517 3468 3710

27/2F3 3459 3390

ground D and D∗ states. Recently, the LHCb Collaboration
observed D∗

J (2650) and D∗
J (2760). Their masses and widths

were measured as [56]

M(D∗
1(2680)0) = 2681.1 ± 5.6 ± 4.9 ± 13.1 MeV,

�(D∗
1(2680)0) = 186.7 ± 8.5 ± 8.6 ± 8.2 MeV,

M(D∗
3(2760)0) = 2775.5 ± 4.5 ± 4.5 ± 4.7 MeV,

�(D∗
3(2760)0) = 95.3 ± 9.6 ± 7.9 ± 33.1 MeV.

From Table 1 one can see our results favor the measure-
ments.

As for the Ds mesons, several states beyond the 1P
state have been observed. Their masses and identifications
are presented in the lower part of Table 1. Recently, the
LHCb Collaboration identified D∗

s J (2860) as an admixture
of two resonances: D∗

s3(2860)− and D∗
s1(2860)− [7,8], with

their masses measured as 2859 ± 12 ± 6 ± 23 MeV and
2860.5±2.6±2.5±6.0 MeV, respectively. In Refs. [34,39]
cited in Table 1, their predictions do not favor this identifi-
cation, with their calculations generally 60 MeV higher than
the measured masses. While our results for both |13/2D1〉 and
|15/2D3〉 are around 2860 MeV, the two resonances can be
interpreted as members of the 1D family with J P = 1− and
3−. The resonances DsJ (2632) , D∗

s1(2710) and DsJ (3040)

are identified as radially exited states with n = 2 in our
model. The DsJ (2632) was firstly observed by SELEX Col-
laboration at a mass of 2632.5 ± 1.7 MeV, it can be assigned
as the |21/2S0〉. The assignment for D∗

s1(2710) is proposed as
J P = 1− in Refs. [54,55], which agree with our prediction
as our calculated mass for |21/2S1〉 is close to its experimen-
tal mass 2708 ± 9+11

−10 MeV [5]. The DsJ (3040) resonance is

observed in the D∗K mass spectrum at a mass of 3044±8+30
−5

MeV by the BABAR Collaboration [6]. Here we assign it as
|21/2P1〉 in our predicted Ds meson spectrum.

In the b-flavored meson sector, experimental data for
excited B meson states are limited for now. But still sev-
eral b-flavored mesons are observed [57]. The strangeless
resonances BJ (5840)0 and B(5970)0 were measured by the
LHCb and CDF Collaborations, respectively [10,11]. The
stranged B∗

s J (5850) was observed by the OPAL Collabora-
tion [12]. Their masses were measured as

M(BJ (5840)) = 5862.9 ± 5.0 ± 6.7 ± 0.2 MeV,

M(B(5970)0) = 5978 ± 5 ± 12 MeV,

M(B∗
s J (5850)) = 5853 ± 15 MeV.

In Table 2, we can identify BJ (5840)0 and B(5970)0 as
|11/2P1〉 and |21/2S1〉, respectively, in the spectrum of B
meson, while B∗

s J (5850) can be assigned as |11/2P1〉 in the
spectrum of Bs meson.

Finally, after solving the wave equation one can obtain not
only the eigenenergy of each bound state but also their wave
functions. The radial wave functions gn,l, j (r) and fn,l, j (r)
for physical and unphysical D meson states are depicted as
an example in Figs. 3 and 4, respectively. We stress that the
solution of the eigenequation associated with the original H0

in Eq. (26) gives only the wave functions of the physical
states depicted in Fig. 3. In Sect. 3 we construct a new H0

for the heavy–light systems in Eq. (43), the unphysical states
depicted in Fig. 4 are due to the new H0 for which the original
one is substituted.

5 Summary

The spectra of heavy–light mesons are restudied in a rel-
ativistic model, which is derived by reducing the instanta-
neous Bethe–Salpeter equation. The kernel is chosen to be
the standard combination of linear scalar and Coulombic vec-
tor. By applying the Foldy–Wouthuysen transformation on
the heavy quark, the Hamiltonian for the heavy–light quark–
antiquark system is calculated up to order 1/m2

Q . We find
that in the framework of an instantaneous Bethe–Salpeter
equation the string tension b in the confinement potential
is sensitive to the masses of the constituent quarks in the
meson. The spectra of the D, Ds , B and Bs mesons are cal-
culated in the relativistic model. Most of the heavy–light
meson states can be accommodated successfully in our model
except for the anomalous D∗

s0(2317) and Ds1(2460) reso-
nances. In the Bethe–Salpeter formalism, the assumption of
the interaction kernel for mesons is rather a priori; kernels
with other spin structures can also be studied. In this work,
we only restrict our calculations to the spectra of heavy–light
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Table 2 Spectra for B and Bs
mesons. The comparison of the
result in this work with our
previous work and other
theoretical results in Refs.
[34,39] is presented. All units
are in MeV

n j L J Meson Eexpt. [9] This work Previous
work [27]

Ref. [39] Ref. [34]

11/2S0 B 5279.25 ± 0.17 5273 5262 5280 5279

11/2S1 B∗ 5325.2 ± 0.4 5329 5330 5326 5324

11/2P0 5776 5740 5749 5706

11/2P1 5837 5812 5774 5742

13/2P1 B1(5721) 5723.5 ± 2.0 5719 5736 5723 5700

13/2P2 B∗
2 (5747) 5743 ± 5 5739 5754 5741 5714

13/2D1 6143 6128 6119 6025

13/2D2 6165 6147 6121 6037

15/2D2 5993 5989 6103 5985

15/2D3 6004 5998 6091 5993

15/2F2 6379 6344 6412 6264

15/2F3 6391 6354 6420 6271

17/2F3 6202 6175 6391 6220

21/2S0 5957 5915 5890 5886

21/2S1 5997 5959 5906 5920

21/2P0 6270 6211 6221 6163

21/2P1 6301 6249 6281 6194

23/2P1 6216 6189 6209 6175

23/2P2 6232 6200 6260 6188

23/2D1 6514 6458 6534

23/2D2 6527 6471 6554

25/2D2 6401 6357 6528

25/2D3 6411 6365 6542

25/2F2 6692 6621

25/2F3 6700 6629 6786

27/2F3 6553 6493

11/2S0 Bs 5366.77 ± 0.24 5363 5337 5372 5373

11/2S1 B∗
s 5415.4+2.4

−2.1 5419 5405 5414 5421

11/2P0 5811 5776 5833 5804

11/2P1 5864 5841 5865 5842

13/2P1 Bs1(5830) 5829.4 ± 0.7 5819 5824 5831 5805

13/2P2 B∗
s2(5840) 5839.7 ± 0.6 5838 5843 5842 5820

13/2D1 6167 6146 6209 6127

13/2D2 6186 6163 6218 6140

15/2D2 6098 6085 6189 6095

15/2D3 6109 6094 6191 6103

15/2F2 6405 6363 6501 6369

15/2F3 6416 6373 6515 6376

17/2F3 6313 6276 6468 6332

21/2S0 6010 5961 5976 5985

21/2S1 6048 6003 5992 6019

21/2P0 6291 6227 6318 6264

21/2P1 6323 6266 6345 6296

23/2P1 6288 6249 6321 6278

23/2P2 6304 6263 6359 6292

23/2D1 6540 6478 6629
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Table 2 continued
n j L J Meson Eexpt. [9] This work Previous

work [27]
Ref. [39] Ref. [34]

23/2D2 6553 6491 6651

25/2D2 6487 6434 6625

25/2D3 6496 6441 6637

25/2F2 6723 6647

25/2F3 6731 6654 6880

27/2F3 6650 6580
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Fig. 3 The radial wave functions gn,l, j (r) and fn,l, j (r) for physical D meson states as an example. The wave functions are the radial part of the
solution of the eigenequation associated with H0
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Fig. 4 The radial wave functions gn,l, j (r) and fn,l, j (r) for unphysical D meson states as an example. The wave functions are the radial part of
the solution of the eigenequation associated with H0

mesons. With the wave functions obtained when solving the
wave equation, B and D decays can be studied in further
research.
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