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Abstract We give a systematical study on the recently
reported excited charm and charm–strange mesons with
potential 1− spin–parity, including the D∗

s1(2700)+, D∗
s1

(2860)+, D∗(2600)0, D∗(2650)0, D∗
1(2680)0 and D∗

1
(2760)0. The main strong decay properties are obtained in
the framework of Bethe–Salpeter (BS) methods. Our results
reveal that the two 1− charm–strange mesons can be well
described by the further 23S1–13D1 mixing scheme with
a mixing angle of (8.7+3.9

−3.2)
◦. The predicted decay ratio

B(D∗K )
B(D K )

for D∗
s1(2860) is 0.62+0.22

−0.12. D∗(2600)0 can also be

explained as the 23S1 predominant state with a mixing angle
of −(7.5+4.0

−3.3)
◦. Considering the mass range, D∗(2650)0 and

D∗
1(2680)0 are more likely to be the 23S1 predominant states,

although the total widths under the two 23S1 and 13D1 assign-
ments have no great conflict with the current experimental
data. The calculated width for the LHCb D∗

1(2760)0 seems
to be about 100 MeV larger than the experimental measure-
ment if taking it as 13D1 or 13D1 dominant state cū. The
comparisons with other calculations and several important
decay ratios are also presented. For the identification of these
1− charm mesons, further experimental information, such as
B(Dπ)
B(D∗π)

, is necessary.

1 Introduction

Recently lots of natural parity charm and charm–strange
mesons have been observed in experiments [1–10], which are
summarized in Table 1, where we have combined the statisti-
cal, systematic and model errors in quadrature for simplicity.
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These new resonances have great importance in improving
our knowledge of the radial and orbital charmed excitations.
Especially for the spin–parity 1− charm and charm–strange
states, there may exist 23S1–13D1 mixing, which makes the
assignments more complicated.

D∗
s1(2700)+ was first discovered by Belle collaboration

in 2008 [1] in channel D∗
s1(2700)+ → D0K+, and then

confirmed by BaBar in 2009 [2] and LHCb in 2012 [4]. Fur-
thermore, the BaBar collaboration also obtained two ratios
of branching fractions [2],

RK [D∗
s1(2700)+] ≡ B[D∗

s1(2700)+ → D∗K ]
B[D∗

s1(2700)+ → DK ]
= 0.91 ± 0.13stat ± 0.12syst, (1)

RK [D∗
s J (2860)+] ≡ B[D∗

s J (2860)+ → D∗K ]
B[D∗

s J (2860)+ → DK ]
= 1.1 ± 0.15stat ± 0.19syst, (2)

where we have defined the abbreviation RK for simplicity.
D∗
s J (2860)+ were first detected by BaBar together with the

D∗
s1(2700)+ and then confirmed by LHCb [4]. However,

there are about 3σ discrepancies in the total width. This dis-
crepancy was resolved by LHCb’s subsequent measurement
with the amplitude analysis in 2014 [6], which find that the
structure D∗

s J (2860)+ contains both spin-1 and spin-3 com-
ponents, while a larger width of the former one is preferred.
The potential models predict that the masses of 23S1 and
13D1 charm–strange mesons are around 2.73 and 2.90 GeV,
respectively [11,12]. The D∗

s1(2700)+ and D∗
s1(2860)+ are

then usually interpreted as the 23S1 and 13D1 charm–strange
mesons, respectively. There is much work on the proper-
ties of these two resonances. The D∗

s1(2700)+ is identi-
fied as the 23S1 cs̄ in Refs. [13–17], while in Ref. [18] the
13D1 assignments are favored. Almost all the pure 2S or
1D assignments have difficulty in producing the experimen-
tal ratio RK [D∗

s1(2700)] = 0.91. In Refs. [15,19–24] the
2S–1D mixing states of D∗

s1(2700)+ and D∗
s1(2860)+ are

discussed, and we will discuss the mixing scheme in detail

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4865-y&domain=pdf
mailto:lrhit@protonmail.com
mailto:jiangure@hit.edu.cn
mailto:thwang@hit.edu.cn
mailto:hanyuan@hit.edu.cn
mailto:gl\protect _wang@hit.edu.cn
mailto:zhangzx@itp.ac.cn


297 Page 2 of 13 Eur. Phys. J. C (2017) 77 :297

Table 1 Experimental results of
the recently discovered excited
open charm mesons with natural
spin–parity

Resonance Mass (MeV) Width (MeV) J P References Time

D∗
s1(2700)+ 2708 ± 14 108 ± 36 1− Belle [1] 2008

2710 ± 12 149 ± 52.5 BaBar [2] 2009

2709.3 ± 4.9 115.8 ± 14.1 LHCb [4] 2012

2709 ± 4 117 ± 13 PDG [7] 2014

2699+14
−7 127+24

−19 BaBar [8] 2015

D∗
s J (2860)+ 2862 ± 5.4 48 ± 6.7 Natural BaBar [2] 2009

2866.1 ± 6.4 69.9 ± 7.3 Natural LHCb [4] 2012

2859 ± 27 159 ± 80 1− LHCb [6] 2014

2860.5 ± 7 53 ± 10 3− LHCb [6] 2014

D∗(2600)0 2608.7 ± 3.5 93 ± 14.3 Natural BaBar [3] 2010

D∗(2650)0 2649.2 ± 4.9 140 ± 25.5 Natural LHCb [5] 2013

D∗
1 (2680)0 2681.1 ± 15.1 186.7 ± 14.6 1− LHCb [10] 2016

D∗(2760)0 2763.3 ± 3.3 60.9 ± 6.2 Natural BaBar [3] 2010

D∗
J (2760)0 2760.1 ± 3.9 74.4 ± 19.4 Natural LHCb [5] 2013

D∗
3 (2760)0 2775.5 ± 7.9 95.3 ± 35.4 3− LHCb [10] 2016

D∗
1 (2760)0 2781 ± 21.9 177 ± 38.4 1− LHCb [9] 2015

D∗
J (3000)0 3008.1 ± 4.0 110.5 ± 11.5 Natural LHCb [5] 2013

D∗
2 (3000)0 3214 ± 56.8 186 ± 81.0 2+ LHCb [10] 2016

D∗(2600)+ 2621.3 ± 5.6 93 Natural BaBar [3] 2010

D∗(2760)+ 2769.7 ± 4.1 60.9 Natural BaBar [3] 2010

D∗
J (2760)+ 2771.7 ± 4.2 66.7 ± 12.4 Natural LHCb [5] 2013

D∗
3 (2760)− 2798 ± 9.9 105 ± 29.8 3− LHCb [9] 2015

D∗
J (3000)+ 3008.1 (fixed) 110.5 (fixed) Natural LHCb [5] 2013

in Sect. 3. Besides the conventional assignments, Ref. [25]
argued that the D∗

s J (2860)+ can be explained as D1(2420)K
bound states by using the chiral and heavy quark symmetry.

For the corresponding charm mesons, the Godfrey–
Isgur (GI) model [11,12] predicts the 23S1 and 13D1 states cū
locate in the mass range of about 2.64 and 2.82 GeV, respec-
tively, while the mass of 13D3 state is predicted to be quite
close to the 13D1 state. BaBar in 2010 [3] reported two natural
parity resonances D∗(2600)0 and D∗(2760)0. Furthermore,
they measured the following ratio of the branching fraction:

RD+[D∗(2600)0] ≡ B[D∗(2600)0 → D+π−]
B[D∗(2600)0 → D∗+π−]

= 0.32 ± 0.02stat ± 0.09syst. (3)

Again we have introduced the abbreviation RD+ for the
sake of simplicity. Later in 2013 LHCb [5] discovered two
natural parity charmed particle D∗(2650)0 and D∗

J (2760)0.
Then in 2015 LHCb [9] reported the 1− state D∗

1(2760)0,
which has a large width of 177 ± 38 MeV. Very recently, in
2016 by using the amplitude analysis, LHCb collaboration
measured a 1− state D∗

1(2680)0 and a 3− state D∗
3(2760)0

[10]. The latter one’s mass and total width seem consistent
with the BaBar D∗(2760)0 and LHCb D∗

J (2760)0. These

experimental data are also summarized in Table 1, where
the isospin partners of these neutral charm mesons are also
listed in the bottom of Table 1 for comparison. D∗(2760)0,
D∗

J (2760)0 and D∗
3(2760)0 can be interpreted as the same

particle, namely, the 3− state cū, while this interpretation is
favored by Refs. [15,26–28]. Then there are still four natural
parity resonances, D∗(2600)0, D∗(2650)0, D∗

1(2680)0 and
D∗

1(2760)0 in the mass range of 2.6–2.8 GeV. In the tradi-
tional conventions of charm meson spectroscopy, these four
resonances should correspond the 23S1 and 13D1 states cū or
mixtures of them.

These newly observed charm resonances have also been
studied with the 23S1, 13D1 assignments or the 2S–1D mix-
ing scheme in theory by several models, including the non-
relativistic quark model [21,27], the heavy quark effective
theory [28,29], the effective Lagrangian approach based on
heavy quark chiral symmetry [30], the Eichten–Hill–Quigg
(EHQ) decay formula [15,24] and the quark pair creation
(QPC) model [23,31–34]. However, the current theoretical
calculations for these higher mass charmed mesons cannot
be well consistent with the experimental data. We find the
calculated ratio RD+[D∗(2600)0] for taking it as the 23S1

state is usually greater than the experimental value Eq. (3)
[27–30,32], while Ref. [30] argues that no quantum number
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assignments for a pure state at mass 2600 MeV is able to
reproduce the experimental ratio.

Generally, all the physical mesons have definite J P spin–
parity or J PC for quarkonia. In the relativistic situations,
the spin S and orbital angular momentum L are no longer
the good quantum numbers, and the physical states are not
always located in the definite 2S+1L J states. This situations
become obvious in the 1+ and 1− mesons, for the 1+ states
we always have to make the 1P1–3P1 mixing to fit the phys-
ical states [35,36], while for the 1− states the 23S1–13D1

mixing is needed to fit the experimental measurements [37].
So in a more effective and appropriate method to describe
the bound state, we should focus on the J P(C), which are
the good quantum numbers in any case. In principal, if we
use a full relativistic method to solve the eigenstate problem
of the bound mesons with definite J P(C), we do not need
mixing to fit the data. We have tried this by the BS method
in a previous work to study the state D∗

s1(2700) [38], based
on the BS wave function constructed directly from the quan-
tum number J P = 1−. The Salpeter wave functions of 1−
states were given, and by solving the full Salpeter equations,
we obtain the eigenstates for cs̄ and find that all the states
include both S and D-wave components. The first state is 1S
dominant, while D-wave components can be ignored. The
second state is 2S dominant, which is the first radial excited
state. The third state, which is the second radial excited state,
is predominant by 1D components. But our previous results,
including the mass spectra and decays, cannot fit the data very
well. The reason is that we also make some approximations.
The first is the instantaneous approximation, which assumes
the potential is static, since the four-dimensional BS equa-
tion with non-static potential is quite difficult. The second
is the interaction kernel, where we choose the Coulomb-like
plus linear potential. The Coulomb potential comes from the
single-gluon exchange, where we only keep the first order
of QCD interaction. Also the linear confinement potential
is introduced by phenomenological analysis. Since the BS
equation is an integral equation, the kernel includes all the
ladder diagram contributions but not the cross diagrams and
the annihilation diagrams. These approximations have some
effects in diagonalizing the mass matrix. So our method is not
a full theory and not a full relativistic method, and it cannot
exactly fit the experimental measurements. To overcome this
discrepancy, we will make a further mixing to fit the phys-
ical states. In this study, we will give a continuous study of
these 1− states open charm mesons. We make a further mix-
ing by the second and third radial excited states. Our mix-
ing angle may be smaller than other non-relativistic methods
since some relativistic corrections have already been kept in.

In this research, we will calculate the Okubo–Zweig–
Iizuka (OZI) allowed strong decays of these potential 1−
charm–strange mesons, D∗

s1(2700), D∗
s1(2860), and the neu-

tral charm meson D∗(2600), D∗(2650), D∗
1(2680), and

D∗
1(2760), where the charge superscripts “+” and “0” are

omitted for brevity here and also in the following context.
We will focus on the further 23S1–13D1 mixing scheme to
discuss the assignments for these resonances, and the BaBar
measured ratios Eqs. (1) and (3) are used to restrict the mix-
ing angle. This is studied within the framework of the instan-
taneous Bethe–Salpeter methods [39,40]. The BS methods
have been widely used and showed good performance in the
strong decays of heavy mesons [41–44], semi-leptonic and
non-leptonic decays [45–47], decay constants calculations
and annihilation rates [48–50] etc.

The manuscript is organized as follows: in Sect. 2 we give
the theoretical formalisms of the strong decays by BS meth-
ods; then in Sect. 3 the numerical results and detailed dis-
cusses are present; finally, we give a brief summary and con-
clusion as regards this work.

2 Theoretical calculations

In this section first we give a brief review on the calculations
of transition matrix element and BS methods; then the 1−
state Salpeter wave functions are presented.

2.1 Transition matrix element

The Feynman diagram for strong decays of charmed meson
is showed in Fig. 1, where we use the subscripts 1 and 2 to
denote the final charmed meson and light meson, respec-
tively. By using the reduction formula, the transition matrix
element for the decay D∗

s → D(∗)K can be written as [41]

〈D(∗)(P1)K (P2)|D∗
s (P)〉 =

∫
d4xe−i P2·x (M2

2 − P2
2 )

×〈D(∗)(P1)|Φ2(x)|D∗
s (P)〉,

(4)

where P , P1 and P2 denote the momenta of the initial state
D∗
s , final charmed meson D(∗) and the final light meson K ,

respectively (see Fig. 1); M2 is the mass of the final light
meson. Φ2(x) is used to describe the light scalar meson field.
The partially conserved axial current (PCAC) relation reads

Φ2(x) = 1

M2
2 F2

∂μ(s̄�μq), (5)

where F2 is the decay constant of the light scalar meson;
q = u or d corresponds to the K+ and K 0, respectively;
the abbreviation �μ = γ μγ 5 is used. Inserting the PCAC
relation into Eq. (4), with the low energy theorem, Eq. (4)
can be expressed as
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〈D(∗)(P1)K (P2)|D∗
s (P)〉

= (2π)4δ4(P − P1 − P2)

× −i Pμ
2

F2
〈D(∗)(P1)|s̄�μq|D∗

s (P)〉. (6)

Then the decay amplitude M can be described by

M = Pμ
2

F2
〈D(∗)(P1)|s̄�μq|D∗

s (P)〉, (7)

where the transition matrix element 〈D(∗)(P1)|s̄�μq|D∗
s (P)〉

can be calculated by the Salpeter method and will be derived
in next subsection. The decay width � is then expressed by

� = 1

8π
〈|M|2〉 | �P1|

M2 , (8)

where | �P1| = 1
2M

√
λ(M, M1, M2) and the Källén function

λ(a, b, c) = (a2 + b2 + c2 − 2ab − 2bc − 2ac) is used;
〈|M|2〉 stands for the average over initial spins and sum over
final spins.

When the light meson is η, η–η′ mixing should be consid-
ered. In this work we use the following mixing conventions:

[
η

η′
]

=
[

cos θη sin θη

− sin θη cos θη

] [
η8

η1

]
. (9)

η8 and η1 are the SU(3) octet and singlet states, respectively.
We use the mixing angle θη = 19◦. To include this mixing
effect, the PCAC relation reads

Φη(x) = cos θηΦη8(x) + sin θηΦη1(x)

= cos θη

M2
η8

fη8

∂μ

(
ū�μu + d̄�μd − 2s̄�μs√

6

)

+ sin θη

M2
η1

fη1

∂μ

(
ū�μu + d̄�μd + s̄�μs√

3

)

=
[

−2 cos θη√
6M2

η8
fη8

+ sin θη√
3M2

η0
fη0

]
∂μ(s̄�μs) (10)

where in the last step we have only kept the s̄�μs part, since
the others have no contribution here; fη8 and fη1 are the
corresponding decay constants of η8 and η1, respectively.

When the π0 is involved in the final states, the PCAC
relation reads

Φπ0(x) = 1

M2
π0 fπ

∂μ

(
ū�μu − d̄�μd√

2

)

= 1√
2M2

π0 fπ
∂μ(ū�μu) (11)

Again we have only kept the contributory part.

M,P

p1

m1

p1

m1

p2

m2

p2

m2

M1, P1

M2, P2

Fig. 1 Feynman diagram for two body strong decay of D∗
(s). m1 =

m′
1 = mc, is the constituent mass of the c quark. M2 and P2 denote the

mass and momentum of the final light meson, respectively

2.2 Transition matrix element with Salpeter wave function

In this subsection we briefly review the BS methods. The BS
equation is a four-dimensional integral equation, which reads
in momentum space [39]

(/p1 − m1)�(q)(/p2 + m2) = ı̇
∫

d4k

(2π)4 V (q − k)�(k),

(12)

where�(q) is the four-dimensional BS wave function;V (q−
k) stands for the BS interaction kernel; p1 and p2 are the
quark and anti-quark momenta, respectively, while m1 and
m2 are the corresponding masses (see Fig. 1). It is more
convenient to express the p1 and p2 with the total momentum
P and the inner relative momentum q as

p1 = α1P + q, p2 = α2P − q. (13)

αi (i = 1, 2) is defined as αi ≡ mi
m1+m2

. The Salpeter wave
function ϕ(q⊥) is related to the BS wave function �(q) by
the following definition:

ϕ(q⊥) ≡ i
∫

dqP
2π

�(q),

η(q⊥) ≡
∫

d3k⊥
(2π)3 ϕ(k⊥)V (|q⊥ − k⊥|), (14)

where qP = P·q
M and q⊥ = q− P

M qP , in the rest frame of the
initial meson they correspond to q0 and �q , respectively; the
three-dimensional integration η(q⊥) can be understood as the
BS vertex for bound states; V (|q⊥ −k⊥|) denotes the instan-
taneous interaction kernel, namely, the inner interaction are
assumed to be a static potential. As usual, in this work, the
specific interaction kernel V (r) we use is the Coulomb-like
potential plus the unquenched scalar confinement one [48],
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V (r) = Vs(r) + V0 + γ0 ⊗ γ 0Vv(r)

= λ

α
(1 − e−αr ) + V0 − γ0 ⊗ γ 0 4

3

αs

r
e−αr , (15)

where λ is the string constant, αs(r) is the running strong
coupling constant, and V0 is a free constant fixed by fitting
the data. By Fourier transformation, the potential V (�q ) in
momentum space reads

V (�q ) = −
(

λ

α
+ V0

)
(2π)3δ3(�q ) + (2π)3 λ

π2

1

(�q 2 + α2)2

−γ0 ⊗ γ 0(2π)3 2

3π2

αs(�q )

(�q 2 + α2)
, (16)

where the running coupling constant αs(�q ) = 12π
27

1
log(a+�q 2/�2

QCD)
. It is clear to see that here we did not include

the spin structure in the interaction kernel V (�q ). In fact,
the effects from the spin and orbital angular momentum are
incorporated in the construction of wave functions, which are
discussed more detailed in the next subsection on the Salpeter
wave functions. And also in the Coulomb vector potential,
we have only kept the temporal component and omitted the
spatial components, which are suppressed by a factor of 1/c
for the heavy–light systems in the Coulomb gauge, as stated
in Ref. [51]. On the other hand, a full vector γ μ ⊗ γμ inter-
action kernel would also cause the calculations to be much
more complicated. So, in a preliminary study, we only keep
the time component of the Coulomb vector potential.

Then under the instantaneous approximation, the BS equa-
tion (12) can be written as

�(q) = S(p1)η(q⊥)S(−p2). (17)

S(p1) and S(−p2) are the propagators for the quark and anti-
quark, respectively, and they can be decomposed as

S(+p1) = ı̇�+
1

qP+α1M−ω1+ı̇ε + ı̇�−
1

qP+α1M+ω1−ı̇ε ,

S(−p2) = ı̇�+
2

qP−α2M+ω2−ı̇ε + ı̇�−
2

qP+α2M−ω2+ı̇ε , (18)

where ωi =
√
m2

i − q2⊥ (i = 1, 2). �±
i (q⊥) (i = 1, 2) are

the projection operators, which have the following forms:

�±
i (q⊥) = 1

2ωi

[
/P

M
ωi ± (−1)i+1(mi + /q⊥)

]
. (19)

It can easily be checked that the projection operators satisfy
the following relations:

�+
i (q⊥) + �−

i (q⊥) = /P

M
,

�±
i (q⊥)

/P

M
�±

i (q⊥) = �±
i (q⊥),

�±
i (q⊥)

/P

M
�∓

i (q⊥) = 0. (20)

Since the BS kernel is assumed to be instantaneous, we
can perform a contour integration over qP on both sides of

Eq. (17), then we obtain the Salpeter equation:

ϕ(q⊥) = �+
1 (q⊥)η(q⊥)�+

2 (q⊥)

(M − ω1 − ω2)

− �−
1 (q⊥)η(q⊥)�−

2 (q⊥)

(M + ω1 + ω2)
. (21)

To make a further simplification, we introduce four new wave
functions ϕ±±(q⊥) with the definitions

ϕ±±(q⊥) = �±
i (q⊥)

/P

M
ϕ(q⊥)

/P

M
�±

i (q⊥), (22)

where ϕ++ is then called the positive Salpeter wave function,
while ϕ−− is called the negative Salpeter wave function.

Then with the help of Eq. (20), the Salpeter equation (21)
can be further expressed as the following four coupled equa-
tions [40]:

ϕ+−(q⊥) = ϕ−+(q⊥) = 0, (23)

(M − ω1 − ω2)ϕ
++(q⊥) = +�+

1 (q⊥)η(q⊥)�+
2 (q⊥),

(24)

(M + ω1 + ω2)ϕ
−−(q⊥) = −�−

1 (q⊥)η(q⊥)�−
2 (q⊥).

(25)

From the above equations, we can see that in the weak bind-
ing condition, namely, M ∼ (ω1 +ω2), ϕ−− is much smaller
compared with ϕ++ and can be ignored in the calculations.
However, these four equations play equivalent roles in solv-
ing the eigenstate problem. The normalization condition for
the Salpeter wave function reads
∫

d3q⊥
(2π)3

[
ϕ++ /P

M
ϕ++ /P

M
− ϕ−− /P

M
ϕ−− /P

M

]
= 2M.

(26)

According to Mandelstam formalism [52], the transition
matrix element 〈D(∗)(P1)|s̄�μq|D∗

s (P)〉 can be expressed as

〈D(∗)(P1)|s̄�μq|D∗
s (P)〉

�
∫

d3 �q
(2π)3 Tr

[
ϕ̄′++
P1

(|�q ′|) /P

M
ϕ++
P (|�q |)�μ

]
, (27)

where ϕ̄′++
P1

is defined as γ 0(ϕ′++
P1

)†γ 0, and ϕ′++
P1

is the
positive Salpeter wave function of the final state; �q ′ =
�q − m′

1
m′

1+m′
2

�P1; m′
1 and m′

2 are the constituent quark and anti-

quark masses in the final charmed meson (see Fig. 1). To
achieve a final result, we still need to know the specific form
of the corresponding Salpeter wave functions.

2.3 Relativistic Salpeter wave function

The Salpeter wave functions involved in these calculations
include the 0−, 1− and 1+ states, which correspond to the
1S0, 3S1(

3D1) and 1P1(
3P1) states within the non-relativistic
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models. The Salpeter wave function of 0− state can be found
in Ref. [53]. Here we only give the 1− state Salpeter wave
function. The 3S1 and 3D1 states share the same spin–parity
J P = 1−. We rewrite the Salpeter wave function for the 1−
states [48] thus:

ϕ(1−)

= q⊥·ξ
|�q |

(
f1 + f2

/P

M
+ f3

/q⊥
|�q | + f4

/P/q⊥
M |�q |

)

+ i
εμPq⊥ξ

M |�q | γ μ

×
(
f5

/P/q⊥
M |�q | + f6

/q⊥
|�q | + f7

/P

M
+ f8

)
γ 5, (28)

where fi (i = 1, 2, . . . , 8) are the radial wave functions;
εμPq⊥ξ = εμναβ Pνqα⊥ξβ and εμναβ is the totally antisym-
metric Levi-Civita tensor; ξ denotes the polarization vec-
tor for initial state and fulfills P · ξ = 0,

∑
ξ

(r)
μ ξ

(r)
ν =

PμPν

M2 − gμν . By using the Salpeter equations (23), we obtain
the following four constraint conditions:

f1 = − |�q |(ω1 + ω2)

m1ω2 + m2ω1
f3, f7 = |�q |(ω1 − ω2)

m1ω2 + m2ω1
f5,

f2 = − |�q |(ω1 − ω2)

m1ω2 + m2ω1
f4, f8 = |�q |(ω1 + ω2)

m1ω2 + m2ω1
f6, (29)

which leave us with four independent wave functions
f3, f4, f5 and f6, only depending on |�q | directly. ωi is

defined as
√
m2

i + �q 2 (i = 1, 2). It can be easily checked that,
with the above Salpeter wave function, every item in Eq. (28)
has the same quantum number, J P = 1−, which is directly
related to the quantum number 2S+1L J of the bound states
and contain the 3S1 and 1D1 information naturally. Hence the
information from the spin structures is incorporated in the
spatial parts of the Salpeter wave function. Notice that this
wave function form and constraint conditions for 1− state
are not exactly the same as in Ref. [48]; however, it can be
proved that the two forms are totally equivalent.

According to the definitions of Eq. (22), the positive
Salpeter wave function ϕ++ for 1− state is then expressed as

ϕ++(1−) = q⊥·ξ
|�q |

(
A1 + A2

/P

M
+ A3

/q⊥
|�q | + A4

/P/q⊥
M |�q |

)

+ i
εμPq⊥ξ

M |�q | γ μ

(
A5 + A6

/P

M
+ A7

/q⊥
|�q | + A8

/P/q⊥
M |�q |

)
γ 5.

(30)

And the corresponding coefficients Ai are

A1 = −q(ω1+ω2)
(m1ω2+m2ω1)

A3,

A2 = −q(ω1−ω2)
(m1ω2+m2ω1)

A4,

A3 = 1
2

(
f3 + m1+m2

ω1+ω2
f4

)
,

A4 = 1
2

(
f4 + ω1+ω2

m1+m2
f3

)
,

A5 = q(ω1+ω2)
m1ω2+m2ω1

A7,

A6 = q(ω1−ω2)
m1ω2+m2ω1

A8,

A7 = 1
2

(
f6 − m1+m2

ω1+ω2
f5

)
,

A8 = 1
2

(
f5 − ω1+ω2

m1+m2
f6

)
.

(31)

The negative Salpeter wave function ϕ−− can be obtained
similarly or by ϕ−− = ϕ − ϕ++. Then inserting the expres-
sions of ϕ++ and ϕ−− into the coupled Salpeter equations
(24) and (25), we obtain the radial eigenvalue equations,
which can be solved numerically. The normalization con-
dition for the 1− state Salpeter wave functions now becomes
∫

d3 �q
(2π)3

8ω1ω2

3M(m1ω2 + m2ω1)
( f3 f4 − 2 f5 f6) = 1. (32)

The interested reader can find a more detailed procedure for
solving the full Salpeter equations in our previous work [46,
53–55].

By solving the Salpeter equations, finally we obtain these
eight radial wave functions numerically, which are showed
in Fig. 2. Figure 2a shows the eight radial wave functions
of the first radial excited state, and Fig. 2b shows the radial
wave functions of the second radial excited state. From the
two diagrams, also considering that in Eq. (28), the direction
of momentum /q⊥ has a contribution to the S or D wave
[56], we can conclude that both the first and the second radial
excited states have S and D wave components, while the first
radial excited state is 23S1 predominant and the second radial
excited state is a 13D1 dominant state, as has been stated in
Ref. [57].

Since the decay final states include the 1+ meson, we show
our treatment of their wave functions. Generally, the bound
state mesons consisting of unequal masses of quark and anti-
quark do not have a definite charge conjugation parity. So the
physical 1+ states D1 and D′

1 can be considered as admix-
tures of 1++ (3P1) and 1+− (1P1) states. Here we will follow
the mixing conventions in Refs. [58,59], where the mixing
form for the 1+ states is defined by the mixing angle α1P :

[|D1〉
|D′

1〉
]

=
[

cos α1P sin α1P

− sin α1P cos α1P

] [|1+−〉
|1++〉

]
. (33)

The heavy quark effective theory predicts that, in the limit
mQ → ∞, the mixing angle for 1+ states are expressed as
α1P = arctan

√
1/2 = 35.3◦. This result will be used in the

strong decay calculations when D(′)
1 mesons are involved in

the final states. The Salpeter wave functions for the 1+− and
1++ states can be found in Ref. [60].

Having these numerical Salpeter wave functions, we can
calculate the three-dimensional integral of the transition
matrix element 〈D(∗)(P1)|s̄�μq|D∗

s (P)〉 in Eq. (27). The
detailed information on performing this integral can be found
in our previous work [43,47].

3 Numerical results and discussions

First we specify the corresponding parameters used in this
work. The decay constants we used are fπ = 130.4 MeV,

123



Eur. Phys. J. C (2017) 77 :297 Page 7 of 13 297

   GeVq
0 0.5 1 1.5 2 2.5

-1
B

S 
w

av
e 

fu
nc

tio
n 

G
eV

5−

0

5

10

15

20 1  -f
2  -f
3   f
4   f
5   f
6  -f
7   f
8  -f

(a) BS radial wave functions for the first radial excited
state of D∗

s1.
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(b) BS radial wave functions for the second radial excited
state of D∗

s1.

Fig. 2 BS wave function for 1− radial excited states of D∗
s1 mesons

fK = 156 MeV [7], fη8 = 1.26 fπ and fη1 = 1.07 fπ . The
mixing angle θ between η–η′ we choose is θη = 19◦ with the
mixing convention in Eq. (9). The other involved parameters
are from PDG data [7] unless otherwise specified. The con-
stituent quark masses and other parameters to characterize
the model are

a = e = 2.7183, α = 0.060 GeV, λ = 0.210 GeV2

�QCD = 0.270 GeV, mu =0.305 GeV, md = 0.311 GeV,

ms = 0.500 GeV, mc=1.620 GeV, mb = 4.960 GeV,

which are determined by fitting the mass spectra to the avail-
able experimental data [26,61–66]. This set of parameters has
been widely used since 2010 in the strong decays of heavy
mesons [42–44], semi-leptonic and non-leptonic decays [45–
47], and annihilation rates [50] etc. Good performance and
consistence with experiments are achieved.

The free parameter V0 is fixed by fitting the mass eigen-
value to the experimental value. We get V0 is 0.14 GeV
for 1− charm–strange mesons, while V0 ranges in −(0.10–
0.54) GeV when taking D∗(2600), D∗(2650), D∗

1(2680) or
D∗(2760)1 as the 23S1 state cū.

3.1 1− charm–strange mesons

D∗
s1(2700) and D∗

s1(2860) share the spin–parity J P = 1−
determined by experiments. In the first place, we take them
as the pure first and second radial excited states, which are
dominant by 23S1 and 13D1, respectively. So in this work we
still label the first radial excited state as 23S1 and the second
excited state by 13D1. The calculated main strong decays
properties are listed in Table 2.

From Table 2 we can see that, for D∗
s1(2700), neither

the 23S1 nor the 13D1 assignment can produce the exper-

Table 2 Decay widths of D∗
s1(2710) and D∗

s1(2860) as the 23S1 and
13D1 dominant cs̄ states in MeV

Mode 2 3S1 13D1

D∗
s1(2700) D∗

s1(2860) D∗
s1(2700) D∗

s1(2860)

D∗0K+ 27.5 50.0 6.4 13.0

D0K+ 17.8 20.8 28.1 38.4

D∗+K 0 26.6 49.8 6.1 12.7

D+K 0 17.8 21.3 7.5 38.4

D∗+
s η 0.9 7.6 0.1 1.3

D+
s η 2.8 6.0 3.1 7.2

Total 93.4 155.5 51.3 111
B(D∗K )
B(DK )

1.52 2.37 0.35 0.33

imental ratio RK [D∗
s1(2700)] = 0.91, though the 23S1 and

13D1 assignments to D∗
s1(2700) and D∗

s1(2860), respectively,
are roughly consistent with the experimental measurements.
Also notice that the total width is only the half of experi-
mental value when taking D∗

s1(2700) as the 13D1 state. So
these assignments cannot produce experimental data. One
also notes that the predicted total decay widths in this paper
are larger than our previous calculation [38]; the reason is that
we have chosen different D∗

s1(2700) mass as input, besides
the difference of phase space, and the node structure of the 2S
state also has a sensitive effect due to the variance of phase
space.

Then we introduce the further 23S1–13D1 mixing scheme
in the 1− charm–strange system. The mixing form we used
is defined by

[|D∗
sa〉

|D∗
sb〉

]
=

[
cos θs sin θs

− sin θs cos θs

] [ |23S1〉
|13D1〉

]
, (34)
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and the mixing states D∗
sa and D∗

sb correspond to D∗
s1(2700)

and D∗
s1(2860), respectively. To get the experimental branch-

ing ratio RK [D∗
s1(2700)] = 0.91−0.18

+0.18, we obtain the mixing

angle θs = (8.7+3.9
−3.2)

◦. Also the relations between original
masses and physical masses are determined by the following
equation [45,67]:

[
m2

2S
m2

1D

]
=

[
c2 s2

s2 c2

][
m2

D∗
s1(2700)

m2
D∗
s1(2860)

]
, (35)

where c = cos θs and s = sin θs. We achieve m2S =
2.714+0.003

−0.003 and m1D = 2.857−0.004
+0.002 GeV, respectively. The

errors in experimental ratio RK [D∗
s1(2700)] are combined

in quadrature for simplicity. The uncertainties in our mixing
angle θs and other obtained results are induced by varying
the experimental ratio RK [D∗

s1(2700)] in the 1σ range.
The decay properties with 2S–1D mixing are listed in

Table 3. The total width for D∗
s1(2700) is about 100.8 MeV,

which agrees well with the experimental measurement � =
117 ± 13 MeV [7]. Our results are also consistent with that
in Ref. [23], where the mixing angle is about 6.8◦–11.2◦
and the calculated �[D∗

s1(2700)] is about 100 MeV. With
the obtained mixing angle, the total width for D∗

s1(2860)

we obtain is 108.8 MeV, which is also comparable with the
LHCb result �[D∗

s (2860)] = 159 ± 80.3 MeV, but less than
the result ∼300 MeV in Ref. [23]. Furthermore, the predicted
ratio RK [D∗

s1(2860)] = 0.62, which is also consistent with
the result 0.6–0.8 in Refs. [17,23,24] and could be used to test
this 23S1–13D1 mixing scheme in the future measurements.
The comparisons of our results with other predictions can be
found in Table 4.

If we do not restrict the mass of the 23S1 state to be less
than that of the 13D1 state, we can obtain another large mixing
angle, θs � −77◦, which could also reproduce the experi-
ment ratio RK [D∗

s1(2710)] = 0.91. With this mixing angle,
we find that the masses before mixing arem2S = 2.852+0.003

−0.002

Table 3 Decay widths in MeV for D∗
s1(2700) and D∗

s1(2860) under the
further 23S1–13D1 mixing. The mixing angle θs is in units of degrees

θs 8.7+3.9
−3.2 −(76.9+2.2

−1.8)

Mode D∗+
s1 (2700) D∗+

s1 (2860) D∗+
s1 (2700) D∗+

s1 (2860)

D∗0K+ 23.3−2.1
+1.5 19.6+3.2

−2.5 14.9−1.5
+1.3 36.1+2.7

−2.1

D0K+ 25.2+3.5
−2.8 31.2−3.6

+2.7 16.2+1.9
−1.4 32.7−1.8

+1.6

D∗+K 0 22.5−1.9
+1.5 19.3+3.2

−2.5 14.3−1.5
+1.3 36.1+2.6

−2.1

D+K 0 25.2+3.3
−2.8 31.1−3.6

+2.8 15.9+1.8
−1.5 33.3−1.8

+1.6

D∗+
s η 0.8−0.1

+0.0 2.1+0.4
−0.3 0.4−0.1

+0.0 5.7+0.4
−0.2

D+
s η 3.8+0.4

−0.4 5.5−0.7
+0.6 1.6+0.2

−0.2 8.6−0.3
+0.4

Total 100.8+3.1
−3.0 108.8−1.1

+0.8 63.3+0.8
−0.5 152.3+1.8

−0.8
B(D∗K )
B(DK )

0.91−0.18
+0.18 0.62+0.22

−0.12 0.91−0.18
+0.18 1.09+0.15

−0.11

and m1D = 2.718−0.002
+0.002 GeV, respectively. The strong

decay properties are also listed in Table 3. In such a case,
�[D∗

s1(2700)] is ∼63 MeV, which is about the half of the
experimental value; the total width for its orthogonal partner
D∗
s1(2860) is about 150 MeV; the ratio RK [D∗

s1(2860)] is
1.09. References [19–21] also obtained a large mixing angle
−(57–77)◦. We notice that in Ref. [18] a large mixing angle
is also obtained, although in the latter work [22] the authors
denied this possibility.

As a short summary, based on our results of the strong
decays, we find that the 23S1–13D1 mixing scheme with a
small mixing angle θs � 8.7◦ can well describe the observed
D∗
s1(2700) and D∗

s1(2860). The weak mixing between 23S1

and 13D1 charm–strange mesons is also favored by Refs.
[15,22–24].

3.2 1− charm mesons

As just stated in the introduction, there are four potential
1− resonances observed in the experiments recently, namely,
D∗(2600) [3], D∗(2650) [5], D∗

1(2680) [10] and D∗
1(2760)

[9]. The discrepancies among these current experimental data
make the classifications more complicated than that for the
corresponding charm–strange mesons. LHCb reported two
1− states charm mesons, D∗

1(2760) [9] and D∗
1(2680) [10].

The two resonances have the spin–parity J P = 1−. The
detected total widths are almost the same, while the mass dif-
ferences are ∼100 MeV. Besides the two spin–parity deter-
mined 1− states cū, there are still two natural parity charm
mesons D∗(2600) [3] and D∗(2650) [5], whose masses are
located in the mass region of the 23S1 state cū predicted by
the GI model [11,12]. However, the measured total widths
of D∗(2600) and D∗(2650) are inconsistent by ∼50 MeV.

Above all, we calculate the strong decay properties by
taking all these four resonances as the 23S1 or 13D1 state
cū. The obtained results are listed in Table 5. We can see
that, when taking D∗(2600) as the 23S1 state, both the total
widths and ratio RD+[D∗(2600)] are comparable with the
BaBar measurements, 93 MeV and 0.32 [3]. For the other
three resonances, only the total widths can be used to com-
pare with experiments. From the calculated total widths, we
can only make rough judgments, both the 23S1 and 13D1

assignments seem reasonable for D∗(2650) and D∗
1(2680),

while also considering the mass predictions [11,12] they are
more likely to be the 23S1 states. Taking D∗

1(2760) as the
13D1 state cū gives the width ∼290 MeV, which is about
100 MeV larger than the LHCb measurement ∼180 MeV [9].
We also find that the decay channel D+

1 π− becomes quite
important in the decay of the 13D1 state, hence we define the

ratio RD+
1

= �(D+
1 π−)

�(D∗+π−)
. This ratio is quite sensitive to the

assignments of 23S1 or 13D1. All in all, for the identification
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Table 4 Comparisons with
other references when taking
D∗
s1(2700) and D∗

s1(2860) as
the mixtures of 23S1–13D1 cs̄.
Decay width � is in units of
MeV and the mixing angle θs is
in units of degrees

Mode Exp. This Ref. [21] Ref. [23] Ref. [24]

θs – 8.7+3.9
−3.2 −(61–77) 6.8–11.2 −(4–16)

�D∗
s1(2700) 117 ± 13 100.8+3.1

−3.0 180–198 ∼100 ∼(210–220)

RK [D∗(2700)] 0.91 ± 0.18 0.91−0.18
+0.18 1.16–0.66 ∼0.91 ∼(1.35–0.69)

�D∗
s1(2860) 159 ± 80 108.8−1.1

+0.8 40–70 ∼300 ∼(120–150)

RK [D∗
s1(2860)] – 0.62+0.22

−0.12 0.04–2.71 0.6–0.8 0.31–1.16

Table 5 Decay properties of D∗(2600), D∗(2650), D∗
1 (2680) and D∗

1 (2760) as the 23S1 or 13D1 dominant cū states in unit of MeV

Mode 2 3S1 13D1

D∗(2600) D∗(2650) D∗
1 (2680) D∗

1 (2760) D∗(2600) D∗(2650) D∗
1 (2680) D∗

1 (2760)

D∗0π0 12.6 15.3 17.4 25.5 2.9 3.6 4.2 5.8

D0π0 6.7 7.4 7.9 8.6 13.6 15.7 17.3 23.2

D∗+π− 24.8 30.3 34.6 51.0 5.5 7.0 8.2 11.3

D+π− 13.5 15.0 16.0 17.5 26.6 30.8 34.0 46.1

D∗+
s K− 0.1 2.1 4.8 20.0 0 0.2 0.6 2.2

D+
s K− 5.4 7.9 10.0 16.6 5.5 8.4 10.9 22.1

D∗0η 1.6 3.6 5.2 11.5 0.3 0.7 1.0 2.2

D0η 3.7 4.5 5.0 5.9 5.3 6.8 7.9 12.0

D0
1π0 0.1 0.4 0.8 4.4 13.0 22.6 30.5 55.5

D+
1 π− 0.1 0.6 1.4 8.3 23.6 42.9 58.6 109.1

D′0
1 π0 0.7 0.6 0.3 0.7 0 0.002 0.005 0.04

D′+
1 π− 1.4 1.2 0.7 1.2 0 0.004 0.008 0.07

Total 70.7 88.9 104.1 171.2 96.3 138.7 173.2 289.6
�(D+π−)
�(D∗+π−)

0.54 0.50 0.46 0.34 4.84 4.40 4.15 4.08

�(D+
1 π−)

�(D∗+π−)
0.004 0.02 0.04 0.16 4.3 6.1 3.7 9.7

of these excited 1− resonances, the consistent measurements
from experiments are necessary and pivotal.

D∗(2600) seems consistent with the 23S1 assignment,
while the predicted ratio �(D+π−)

�(D∗+π−)
= 0.54 is a little larger

than the BaBar measurement of 0.32 [3]. This small discrep-
ancy between theoretical and experimental results is a hint
that there exists a small mixing between the 23S1 and 13D1

states. The physical quantity RD+[D∗(2600)] can behave
as a good restriction to the mixing angle, just as in the 1−
charm–strange systems. Then again we introduce the 23S1–
13D1 mixing scheme as

[|D∗
a〉

|D∗
b〉

]
=

[
cos θu sin θu

− sin θu cos θu

] [ |23S1〉
|13D1〉

]
. (36)

At first, we take D∗(2600) as the 1− state cū domi-
nant by 2 3S1 components, while D∗(2650) as the orthog-
onal partner of D∗(2600). To fix the ratio RD+[D∗(2600)]
at BaBar’s measurement 0.32−0.09

+0.09 [3], we obtain the mixing

angle θu = −(7.5+4.0
−3.3)

◦. The theoretical uncertainties are
induced by varying the experimental ratio RD+[D∗(2600)]

in the 1σ range of its central value. Our results reveal that
the mixing angle θu is not sensitive to the mass of D∗

b . When
mD∗

b
ranges from 2.65 to 2.78 GeV, the variation of the mix-

ing angle is about 0.1◦. So we will ignore this tiny difference
in the following statements. The partial decay widths are
listed in Table 6, where D∗(2650), D∗(2680) or D∗

1(2760)

is taken as the orthogonal partner of D∗(2600). The depen-
dence of �D∗

b
and ratio RD+(D∗

b) over the mass of D∗
b can

be seen in Fig. 3, where we let mD∗
b

range from 2.65 to
2.78 GeV. It can be seen clearly in Fig. 3a that the correspond-
ing �D∗

b
increases from about 140–290 MeV. The predicted

ratio RD+[D∗
b ] decreases from 9.4 to 6.8, which is displayed

in Fig. 3b. The calculated total width �D∗(2600) = 66 MeV
is comparable with BaBar’s measurement 93 MeV [3], while
�D∗

b
is located in the range 142–291 MeV when mD∗

b
varies

from 2.65 to 2.78 GeV.
Certainly, several other mixing schemes and correspond-

ing assignments are still possible, however, there is no exper-
imental ratio like RD+[D∗(2600)] for D∗(2650), D∗

1(2680)

or D∗
1(2760) to restrict the mixing angle. In Table 7, the

decay properties are displayed when taking D∗(2650) as the
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Table 6 The strong decay properties with the further 23S1–13D1 mix-
ing scheme, where D∗(2600) is taken as the D∗

a state and D∗(2650),
D∗

1 (2680) or D∗
1 (2760) is taken as the D∗

b state. The unit for decay
width is in MeV. The obtained mixing angle θu = −(7.5+4.0

−3.3)
◦ when

the ratio RD+[D∗(2600)] ranges in 1σ

Mode m[D∗
a ] m[D∗

b ]
2610 2650 2680 2780

D∗0π0 14.0+0.7
−0.6 2.0−0.7

+0.7 2.4−0.7
+0.8 3.7−0.9

+0.9

D0π0 4.4−1.1
+1.0 18.1+1.1

−1.1 19.7+1.0
−1.0 25.3+0.8

−0.8

D∗+π− 27.6+0.2
−1.2 3.8−1.3

+1.4 4.7−1.5
+1.5 7.3−1.9

+1.7

D+π− 8.8−2.2
+2.0 35.6+2.2

−2.0 38.8+2.2
−2.0 50.4+1.7

−1.8

D∗+
s K− 0.1+0

−0 0.1−0.1
+0.1 0.3−0.2

+0.1 1.1−0.4
+0.5

D+
s K− 4.0−0.7

+0.6 10.3+1.0
−0.8 13.3+1.2

−1.0 25.6+1.7
−1.4

D∗0η 1.8+0.0
−0.0 0.3−0.1

+0.0 0.5−0.1
+0.1 1.2−0.2

+0.2

D0η 2.6−0.3
+0.2 8.1+0.3

−0.3 9.4+0.4
−0.3 13.6+0.3

−0.4

D0
1π0 0.4+0.4

−0.4 22.1−0.6
+0.3 29.7−0.7

+0.5 54.8−1.1
+0.5

D+
1 π− 0.7+0.7

−0.3 41.9−1.2
+0.6 57.2−1.5

+0.8 107.5−2.2
+1.1

D′0
1 π0 0.7−0.02

+0.01 0.02+0.03
−0.01 0.03+0.02

−0.02 0.04+0.01
−0.0

D′+
1 π− 1.3−0.0

+0.1 0.05+0.05
−0.03 0.05+0.05

−0.03 0.07+0.02
−0.01

�Total 66.4−2.3
+1.4 142.4+0.7

−1.1 176.1+0.2
−0.9 290.6−2.2

+0.5
�(D+π−)
�(D∗+π−)

0.32−0.09
+0.09 9.4+5.8

−2.9 8.3+4.6
−2.3 6.9+2.7

−1.5

|D∗
a〉 state with varying mD∗

b
from 2.68 to 2.78 GeV, where

we still assume the ratio RD+[D∗(2650)] = 0.32 ± 0.09
for D∗(2650). In this case, we find the mixing angle θu =
−(6.1+4.0

−3.4)
◦, �D∗(2650) = 85.1 MeV and �D∗

b
ranges in

176–292 MeV when mD∗
b

varies from 2.68 to 2.78 GeV.
Of course, we can still take D∗

1(2680) as the |D∗
a〉 state

and D∗
1(2760) as the |D∗

b〉 state. The results should behave

similarly to the above tests, the mixing angle will even be
smaller, and the corresponding properties will behave almost
the same as under the assignments without this further mix-
ing.

The comparisons of our results with others can be found in
Table 8, where we have also listed the properties of D∗

1 (2760)

when taking it as the |D∗
b〉 state in order to make a compar-

ison. From Table 8, we can see that both our small mixing
angle and �D∗(2600) are consistent with other predictions,
except for the total width in Ref. [24], which is about 3
times larger than ours. Also it should be noticed that the ratio
RD+(D∗

b) is sensitive to the variation of the mixing angle θu.
Based on our calculations and current experimental

results, it is still difficult to make definite assignments to
the observed D∗(2600), D∗(2650), D∗

1(2680) or D∗
1(2760).

For these excited 1− charm states, D(∗)π channels are the
important decay modes for both 23S1 and 13D1 assignments,
and they can amount to (60–80) and (30–50)% of the total
widths, respectively. Besides, we can still make the following
summary:

1. Decay channels D1π become very important for 13D1

state cū and can amount to about 50% among the total
width, while these decay modes can be ignored in the
23S1 state. This feature can be used to determined the
essence of these 1− charm resonances.

2. The properties of D∗(2600) reveal that it is predomi-
nant by the 23S1 component. The BaBar measured ratio
B(D+π−)
B(D∗+π−)

[3] can be explained by a small 23S1–13D1

mixing. Our obtained mixing is about −7.5◦. This result
is consistent with that for the 1− states D∗

s1(2700) and
D∗
s1(2860), where we got a mixing angle θs = 8.7◦.

Mass   GeV
2.66 2.68 2.7 2.72 2.74 2.76 2.78

   
G

eV
Γ

140

160

180

200

220

240

260

280

(a) Total width ΓD∗
b

versus the mass.

Mass   GeV
2.66 2.68 2.7 2.72 2.74 2.76 2.78

R
at

io

7

7.5

8

8.5

9

9.5

(b) RD+(D∗
b ) versus the mass.

Fig. 3 The variation of �D∗
b

and the change of the ratio RD+ (D∗
b ) along with the mass of D∗

b , where D∗
b is the state dominant by the 13D1 component

and RD+ (D∗
b ) = �(D∗

b→D+π−)

�(D∗
b→D∗+π−)
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Table 7 The strong decay properties with the further 23S1–13D1 mixing
scheme, where D∗(2650) is taken as the D∗

a state and the mass of D∗
b

is taken as 2.68, 2.73 and 2.78 GeV, respectively. We assume that the

ratio B(D+π−)
B(D∗+π−)

= 0.32 ± 0.09, as for D∗(2600). Our obtained mixing

angle θu = −(6.1+4.0
−3.4)

◦. The unit for the decay width is MeV

Mode m[D∗
a ] m[D∗

b ]
2650 2680 2730 2780

D∗0π0 16.7+0.8
−0.7 2.6−0.8

+0.9 3.4−1.0
+1.0 3.9−1.0

+1.0

D0π0 5.2−1.3
+1.2 19.5+1.2

−1.2 22.2+1.2
−1.2 25.3+1.1

−1.1

D∗+π− 33+1.6
−1.4 5.1−1.7

+1.7 6.6−2.0
+1.9 7.7−2.1

+1.9

D+π− 10.6−2.7
+2.3 38.4+2.6

−2.3 44+2.5
−2.3 50.3+2.3

−2.2

D∗+
s K− 2.2+0.03

−0.09 0.3−0.2
+0.1 0.7−0.3

+0.4 1.2−0.5
+0.5

D+
s K− 6.2−1.1

+1.0 13+1.4
−1.1 18.6+1.6

−1.5 25.4+1.9
−1.8

D∗0η 3.9+0.1
−0.2 0.6−0.2

+0.2 1−0.3
−0.4 1.4−0.5

+0.4

D0η 3.3−0.7
+0.7 9.2+0.8

−0.7 11.3+0.8
−0.8 13.5+0.8

−0.8

D0
1π0 0.8+0.5

−0.3 29.9−0.7
+0.4 43−0.9

+0.4 55−1.0
+0.4

D+
1 π− 1.4+1.0

−0.5 57.6−1.4
+0.7 83.7−1.8

+0.9 107.9−2.0
+0.9

D′0
1 π0 0.6−0.02

+0.0 0.01+0.02
−0.0 0.02+0.01

−0.0 0.04−0.04
−0.0

D′+
1 π− 1.2+0.0

−0.0 0.03+0.03
−0.02 0.04+0.02

−0.01 0.06+0.05
+0.01

�Total 85.1−1.7
+1.9 176.2+1.0

−1.4 234.6−0.2
−0.9 291.7−0.9

−0.8
�(D+π−)
�(D∗+π−)

0.32−0.09
+0.09 7.53+4.56

−2.19 6.67+3.28
−1.76 6.53+2.89

−1.52

3. The mass of D∗
1(2760) is consistent with the prediction of

the 13D1 state cū [11,12]. If we take this assignment, the
measured total width seems too small (the LHCb result
[9] is about 100 MeV smaller than the theoretical calcu-
lation). This conclusion is also favored by the research in
Refs. [12,21,24,27,33].

4. D∗(2650) is more likely to be the 23S1 predominant state.
There is no great conflict in the total widths of the 23S1

and 13D1 assignments, while its mass is more consistent
with the 23S1 state. The ratio �(D+π−)

�(D∗+π−)
behaves quite

differently for the two assignments, which is 0.5 for the
23S1 assignment and 4.4 for the 13D1 assignment. Hence
this ratio can be used to test the essence of D∗(2650).

5. For D∗
1(2680), the situation is similar to D∗(2650). There

exists no great conflict in the total widths between the

23S1 and 13D1 assignments compared with experimental
measurements. The ratios �(D+π−)

�(D∗+π−)
are 0.46 and 4.15 for

the 23S1 and 13D1 assignments, respectively; therefore
they can be used to discern the essence of D∗

1(2680).

4 Summary

In this work, we carried out a systematical research on
the potential 1− open charm mesons, including the charm–
strange mesons D∗

s1(2700) and D∗
s1(2860), charm mesons

D∗(2600), D∗(2650), D∗
1(2680) and D∗

1(2760). The main
strong decay properties by taking these natural spin–parity
resonances as the 23S1 or 13D1 states are obtained by using
the Bethe–Salpeter method. In particularly, the further 2S–
1D mixing scheme is used to explain both the 1− charm
and charm–strange mesons. The obtained results and pre-
dicted properties can be tested in the near future experi-
ments.

Our results reveal that D∗
s1(2700) and D∗

s1(2860) can be
well described by the further 23S1–13D1 mixing scheme with
a small mixing angle (8.7+3.9

−3.2)
◦. Both the total widths and

the ratio of the corresponding partial decay widths are con-
sistent with the experimental measurements. Our predicted
ratio �(D∗K )

�(DK )
for D∗

s1(2860) is 0.62+0.22
−0.12, which could be

used to test this 2S–1D mixing scheme in the future. For the
corresponding charm mesons, since the experimental mea-
surements are not consistent with each other, the identifica-
tion and assignments are much more difficult. Based on our
results, the BaBar result for D∗(2600) [3] can be explained by
the same mixing scheme with a mixing angle of −(7.5+4.0

−3.3)
◦.

D∗(2650) [5] and D∗
1(2680) [10] are more likely 23S1 pre-

dominant states, since their masses are consistent with the
23S1 predictions, while our calculated total widths are both
comparable with the experimental measurements under the
23S1 or 13D1 assignments. Our results also show that the mea-
sured width of D∗

1(2760) is much smaller than the theoretical
calculations under the 13D1 assignment. This would be an
obstacle to identifying D∗

1(2760) as the 13D1 predominant
cū. There still exist puzzles and difficulties in the identifica-
tions of these new excited charmed mesons. Further precise

Table 8 Comparison with other references when taking D∗(2600) as the mixture of 23S1–13D1 cū. �Tot is in units of MeV and the mixing angle
θu is in units of degree

D∗(2600) Exp. This Ref. [21] Ref. [27] Ref. [24] Ref. [33]

θu – −(7.5+4.0
−3.3) −(21–23) −(36 ± 6) (4–17) (−3.6–1.8)

�D∗(2600) 93 ± 14.3 66.4−2.3
+1.4 74–80 75–115 205–195 ∼60

RD+[D∗(2600)] 0.32 ± 0.09 0.32−0.09
+0.09 0.38–0.43 0.63 ± 0.21 ∼(0.25–0.53) ∼0.32

�D∗
1 (2760) 177 ± 38.4 290.6−2.2

+0.5 280–310 300–550 ∼290 385

RD+[D∗
1 (2760)] – 6.9+2.7

−1.5 1.25–2.25 – (2.62–28.86) 2.2

123
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measurements of their properties are needed and are impor-
tant.
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