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Abstract Using the recent observation of gravitational
waves (GW) produced by a black-hole merger, we place a
lower bound on the energy above which a multifractal space-
time would display an anomalous geometry and, in particular,
violations of Lorentz invariance. In the so-called multifrac-
tional theory with q-derivatives, we show that the deforma-
tion of dispersion relations is much stronger than in generic
quantum-gravity approaches (including loop quantum grav-
ity) and, contrary to the latter, present observations on GWs
can place very strong bounds on the characteristic scales
at which spacetime deviates from standard Minkowski. The
energy at which multifractal effects should become apparent
is E∗ > 1014 GeV (thus improving previous bounds by 12
orders of magnitude) when the exponents in the measure are
fixed to their central value 1/2. We also estimate, for the first
time, the effect of logarithmic oscillations in the measure
(corresponding to a discrete spacetime structure) and find
that they do not change much the bounds obtained in their
absence, unless the amplitude of the oscillations is fine tuned.
This feature, unavailable in known quantum-gravity scenar-
ios, may help the theory to avoid being ruled out by gamma-
ray burst (GRB) observations, for which E∗ > 1017 GeV or
greater.

1 Introduction

Tests of Lorentz violations are among the most powerful
tools by which experiments can constrain theories going
beyond classical general relativity and the Standard Model
of quantum interactions. In particular, the application of
effective models of quantum gravity and string theory giv-
ing rise to phenomenological dispersion relations E2[1 +
O(1)(E/M)n] = k2 has been severely limited by accu-
rate bounds on time delay of photons coming from dis-
tant sources such as GRBs, highly energetic flares in active
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galactic nuclei, and emissions from pulsars. A recompila-
tion of results can be found in [1]. The main message from
these searches is that, in general, the mass scale M at which
quantum-gravity effects modify the dispersion relation of
photons is either very high (M > M2 = 106−1011 GeV
for n = 2 and M > M1 = 1015−1018 GeV for n = 1)
or even larger than the Planck mass for n = 1 (as found
by the Fermi Gamma-ray Space Telescope [2,3]). Therefore,
while the frantic search for new physics in accelerators and in
the sky continues, we already have strong bounds on certain
classes of quantum-gravity models. These constraints come
from the propagation of photons but it would be interesting
to obtain independent bounds more related to the physics of
massive bodies. In other words: What can gravity say about
quantum gravity?

This question has received an answer recently, following
the discovery of gravitational waves emitted from a black-
hole merger [4]. It turns out that the same dispersion rela-
tions constrained by GRBs, and applicable also to gravi-
tons, are poorly constrained by the low-frequency GWs typ-
ically produced by black holes, getting in fact a lower bound
M > 10−4−105 eV [5,6]. Although this provides an inter-
esting proof of concept about the existence of independent
checks on exotic dispersion relations, it is somewhat disap-
pointing. The next question we pose is then: Is there any the-
ory of nonstandard classical or quantum geometry that can
be efficiently constrained by gravitational waves of astro-
physical origin?

The answer is in the affirmative. Multifractional theories
(initiated in [7–9]; see [10] and the references therein for an
comprehensive review) are a proposal according to which
the geometry of spacetime is characterized, in the simplest
formulation, by a fundamental length scale �∗, a time scale
t∗, and an energy scale E∗. The geometry changes depend-
ing on the scale of observation and has the typical features
of a multifractal: a very “irregular” set similar to itself in
any zoomed-in region and whose dimension changes with
the scale [11]. At ultra-microscopic scales �Pl < � � �∗,
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spacetime is discrete, while at microscopic scales � ∼ �∗
it is coarse-grained to a continuum. At macroscopic scales
� � �∗, it reduces to an ordinary four-dimensional manifold.

A first motivation to consider multiscale theories is the
possibility of improving the renormalizability of perturba-
tive quantum gravity [7,9]. A second reason is that, even
when gravity is not directly quantized in this framework,
the multifractal structure superimposed to the metric repro-
duces essentially the same regimes (at scales � ∼ �∗) of sev-
eral quantum gravities. In fact, whenever there is a change
of dimensionality of position and/or momentum space (a
phenomenon, called dimensional flow, typical of quantum
gravity), the measure q(x) used in multifractional theories
is the most general at mesoscopic (i.e., super-Planckian) and
large length scales, under the assumption of factorizability of
the coordinate dependence. A small theorem recently proved
this in a dynamic- and background-independent way: while
dimensional flow per se determines, with an expansion of
the effective spacetime dimension in the infrared, the form
of q(x), dynamics fixes the choice of the parameters in the
expansion, thus giving rise to the abundant variety of dimen-
sional flows in different approaches [12].

Extant bounds on the scales �∗, t∗, and E∗ come from
quantum particle physics, in particular the muon lifetime
(weak interactions), the Lamb shift in hydrogenic atoms
(electrodynamics) and the value of the fine-structure con-
stant [13,14]. These bounds are just the beginning of a full
comparison between the theory, which has reached a certain
level of maturity, and experiments.

In this paper, we take one of the multifractional theories
under better analytic control, that with q-derivatives, and find
a dispersion relation with n < 1 (a feature unique to this the-
ory, as far as we know), a correction much less suppressed
than in quantum gravity. Contrary to other approaches where
similar dispersion relations are phenomenological (i.e.,moti-
vated or inspired by quantum gravity or string theory), our
expression will be derived directly from a full theory. We thus
obtain, from GWs, the strongest bounds ever on the scales
of the geometry, improving the independent constraints of
[13,14]. However, we also meet with the challenge to account
for the GRB bounds on Lorentz violations. This will force
us to explore a previously ignored sector of the theory. Here,
we establish six results. (i) Confirming recent findings on
(non)relativistic motion [11], we see that GWs are faster
(respectively, slower) than ordinary light if the multifrac-
tional structure of the geometry is limited to the time (spa-
tial) direction(s). (ii) The effect of an exotic geometry on dis-
persion relations is much stronger than in generic quantum-
gravity approaches (including loop quantum gravity) and,
contrary to the latter, it can be vigorously constrained by GW
observations. (iii) Against naive expectations, astrophysical
observations do not necessarily lead to stronger bounds than
Standard-Model experiments, at least in the case of gravita-

tional waves. (iv) However, fixing the fractional exponents
in the measure to their central value, we do improve previous
bounds on the scales of the measure by 12 orders of mag-
nitude. In particular, the energy at which multifractal effects
should become apparent is E∗ > 1014 GeV. (v) The effect of
logarithmic oscillations in the measure (corresponding to a
discrete spacetime structure) changes the bounds obtained in
their absence by no more than one order of magnitude, unless
the amplitude of the oscillations is fine tuned. (vi) Point (v)
may be crucial to avoid the theory being ruled out by GRB
observations, as we will discuss at the end.

It may be useful to compare our framework with the bet-
ter known Lorentz-violating general extension of the Stan-
dard Model [15]. The Standard-Model extension (SME) is
an effective field-theory approach parametrizing all possible
Lorentz- and CPT-violating operators that can be added to the
strong and electroweak standard sectors. The main reason to
be interested in these operators is that they may represent cor-
rections coming from a fundamental theory of quantum grav-
ity. Their effects can be constrained by an impressive battery
of particle-physics experiments [16] and obviate the problem
of detecting unobservably small Planck-scale modifications
that any such theory would predict in a low-curvature approx-
imation. This is the same spirit moving us to study multifrac-
tional theories, but with some notable differences. First, the
form of Lorentz-violating operators in the SME can mimic
some of the multifractional effects, but not many of them and
never completely, essentially because no pre-fixed measure
factors appear in the SME (question 34 of [10]). Second,
the effects found here and in [13,14] are not the product of
an effective-field-theory approximation of a more fundamen-
tal theory: they are a direct manifestation of the underlying
anomalous geometry, encoded in a fundamental action of par-
ticle interactions and gravity (these actions can be found in
[13,14,17] and are collected in questions 31 and 40 of [10]).
For this reason, while in the gravitational SME the funda-
mental theory is Lorentz invariant and symmetry breaking is
spontaneous, multifractional theories break Lorentz invari-
ance explicitly (although explicit Lorentz breaking occurs
also in the nongravitational version of the SME). Moreover,
the energy-momentum tensor is conserved as usual in the
fundamental theory at the origin of the SME, while in our
case the conservation law is heavily modified [13,14,17].

2 Dispersion relations in quantum gravity

In general, the emission of gravitational waves and their
wave-form strongly depend on the theory describing the
astrophysical source emitting the signal.1 These details may

1 The emission rate is calculated from the energy-momentum tensor
via the quadrupole formula.

123



Eur. Phys. J. C (2017) 77 :291 Page 3 of 11 291

or may not influence the determination of the propagation
of the gravitational waves, depending on the method used.
For instance, if one considers the propagation time between
the source and Earth, then the constraint on the propagation
speed v may be affected by the physics around the emission
point, and one may have to consider any modification in the
quadrupole formula induced by the theory (quantum gravity,
multifractal spacetimes, and so on). However, the constraint
on the propagation speed v by LIGO was placed by measur-
ing the difference between two detectors in the time arrival of
the wave front, in which case one can focus on the dispersion
relation of the wave front (in the particle-physics language,
of the graviton). In other words, even if the wave-form at the
emission point is modified by theory, LIGO constraints on the
propagation speed are not affected because they are obtained
at Earth. Also, a binary system does not emit an isotropic
wave front but, under the same assumptions (large source–
observer distance and local multi-detector measurements),
the only dependence from the position of the observer is in the
intensity of such signal at the source, not in its propagation.

Therefore, for the purpose of constraining the propaga-
tion speed it is sufficient to consider its dispersion relation
in vacuum. This is the traditional starting point of the phe-
nomenology of quantum gravity we will consider below, and
it will be valid also for the multifractional case.

Given a dispersion relation E2 = E2(k), the magnitude
of the velocity of propagation of a wave front is given by the
absolute value of the group velocity v:

v := |v| =
∣
∣
∣
∣

dE

dk

∣
∣
∣
∣
. (1)

In general, v �= dE/d|k|, unless the dispersion relation is
isotropic and depends only on k := |k|. We will assume
this throughout the paper, so that v = dE(k)/dk. For the
usual Lorentz-invariant dispersion relation E2 = k2 + m2

(we work in c = 1 = h̄ units), in the small-mass limit one
gets the difference Δv := v − 1 � −m2/(2E2) between the
propagation speed of the signal and the speed of light. The
mass of the graviton can be constrained from the observation
of GWs produced by massive binary systems [18].

In string theory and “quantum gravity” at large, general
considerations lead to the effect [19]

Δvqg � −b1
E

M
, (2)

with unspecified constant factor b1 = O(1). On the other
hand, arguments concerning black-hole thermodynamics
effectively describe the propagation of GWs by a logarith-
mic dispersion relation E2 ∝ ln[1 + 8πk2/(3M2)] in four
dimensions [20–22], such that [6]

Δvnl,lqg � −3b2

(
E

M

)2

, (3)

where b2 = 8π/9. In loop quantum gravity, one can argue
that the expected modification to the dispersion relation is
of cubic order, E � k + b2E3/M2, where b2 = O(1) [23].
This leads again to Eq. (3) but with generic b2 [6].

Reference [4] gave the upper bound m < 1.2 × 10−22 eV
for the mass of the graviton, corresponding to

|Δv| < 1.7 × 10−18, E = hν ≈ 6.6 × 10−14 eV, (4)

where ν is the frequency the signal of event GW150914 is
peaked at. Notice that Eqs. (2) and (3) are strongly sup-
pressed for these frequencies, so that the constraint M >

10−4−105 eV from GWs is very weak [5,6]. The bounds
coming from GRBs are much stronger: M > M1 for the
linear case (2), under strong pressure [1] or nearly ruled out
[2,3]; M > M2 for the quadratic loop-quantum-gravity case
(3). However, they do not apply to pure-gravity modifica-
tions, such as the nonlocal logarithmic model, although the
effect (3) on gravitons is the same.

3 Dispersion relations in multifractional spacetimes

3.1 General paradigm

Before discussing the dynamics of these theories, we recall
some basic facts about their kinematical geometric structure.
The starting point is to assume dimensional flow, i.e., the
spacetime dimension changes with the scale. A spacetime
with such a property is called multiscale because dimensional
flow requires the existence of at least one fundamental scale
in the geometry. This assumption is inspired by quantum
gravities: all the extant theories have been found to be char-
acterized by dimensional flow (see [10] for a more detailed
discussion, examples and a full list of references) and it is an
open question whether the latter is just a mathematical feature
or, on the other hand, an observable one. In the second case,
we would have a great instrument to test quantum gravity in
a number of experiments. Moreover, although dimensional
flow is not responsible per se for the improvement of the
renormalization of the gravitational interaction [10], it can
contribute to it nevertheless. For these reasons, it is desirable
to develop a formalism where dimensional flow is under ana-
lytic control.

This is the foundational principle of multifractional
theories. Requiring spacetime to be multiscale and that
one reaches the infrared as an asymptote (“slow” dimen-
sional flow at large scales and late times) are two very
general background-independent and dynamics-independent
assumptions satisfied in all quantum gravities. The surprise
(proven in two theorems [10,12]) is that they are enough
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to determine the general profile of the spacetime dimen-
sion, at least at mesoscopic-to-large scales. Here we recall
only the main result of the second flow-equation theorem,
which applies to the special case of factorizable measures. All
spacetimes in D topological dimensions where the Hausdorff
dimension dh (roughly speaking, the scaling of volumes with
their linear size) is multiscale have a measure dDq(x) with
a specific form dictated by the first flow-equation theorem
[10,12]. For purely technical reasons related to the possibility
to have a self-adjoint quadratic Laplace–Beltrami operator,
we concentrate on factorizable measures, to which the sec-
ond flow-equation theorem applies. In D = 4, the multiscale
measure is

d4q(x) = dq0(t) dq1(x1) · · · dq3(x3), (5)

where the four profiles qμ(xμ) (called geometric coordi-
nates) depend on a hierarchy of length and time scales �

μ
n .

These geometries are called multifractional and are charac-
terized by being multiscale and having measures and Lapla-
cians factorizable in the coordinates. The most general form
of qμ(xμ) [12] can be reduced to a simple one with only two
length scales �∗ and �∞ and two time scales t∗ and t∞ in
the hierarchy. This measure, called binomial, is all we need
to get nontrivial effects of dimensional flow and encodes the
anomalous scaling of correlation functions typically found in
quantum gravities. In the “isotropic” case, all spatial direc-
tions μ = i = 1, 2, 3 have the same anomalous scaling
αi = α and the geometric coordinates for one frequency ωN

are [10,12]

qi (xi ) = xi + �∗
α

∣
∣
∣
∣

xi

�∗

∣
∣
∣
∣

α

Fω(xi ), (6)

q0(t) = t + t∗
α0

∣
∣
∣
∣

t

t∗

∣
∣
∣
∣

α0

Fω(t), (7)

where αμ = α0, α is limited to the range 0 < αμ < 1,2

Fω(x) = 1+ A cos(ωN ln |x/�Pl|)+ B sin(ωN ln |x/�Pl|), A
and B are constant amplitudes, and ωN = 2πα/ ln N with
N = 2, 3, . . . . The Planck length �Pl appears (quite unex-
pectedly, from a nontrivial connection between multifrac-
tional and noncommutative spacetimes [24]) at the bottom
of the scale hierarchy �∗ ≥ �∞ = �Pl of the measure. In the
time direction, �Pl is replaced by t∞ = tPl.

Exactly the same measure arises when completely for-
getting about the flow-equation theorem (which relies only
on having a slow dimensional flow in the infrared) and
asking, instead, to build the continuum approximation of
the measure of a deterministic multifractal [8,9]. Very spe-
cific rules of fractal geometry give the same result (6) and

2 The range 0 < αμ < 1 cannot be extended. Negative values of αμ

would lead to a problematic negative dimensionality of space and/or
time, while values greater than 1 would lead to a wrong infrared limit
of the measure (question 08 of [10]).

(7) and help in the interpretation of these spacetimes. For
instance, the log oscillations in (6) and (7) arise in the geom-
etry of deterministic fractals, i.e., sets described by some
maps with fixed parameters. When the maps are defined
on the real domain, these sets are totally disconnected and
characterized by a discrete scale invariance. In the case of
Eqs. (6) and (7), this scale invariance is Fω(λxμ) = Fω(xμ),
where λ = exp(−2π/ωN ). Thus, multifractional spacetimes
described by the measure (6) and (7) exhibit a fundamen-
tally discrete geometry at scales near �Pl and a multiscale
coarse-grained continuous geometry at scales ∼ �∗ [9]. The
spacetime thus defined has a number of characteristic fea-
tures including a scale-dependent dimension and a cyclic
early-universe cosmology [17].

If we demand dimensional flow in momentum space
rather than (or together with) position space, the second
flow-equation theorem establishes the profile of the spec-
tral dimension ds at mesoscopic-to-large scales and a unique
asymptotic form of the return probability (we will not use
any of these concepts later).

Since the measure is neither translation nor Lorentz invari-
ant, all Poincaré symmetries are broken in the ultraviolet
but are recovered in the infrared. This situation, not uncom-
mon in many bottom-up models of quantum gravity, typically
requires the choice of a frame where physical observables are
computed. Such a frame is part of the definition of multifrac-
tional theories and is called fractional picture. Its properties
are an interesting chapter of the paradigm which, however, we
will not examine in detail here; for a full discussion, see [11]
and the update [10]. The bottom line is that, when observables
are computed carefully, no inconsistency arises in the theory,
not even at the quantum level where Lorentz violations can
become a serious issue in traditional Lorentz-breaking exten-
sions of the Standard Model [10]. Operationally, choosing a
frame means fixing the scaling of the fractional coordinates
xμ so that it is constant ([xμ] = −1), while the scaling of the
variable part of the geometric coordinates qμ(xμ) is scale-
dependent and anomalous ([qμ] ∼ [|xμ|αμ ] = −αμ in the
ultraviolet). Physically, the frame and unit choice consists
in establishing that our measurement devices do not adapt
with the observation scale and observations at different scales
require different apparatus. This prescription describes an
observer living in a multiscale spacetime.

A multiscale or multifractional spacetime geometry can
also be multifractal, provided the Hausdorff, spectral and
walk dimensions (dh, ds, dw) obey the relations [11]

dw = 2
dh
ds

, ds ≤ dh. (8)

These relations belong to the two sole contact points we can
touch, in the context of quantum gravity, with the traditional
descriptive definition of spatial multifractal sets [11] (the
other aspect is nowhere differentiability). In order to check
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(8), one must define the dynamics. The general framework
includes three inequivalent theories (plus a toy model with
ordinary derivatives), which have the same measure as above
and differ only for the symmetries of the Lagrangian. The
latter can have three types of derivative operators: weighted
derivatives, q-derivatives and fractional derivatives. In this
paper, we will be interested in studying the dispersion relation
E2 = E2(k) in two of the three extant multifractional theo-
ries. For the theory with weighted derivatives [9,17], the dis-
persion relation is the usual one E2 = k2+m2 for all massive
particles [10] and, to a first approximation, there is no measur-
able Lorentz violation in the type of experiments considered
here. In that case, the electrodynamics bound [14] remains
the strongest to date. The theory with fractional derivatives is
much more interesting, not only because its dispersion rela-
tions are nontrivial [10] but also because it is a top–down can-
didate (i.e., from theory to experiments) for quantum gravity
(the theory with weighted derivatives is not because it does
not have improved renormalizability). However, this theory
is difficult to deal with directly and a more convenient way
to explore it is to consider the much simpler theory with q-
derivatives, which can be regarded either as an approximation
of the case with fractional derivatives [10] or as a stand-alone
exact theory. Either interpretation is fine in what follows.

3.2 Multifractional theory with q-derivatives

The theory with q-derivatives is reviewed in this subsection.
We already described the integration measure and we only
have to sketch the dynamics. The action for some generic
degrees of freedom φa in flat space is

S =
∫

d4q(x)L[φa, ∂q(x)φ
a], (9)

where the Lagrangian L is defined to be the usual one (for
a scalar field, for the Standard Model and so on) with the
formal replacement xμ → qμ(xμ) everywhere. This is
not a trivial coordinate transformation because the theory
is not Lorentz invariant; it is only a convenient tool to write
down a much easier version of the physical-frame Lagrangian
L[φa, (∂xq)−1∂xφ

a] (see questions 24, 25 and 28 of [10]).
It is part of the definition of the theory to fix a reference
frame where physical observables can be evaluated and com-
pared with experiments. This necessity stems from the fact
that the underlying geometry is characterized by an explicit
hierarchy of scales. Once the physical frame and the sym-
metries of the theory are fixed, the Lagrangian is fully deter-
mined thereon and it takes the above schematic form. That
Lagrangian can be formally recast as the simple Lorentz-
invariant Lagrangian L[φa, ∂qφ

a] but this is only a prac-
tical mathematical tool helpful to extract the observables.
The two sides of the replacement xμ → qμ(xμ) represent
the parametrization of different measuring devices, scale-

independent on the left-hand side (physical devices, physical
frame spanned by the coordinates xμ) and scale-dependent
on the right-hand side (geometric frame spanned by the com-
posite coordinates qμ(xμ)). Also in scalar–tensor theories
there are two frames with different measurement units (the
Jordan and the Einstein frame), and their inequivalence is
determined by some physical principle assumed a priori, for
instance the requirement of respecting some energy condi-
tion or the equivalence principle. A difference with respect
to multifractional theories, however, is that in our case this
inequivalence holds already at the classical level, while in
the scalar–tensor case one must consider the quantum theory
to discriminate between the two frames.

Inclusion of gravity is not difficult [17] and the only sub-
tlety one must really care for from the beginning is that the
metric structure is independent of the measure structure. In
other words, the measure structure affects the dynamics of
all fields, including the gravitational one.

The action for gravity and for the Standard Model (all
summarized in [10]) can be found in [14,17]. However, no
detailed dynamics is needed for our results and it is very easy
to see what type of dispersion relations we find in the theory
by looking just at the prototypical case of a scalar field in flat
space. Then the free Lagrangian reads3

2L = −ημν · ∂qμφ∂qν φ − m2φ2

= −ημν ·
(

1

∂μqμ∂νqν
∂μφ∂νφ

)

− m2φ2

= φ̇2

(q̇0)2 −
∑

i

(∂iφ)2

(∂i qi )2 − m2φ2.

The reader should not be tricked into thinking that the only
modification of the dynamics amounts to some factors in
front of the kinetic and gradient terms. First, these factors
are not a simple conformal factor Ω2ημν in front of the
Minkowski metric, which would be the same in front of all
the derivative terms. Second, the factors in the action are
not arbitrary and have a precise functional form (Eqs. (6)
and (7)) dictated by the second flow-equation theorem or,
equivalently, by fractal geometry. Since this new structure is
nondynamical and independent of the metric structure, it does
not correspond to a nonminimal coupling with some extra
degrees of freedom. Third, when looking at the predictions
of more sophisticated systems such as the multifractional
Standard Model or general relativity, it becomes clear that
the multiscale geometry heavily affects virtually all sectors of
physics. The rigidity of the measure and its endemic influence
on the dynamics are the two main reasons why these theories
are easily falsifiable. This paper will demonstrate just that.

3 Here, we use a dot to denote Einstein summation. The full expression
clarifies the summation convention when the same index is repeated
three or more times.
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Coming back to the question about the relations (8), one
can prove that they are indeed satisfied in the theory with q-
derivatives [10]. Therefore, these spacetimes are not only
multifractional but also multifractal. The same holds for
the theory with fractional derivatives, while the theory with
weighted derivatives does not describe a multifractal space-
time.

3.3 Multifractional dispersion relation

In compact notation, the classical equation of motion for the
massive scalar field is (∂qμ∂q

μ − m2)φ = 0, which we now
rewrite in momentum space. The theory with q-derivatives
admits a unitary and invertible Fourier transform mapping
position to momentum space [17]. In four topological dimen-
sions, and independently of the specific form of the profiles
qμ(xμ),

φp(k) :=
∫ +∞

−∞
d4 p(k)

(2π)2 eipμ(kμ)·qμ(xμ)φ(x), (10)

where d4 p(k) = dp0(E) dp1(k1) · · · dp3(k3) and the com-
posite momenta

pμ(kμ) := 1

qμ(1/kμ)
(11)

(with position-space scales t∗, �∗ replaced by the inverse of
energy-momentum scales E∗, k∗) are by definition conjugate
to qμ(xμ). Then it is straightforward to recast the equation
of motion as (pμ pμ +m2)φp = 0, which yields the massive
dispersion relation (here E = k0)

[p0(E)]2 = |p|2 + m2 =
∑

i

[pi (ki )]2 + m2. (12)

A similar inspection of the linearized gravitational action
gives the dispersion relation for the graviton. This dispersion
relation replicates the pole structure of the rest of the parti-
cles of the theory [10], and in what follows it is enough to
obtain the main results, which do not depend on the specific
tensorial structure of propagators. Also, curvature effects are
negligible and, as invariably done in the literature of mod-
ified dispersion relations, we can ignore the impact of the
classical gravitational background.

The review ends here. From now on, m2 = 0 and we work
with the measure (6) and (7) and the conjugate pμ(kμ). For
small fractal corrections, we can write the spatial part as

|p|2 �
∑

i

k2
i

[

1 − 2

α

∣
∣
∣
∣

ki
k∗

∣
∣
∣
∣

1−α

Fω(ki )

]

. (13)

Let us pause for a moment and discuss an interesting caveat
about momentum space. We need to perform an approxima-
tion of (13) in order to have a simple expression in terms of
the absolute value k of the momentum, rather than of its three
directional components ki . This approximation can be done

in different ways, all of which must give very similar results
since the corrections to the standard dispersion relation are
small. For instance, taking the average of spatial momentum
(or if the signal is nearly isotropic), one has |ki | � k/

√
3

and, defining K∗ = √
3k∗, we get

|p|2 � k2 − 2K 2∗
α

(
k

K∗

)3−α

Fω

(
k√
3

)

. (14)

Alternatively, choosing a frame where pi (ki )=(p(k), 0, 0)i ,
one has

|p|2 � k2 − 2k2∗
α

(
k

k∗

)3−α

Fω(k). (15)

Although this is the same as picking a frame ki = (k, 0, 0)i ,
momentum space is not Lorentz invariant in the usual way.
The theory is invariant under the nonlinear transforma-
tions pμ(k′μ) = Λ

μ
ν pν(kν) (discussed in position space

as qμ(x ′μ) = Λ
μ
ν qν(xν) in, e.g., [11,14]), but this is not

a symmetry in the frame where predictions are made (the
so-called fractional picture). It is easy to see why. By the
very definition of the theory, in the physical frame one works
with position coordinates xμ and momentum coordinates kμ,
which is the same as to use clocks and rods that do not change
with the scale of observation. Then the scales in the measure
appear explicitly in the formulas and break ordinary Lorentz
invariance. On the other hand, the theory is formally invari-
ant under q-Lorentz transformations but these do change the
physics, as shown by Eqs. (14) and (15): the characteristic
scale changes from K∗ to k∗. This situation is very similar to
the known problem of presentation of the measure [11]: one
must choose the coordinate frame {kμ} in which the above
profile pμ(kμ) is defined.4 In the case of GWs, we make the
isotropic choice (14), for a reason we will explain in the next
paragraph.

The correction in Eq. (14) is negative definite only if the
oscillatory contribution in Fω is positive definite. Combining
this equation with [p0(E)]2 � E2 − (2E2∗/α0)(E/E∗)3−α0

× Fω(E) (we assume E ≥ 0), taking the approximation
E � k (consistent with assuming that corrections are sub-
dominant), and identifying the energy scale E∗ with the

4 In position space, the problem of presentation can be stated as fol-
lows. The theory with q-derivatives breaks Poincaré invariance explic-
itly and one must choose a coordinate frame {xμ} where to define the
profile (6) and (7). This choice of frame is part of the definition of
the theory and different frames correspond to different theories. For
this reason, observing experimentally presentation effects would not
imply any internal inconsistency in the framework. To put it in other
words, the problem of presentation is very similar to the well-known
Itô–Stratonovich dilemma in stochastic mechanics [11], where integra-
tion of a nowhere-differentiable Wiener process can be defined with
two major different prescriptions. Both prescriptions are valid but not
simultaneously: simply, they describe systems with different stochastic
properties. For a detailed discussion of frame and presentation depen-
dence of physical observables, see [11,14].
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inverse of the time and length scales t∗ and �∗ = 1/k∗ in
Planck units [13,14], we get the full dispersion relation

E2 � k2 + 2E2∗

[

1

α0

(
k

E∗

)3−α0

Fω(k)

− 3

α

(
k√
3E∗

)3−α

Fω

(
k√
3

)]

. (16)

For the ki = (k, 0, 0)i choice, the factors
√

3 disappear and
the net effect is zero for α = α0. As we will see later, this
fact may lead to a crucial restriction of the parameter space to
avoid the strongest experimental bounds, but we should inter-
pret it with care. The choices |k1| = |k2| = |k3| � k/

√
3 and

ki = (k, 0, 0)i look like, but are not, different presentations
of the momentum measure. In fact, we fixed the presentation
in position space in Eqs. (6) and (7) and, by conjugacy of
position and momentum space, Eq. (13) is a consequence of
that choice. On the other hand, Eqs. (14) and (15) stem from
slightly inequivalent approximations of (13) which, however,
should give the same phenomenology because of their resem-
blance with a presentation choice.5 This is actually true (see
Sect. 5) except in the case α = α0, when a cancellation hap-
pens in the ki = (k, 0, 0)i analog of Eq. (16) and the net
effect of anomalous geometry is zero. In this way, one would
avoid all the constraints found below. However, we regard
this cancellation as accidental, both because it stems from
an approximation rather than an actual presentation effect
and because we do not see any similar phenomenon in other
experiments where such approximation is not made.

In what follows, we consider two cases according to the
classification of [11]. (a) Time-like fractal geometries (trivial
measure in spatial directions) with p = k and averaged or
no log oscillations, Fω = 1. The averaging procedure [9]
is a coarse graining of spacetime and momentum geometry,
which simply amounts to considering energy scales smaller
than the Planck mass mPl (the scale at the bottom of the
hierarchy and governing log oscillations) but larger than E∗.
The dispersion relation (16) simplifies to

5 Let us expand this statement. Some of the results established in [8,11]
limit and refine the consequences and scope of inequivalent presenta-
tions. In particular, the qualitative features of the theory are not affected
by a change in presentation because the latter leaves the anomalous scal-
ing of the geometry unaltered. Since all new effects arise from dimen-
sional flow and the latter is not deformed greatly, their characteristics
may be presentation-independent. Whether this is true or not depends
on the details of the observation or experiment. While there exist ideal
examples where different presentations can be discriminated by exper-
iments [11], in all concrete cases examined until today presentation
effects turn out to be smaller than the accuracy of the observational
constraints on the parameters of the theory [13,14]. In the case of the
present paper, if we put the approximations (14) and (15) on equal foot-
ing with a presentation choice (thus temporarily ignoring the fact that
they come from the same presentation in position space), then we can
expect to get similar experimental constraints.

E2 � k2 + 2E2∗
α0

(
k

E∗

)3−α0

(17)

and the correction is positive definite. (b) Space-like frac-
tal geometries (trivial measure in the time–energy direction)
with p0 = E and averaged or no log oscillations, Fω = 1.
The dispersion relation E2 � E2

full(k) becomes

E2 � k2 − 2E2∗
3

1−α
2 α

(
k

E∗

)3−α

(18)

and the correction is negative definite.
Generic configurations with fractional time and space

directions can produce corrections of either sign, periodi-
cally suppressed by the log oscillations. Cases (a) and (b) are
extreme representatives of this spectrum of possibilities, both
corresponding to corrections with a unique sign and maximal
amplitude. Using the definition (1), differentiating Eqs. (17)
and (18) on both sides, and replacing k → E consistently
with the small-mass small-correction approximation, we get6

Δv+ � 3 − α0

α0

(
E

E∗

)1−α0

, (19a)

Δv− � − 3 − α

3
1−α

2 α

(
E

E∗

)1−α

. (19b)

4 Results

(i) Since 0 < α0, α < 1, then Δv+ > 0 and Δv− < 0.
This is in agreement with the findings of [11], where it
was shown that relativistic or nonrelativistic bodies move
faster (slower) in geometries with time-like (respectively,
space-like) fractal directions. Here we extend this con-
clusion to the group velocity of propagating waves. This
is the first main result of the paper.

(ii) The corrections in Eq. (19) are less suppressed than those
in Eqs. (2) and (3). Although a comparison with some
constraints on quantum-gravity scales was made in [14],
this is the first time that multifractional spacetimes are
directly compared with quantum-gravity models on a
specific observable. It turns out that the multiscale effect
is, in general, much stronger and more sensitive to obser-
vational constraints. Inverting Eq. (19), one has

E∗ =
(

α0

3 − α0
Δv+

)− 1
1−α0

E (time-like), (20)

6 Here we are comparing the multiscale correction with a standard
dispersion relation but this is not entirely correct, since also photons
are affected. Taking this into account leads to an O(1) correction of
Eq. (19) which, however, does not alter the numerical bounds [10].
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Table 1 Absolute and α0, α = 1/2 bounds on the scale hierarchy of
the theory with q-derivatives without log oscillations. Energy bounds
are obtained directly from GWs or GRBs without any unit conversion.
All figures are rounded and “∼” indicates crude estimates

Bounds t∗ (s) �∗ (m) E∗ (GeV)

GW (α0, α � 1
2 ) <10−22 <10−14 >10−2 (T), (S)

GRB (α0, α � 1
2 ) ∼ <10−32 <10−24 >1017 (TS)

GW (α0, α = 1
2 ) <10−39 <10−30 >1014 (T′), (S′)

GRB (α0, α = 1
2 ) ∼ <10−50 <10−42 >1035 (TS′)

E∗ =
(

3
1−α

2 α

3 − α
|Δv−|

)− 1
1−α

E (space-like). (21)

We extract two types of bounds, an “absolute” one and
one for a specific choice of α0 or α. In the first case,
using Eq. (4) and plotting, for instance, Eq. (20) as a
function of α0, one finds the conservative lower bound
(T) E∗ > 15 MeV at α0 ≈ 0.02. This value of α0 has
no particular significance theoretically, just like simi-
lar ones found in [13,14]. The parameter α0 is free in
the range (0, 1) and the justification to take small val-
ues α0 � 1/2 is simply to find the weakest possible
bounds on the theory starting from α0-dependent equa-
tions such as (20) (the same discussion holds for α and the
space-like-fractal case). These bounds (called “absolute”
in [13,14]) set the lowest possible energy scales admitted
by experiments and they represent the most conservative
scenario when pitting the theory against observations.
On the other hand, theoretical arguments [8] may select
α0 = 1/2 at the center of the interval (0, 1) as somewhat
preferred; it also provides a concrete example of the typ-
ical size of the corrections. For this central value, we
get a tremendous boost to energies of the order of (T′)
E (α0=1/2)∗ > 5.7 × 1014 GeV. For a space-like-fractal
spacetime, Eq. (21), we have instead the absolute bound
(S) E∗ > 8.5 MeV (at α ≈ 0.02), and the α = 1/2 bound
(S′) E (α=1/2)∗ > 3.3 × 1014 GeV. Translating these con-
straints to bounds on the characteristic time scale t∗ and
length scale �∗ of the geometry, we find the numbers
reported in Table 1.7 The conversion requires the use of
the Planck time, length, and mass, justified in [13,14]
using the results of [24].

7 After the submission of this paper, a work appeared placing con-
straints on the quantum-gravity mass scale appearing in a modified
dispersion relation for the graviton [25]. The Fisher analysis therein
is based on frequencies f = ω/(2π) = 100 Hz, corresponding
to ω ≈ 630 Hz ≈ 4.1 × 10−13 eV and |Δv| < 4.2 × 10−20.
Using these numbers, the constraints in Table 1 from gravitational
waves are strengthened by 2 − 4 orders of magnitude: for instance,
E (α0�1/2)∗ > 4 GeV and E (α0=1/2)∗ > 5.9 × 1018 GeV � 0.1 mPl, thus
pushing the α0 = 1/2 model further to its limit.

(iii) If we compare these numbers with those of [14], we see
that the absolute bounds (T) and (S) are very close to
the lower limit E∗ > 10 MeV found in the Lamb-shift
effect. Thus, we have shown that the naive expectation
that “astrophysical constraints are stronger than Earth-
based constraints from precision experiments” is valid
for this theory only if we fix the fractional exponents to
O(0.5) values. If we let them free, then GW experimen-
tal bounds may be of the same order as the Lamb-shift
bound.

(iv) On the other hand, the bounds (T′) and (S′) are 12 orders
of magnitude stronger that the Lamb-shift bound for
α0 = 1/2. Thus, we have improved the constraints of
[13,14] for the q-theory and found, for the first time,
bounds coming from the spatial directions.

(v) Let us now study the role of log oscillations. Consider-
ing a nontrivial log-periodic profile Fω �= 1, the bounds
(T), (T′), (S), and (S′) become weaker due to a modula-
tion effect. For instance, using Eq. (16) for a time-like
fractal, Eq. (20) is replaced by

E (log)∗ =
{

(α0|Δv+|)−1
[

3 − α0 + A′ cos

(

ωN ln
E

mP1

)

+ B ′ sin

(

ωN ln
E

mPl

)]} 1
1−α0

E, (22)

where A′ = (3 − α0)A + BωN and B ′ = (3 − α0)B −
AωN . To deal with the oscillatory part, we notice that
we have two free parameters (A and B) and one free
but discretized parameter ωN ≈ 4.53, 2.86, . . . . Fixing
α0 = 1/2 and picking the first few values of ωN , we
have checked that log oscillations do not change the
bound (T′) by more than one order of magnitude for 0 <

A, B < 1, the range that guarantees that the measure is
positive definite (Fig. 1). However, for specific choices
of A and B the ratio E (log)∗ /E∗ can drop down to nearly
zero, meaning that the scale E (log)∗ becomes virtually
unconstrained. Taking, for example, N = 2 and A =
0, we get the minimum E (log)∗ /E∗ ∼ 10−32 at B ≈
0.676505, while E (log)∗ /E∗ ∼ 10−12 for B ≈ 0.676504.
A generic drop of one order of magnitude, E (log)

∗ /E∗ <

0.1, occurs for 0.5 < B < 0.9. We conclude that, in
order to milden the lower bound on the energy one must
fine tune A and B to at least one part over ten, while to
avoid a strong bound altogether (say, E (log)

∗ > 1 TeV)
the fine tuning is of at least one part over 107. This the
fifth result of the paper.

(vi) The constraints (T), (T′), (S), and (S′) can easily be
improved by accounting for photon time delays in
highly energetic events such as gamma-ray bursts. We
do not present a detailed calculation of the effect in
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Fig. 1 The ratio E (log)∗ /E∗ (Eqs. (22) and (20)) as a function of the
amplitudes A and B, for N = 2, 3, . . . , 10

the theory with q-derivatives, as it is not necessary: a
very crude estimate will suffice for our purpose. Let
us write down Eq. (19) as v = 1 + γ (E/E∗)1−β ,
where ±γ = O(1) − O(10) and β = α0, α. The
difference in the velocities of two photons with dif-
ferent energies emitted in a GRB at the same time
is δv = v2 − v1 = γ (E1−β

2 − E1−β
1 )/E1−β∗ . Tak-

ing E2 � E1 (highly energetic photons), one gets
E∗ ∼ E2/δv

1/(1−β). Letting d be the luminosity dis-
tance between the source and us and Δt = t2 − t1 the
time delay in the arrival of the photons, we also have
1 � δv ∼ d/t2 − d/t1 � dΔt/t2

1 � v2
1Δt/d ∼ Δt/d.

The observed sources of bright GRBs are in the range
of redshift z = 0.16–3.37 (i.e., [26]), corresponding
to d ∼ 1025−1027 m. For typical photon emissions,
Δt ∼ 10−2−10−1 s, so that δv ∼ 10−20−10−18. Tak-
ing E2 ∼ 100 keV, we get

E∗ > Emax∗ = 10−1+18/(1−β)−10−1+20/(1−β) GeV.

(23)

For 1 − β = 2 and 1 − β = 1, we have E∗ >

108−109 GeV and E∗ > 1017−1019 GeV, in agree-
ment with the actual estimates for, respectively, M2 and
M1 quoted at the beginning of the paper. The β = 0
case also provides an absolute upper bound (TS) for
the q-theory (Table 1). However, for 1 − β = 1/2, the
lower bound becomes astronomically high, E (α0=1/2)∗ >

1035−1039 GeV (we label it (TS′)). Even discounting,
conservatively, a few orders of magnitude with respect

to a rigorous estimate, the fundamental energy scale E∗
would be more than 10 orders of magnitude larger than
the Planck mass, thus completely ruling out the theory
for α0 ≥ 1/2 or α ≥ 1/2.

5 Discussion

This paper does not consist in a fit of some phenomenolog-
ical dispersion relation. First, the dispersion relation (16) is
derived rigorously from the theory with q-derivatives and
it constitutes a top–down prediction which can be tested by
experiments. Second, the form of (16) is unique to this theory
and there is no other proposal, either top–down or bottom–
up, reproducing it. The simplified versions (17) and (18) of
(16) do look like the well-known phenomenological rela-
tions discussed in Sect. 2, but only because the correction is a
power law when log oscillations are ignored. The power itself
has a totally different geometric interpretation and values
range with respect to other quantum-gravity-inspired disper-
sion relations. Log oscillations of (16) are turned on (as done
in Sect. 4, in particular in (22)). Third, the bounds obtained
here are the first constraints that can rule out some versions
of the multifractional theories and they answer a very legit-
imate question (What are bounds in the hierarchy scale of
a multifractal spacetime?) that had been left open since the
late 1970s [27–29]. On top of this, they demonstrate that a
specific feature of all quantum gravities, dimensional flow,
can leave an observable imprint in some of its incarnations.
Fourth, this is the first and only example to date of a theory or
model that can be efficiently constrained by the recent GW
observations alone.

To summarize, the fundamental energy scale E∗ < mPl

of the geometry is a free parameter bounded from above
by the Planck mass [9,17,24]. For the approximation (14)
(|ki | � k/

√
3), the theory is observationally acceptable if

the constraints in Table 1 are respected. For values of α0

or α near or above 1/2, either E∗ � mPl (which would be
theoretically inconsistent) or an unviable excess of Lorentz
violation in GRB events is produced. Although it is likely that
a rigorous estimate of exotic effects in GRB will not alter the
main outcome qualitatively, there is no proof available yet
of that. For this reason, the present GRB constraints on the
q-theory might be regarded as preliminary. Nevertheless, it
is worth discussing possible ways out. As far as we can see,
there are three.

(a) One is to consider fractional exponents 0 < α0, α <

1/2. The choice α0 = 1/2 = α is strongly recom-
mended by rigorous arguments for fractional-derivative
spacetimes [8], but it is only a suggestion in the case of
q-derivative spacetimes. Therefore, it can be abandoned
without compromising the consistency of the theory. For
instance, for α0, α � 0.1 one has Emax∗ � mPl.

123



291 Page 10 of 11 Eur. Phys. J. C (2017) 77 :291

(b) Another possibility is to account for logarithmic oscilla-
tions. Then an effect similar to that displayed by E (log)∗
can suppress the estimate (23) down to sub-Planckian
scales. The price to pay, however, is an O(10−7) fine
tuning on the amplitudes A and B in the measure.

(c) The third case, whose physical interpretation is unclear,
makes use of the effect of the isotropic approximation
of Eq. (13) on observations. If α0 �= α, the difference
between the inequivalent approximations (14) and (15)
is not appreciable. Taking, in fact, Eq. (15) instead of
Eq. (14), we would end up with precisely the bounds (T)
and (T′) also for space-like fractal geometries, instead
of the very similar constraints (S) and (S′). However, as
noticed above Eq. (17), if α0 = α in the presentation
choice (15) then the correction to the dispersion relation
cancels out and the massless on-shell condition is E =
k: all the constraints found here would be avoided.

Physically, case (a) corresponds to geometries with a very
small Hausdorff dimension, 0 < dh � 2. As remarked below
Eq. (21), at present there is no theoretical support for values
in the range 0 < α0, α � 1/2, since both α0 and α are free
parameters in the range (0, 1). Therefore, case (a) is purely
phenomenological. However, it is the most natural possibility
among the three listed here, since it does not entail any severe
fine tuning (the problem of case (b)) or accidental cancella-
tions not backed-up by independent arguments (the problem
of case (c)). Furthermore, independent bounds from the cos-
mic microwave background, obtained after the submission
of this paper, point towards a very similar parameter range
for the spatial exponent, α � 0.6, but only in the presence
of log oscillations [30]. This result is robust against approx-
imation choices in the momentum frame, so that it renders
(c) less likely and yields credit to case (a) as the most plau-
sible explanation, perhaps helped by some extra suppression
of the corrections thanks to log oscillations. In future work,
one might thus look into a hybrid direction (a)+(b), where
α0 and α are small (certainly <1/2) and the tuning on the
amplitudes A and B is not too severe. This the sixth and last
result.

For completeness, one could lift the isotropic approxi-
mation and study a purely anisotropic dispersion relation.
This might unravel new effects coming from having preferred
directions in position and momentum space. However, in this
paper we made a rather technical point showing that these
effects are probably second-order with respect to those con-
sidered here. First, we showed that the isotropy approxima-
tion is very similar (although not completely equivalent) to a
presentation choice, which amounts to fix the physical frame.
Next, we recalled that different presentations may change
some coefficients in the corrections in physical observables,
but that they do not differ in the scaling property of the mea-

sure. Third, since the type of observational constraints con-
sidered in this and other papers [13,14] relies just on this
scaling, one can conclude (and verify explicitly) that differ-
ent presentation choices are constrained by about the same
bounds. Hence, one can expect that the isotropy approxi-
mation is subject to the same limitations as a presentation
choice, which eventually means that the constraints found
here are robust. Moreover, the GRB bound is so strong that,
most likely, it will not be changed in the case of an anisotropic
dispersion relation.

We conclude with a short remark about other constraints
on Lorentz violations in quantum field theory. In many exotic
theories beyond the Standard Model, it is possible that classi-
cally acceptable Lorentz violations be magnified to unaccept-
able levels by quantum mechanisms, either from an ampli-
fication by renormalization effects [31,32] (controllable, in
some cases, by carrying out a rigorous renormalization pro-
gram [33]) or as an infrared phenomenon in Unruh–DeWitt
detectors [34]. Neither problem affects the multifractional
theory with q-derivatives. The argument of [31,32] was
already discussed in [35] and we will not repeat it here. Con-
cerning the other, a crucial assumption made in [34] is that the
correction function in the dispersion relation E = k f (k/M)

be f < 1 at some point in the momentum k = |k|. Recasting
(17) and (18) with the same notation, one immediately sees
that f > 1 in the first case (time-like fractal geometries)
and f < 1 in the second case (space-like fractal geome-
tries). However, this comparison is not sufficient to con-
clude that the space-like fractal case would be plagued by
the infrared corrections considered in [34]. In fact, the cal-
culation of the transition rate F(Ω) from a state with zero
energy to a state with energy Ω can be performed in geo-
metric coordinates and leads, formally, to the standard result
F(Ω̃) = −Ω̃θ(−Ω̃)/(2π) for a massless scalar field (we do
not present the explicit calculation, which is easy and follows
exactly the same steps as the standard case, the only differ-
ence being that “energies” are composite). Here θ is the Heav-
iside step function and Ω̃ = p0(Ω) � Ω(1 − corrections).
For vanishing corrections, Ω̃ = Ω and F vanishes iden-
tically for all positive Ω (no spontaneous excitation of the
detector). For nonzero small corrections, Ω̃ ≤ Ω and equal-
ity holds only when Ω̃ = Ω = 0; therefore, also in this case
there are no uncontrolled excitations. For negative Ω , a simi-
lar conclusion holds and there are no spontaneous low-energy
de-excitations. In other words, F(Ω) → 0 when Ω → 0±,
contrary to the examples of [34] where F tends to a finite
value at small Ω .
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