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Abstract The gravitino problem is revisited in the frame-
work of cosmological models in which the primordial cosmic
matter is described by a relativistic imperfect fluid. Dissipa-
tive effects (or bulk viscosity effects) arise owing to the dif-
ferent cooling rates of the fluid components. We show that
the effects of the bulk viscosity allow one to avoid the late
abundance of gravitinos. In particular, for particular values
of the parameters characterizing the cosmological model, the
gravitino abundance turns out to be weakly depending on the
reheating temperature.

1 Introduction

Imperfect fluids in cosmology are characterized by the fact
that the different components of cosmic fluids are coupled
and, having different internal equation of states, their cool-
ing rates turn out to be different as the Universe expands. As
a consequence, a deviation of the system from equilibrium
occurs. The different cooling rates of the components are
responsible for the presence of a bulk viscous pressure of the
cosmic medium as a whole. The latter is the only possible dis-
sipative phenomenon for an homogeneous and isotropic Uni-
verse1 (see [1–42] and references therein). In particular, in
the Friedman–Robertson–Walker (FRW) Universe, the dis-
sipation is described by a scalar quantity (the bulk viscosity
as referred to the thermodynamical approach [42]). Bulk vis-
cosity enters Einstein’s field equations, altering the thermal

1 Let us point out that bulk viscosity effects account for the rapid
expansion/compression of fluids that cease to be in thermal equilib-
rium. Therefore the bulk viscosity gives a measure of the pressure that
is necessary for restoring the equilibrium to an expanding/compressed
system, a condition that naturally arises in a cosmological expanding
Universe.
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histories of (relic) particles, compared with cosmology with
perfect fluids, and therefore their abundance.2

The aim of this paper is to explore the implications of
cosmology with bulk viscosity in relation to the gravitino
problem (see for example [47–49]). Since gravitinos couple
to ordinary matter only through the gravitational interaction,
it follows that their couplings are Planck suppressed, which
implies a (quite) long lifetime,

2 A comment is in order. In standard cosmology, the bulk viscosity
effects are absent at high temperatures because, essentially, the bulk
viscosity coefficient ζ is proportional to δ ≡ (1 − 3w)2, where w is
the adiabatic index (with w = ∂p/∂ρ = 1/3 in a Universe radiation
dominated). However, such a value of w is relaxed whenever one consid-
ers the interactions among massless (relativistic) particles. These lead
to running coupling constants, and hence to a trace anomaly [43,44]
Tμ

μ ∝ β(g)FμνFμν �= 0. For SU (Nc) gauge theory, characterized by
a coupling g and N f flavors, the effective equation of state turns out to

be modified as 1–3w = 5g4

96π6
[Nc+(5/4)N f ] [(11/3)Nc−(2/3)N f ]

2+(7/2) [NcN f /(N2
c −1)] + O(g5),

whose numerical value may lie in the range 1–3w ∼ 10−2–10−1 [43].
To give an estimation of the role of the bulk viscosity, we recall that ζ is
related to the scalar pressure Π [that enters directly into cosmological
equations; see (2.2)] through the constitutive equations for dissipative
quantities Π = −3ζH . For radiative fluids, i.e. fluids consisting of
interacting massless and massive particles, kinetic theory or fluctua-
tion theory arguments allow one to derive the dissipative coefficients
ζ in terms of the relaxation time τ : ζ = 4a0T 4τδ, where (in units
h̄ = 1 = c) a0 = π2k2

B/15 � 0.65 is the radiation constant and kB the
Boltzmann constant (of course the expression for ζ changes for different
fluids [42]). Comparing the scalar pressure to the radiation energy den-
sity ρ = (π2g∗)T 4/30 one gets Π/ρ = 24k2

Bδ(τH)/g∗ � 2.4 × 10−5

for τH < 1 and δ � 10−2. Another interesting possibility to have
w �= 1/3 is to consider quantum fluctuations of primordial fields [45,46]

that lead to p = (ρ − 〈Tμ
μ 〉)/3, where 〈Tμ

μ 〉 = k3

(
R2

3 − Rαβ Rαβ
)

−
6k1�R, k1,3 depend on the number of quantum fields (for example,
k3 = 1

1440π2 (N0 + 31N1 + 11N1/2/2) ∼ 0.07 for SU (5) model,

and similarly for k1), R = −6(Ḣ + 2H2), R0
0 = −3(Ḣ + H2) and

Ri
i = −(Ḣ + 3H2)δii .
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τ3/2 ∼ M2
Pl

m3
3/2

� 105
(

1 TeV

m3/2

)3

s.

Here m3/2 is the mass of the particle ∼102 GeV. Parti-
cles with such a long lifetime generate some issues in cos-
mology since if they decay after the nucleosynthesis, their
decay products (which can be gauge bosons and their gaug-
ino partners) would destroy light elements, destroying the
successful predictions of Big Bang Nucleosynthesis (BBN).
This problem can be avoided putting an upper bound on the
reheating temperature. In the framework of GR and from the
Boltzmann equation it turns out that the gravitino abundance

Y3/2 = n3/2/s (here s = 2π2

45
g∗T 3) is proportional to the

reheating temperature TR [50–53],

Y3/2 � 10−11 TR
1010 GeV

. (1.1)

Then by requiring that the abundance (1.1) remains small for
a successful prediction of BBN one gets the constraint on the
reheating temperature [54,55]

TR � (106 − 107) GeV for m3/2 ∼ O(102GeV). (1.2)

In turn this bound opens a serious question for the inflationary
models (and for some models of leptogenesis) due to the fact
that these models tend to predict a reheating temperature
larger than the upper bound (1.2) [56,57] (see also [58–61]).

The paper is organized as follows. In Sect. 2 we derive the
field equations of the cosmological background in presence
of imperfect fluids. The analysis of the gravitino problem in
the framework of bulk viscosity cosmology is studied in Sect.
3. Conclusions are briefly drawn in Sect. 4.

2 Imperfect fluid

The energy-momentum tensor of imperfect fluids is given by
[62]

Tαβ = ρuαuβ + (p + Π)hαβ + qαuβ + qβuα + παβ.

(2.1)

Here Π is the scalar pressure (or the bulk viscous pressure),
hαβ = gαβ + uαuβ is the projector tensor, qα is a quantity
connected to the flux of the energy, and finally παβ is the so
called anisotropic stress tensor. The quantities qα and παβ

satisfy the relations qαuα = 0, παβuβ = 0 = πα
α . By mak-

ing use of symmetries imposed by the fact that the Universe
is isotropic and homogeneous, one gets qα = 0 = παβ . The
only term allowed is the scalar dissipation Π [42]. More-
over, one finds that the energy-momentum conservation law
T αβ

;β = 0 reads ρ̇ + Θ(ρ + p + Π) = 0. where the dot
stands for the derivative with respect to the cosmic time and

Θ = uα
;α . In an homogeneous and isotropic (spatially flat)

Universe, the Einstein equations read [62]

H2 = κρ

3
, Ḣ = −κ

2
(ρ + p + Π), (2.2)

where H = ȧ/a is the Hubble parameter and κ = 8πG =
8πM−2

Pl (MPl � 1.22 × 1019 GeV is the Planck mass).
In the radiation dominated era, where the energy density

is ρ = π2g∗
30

T 4 and the pressure is p = ρ

3
(g∗ ∼ 102 counts

the relativistic degrees of freedom), one finds that the Hubble
parameter evolves according to the equation [62]

Ḧ

H
− 2

Ḣ2

H2 − 6H2c2
b + 1

τ

(
Ḣ

H
+ 2H

)
= 0, (2.3)

where τ(= τ(t)) is the relaxation time (physically it is inter-
preted as the mean free time of the relativistic particle), which
in general is time dependent, while c2

b ≡ ζ
(ρ+p)τ is the prop-

agation velocity of a viscous pulse (ζ s the bulk viscosity
coefficient), which may assume values3 0 � c2

b � 2/3 [3–
5,42,66]. These results refer to the case in which the number
of particles is conserved. Taking into account the particle
production, i.e. ∇μNμ = nΓ �= 0, it follows that the vis-
cous pressure assumes the form Π = −(ρ + p)Γ /Θ , with
Θ = 3H (obtained for isentropic particle production ṡ = 0),
which is entirely determined by the particle production rate.
For a radiation dominated era p = ρ/3 and ns = (ρ+ p)/T ,
so that the evolution of the Hubble parameter is given by

Ḧ

H
− 5

4

Ḣ2

H2 + 3Ḣ − 6H2
(
c2
b − 1

2

)
+ 1

τ

(
Ḣ

H
+ 2H

)
= 0.

(2.4)

In what follows we shall refer to (2.3), the results being very
similar to the case (2.4).

To solve Eq. (2.3) we look at solutions for H(t) of the
form

3 The speed of bulk viscosity perturbations c2
b , i.e. non-adiabatic con-

tributions to the speed of sound v in a dissipative fluid without heat flux
or shear viscosity (in a viscous medium the sound velocity v propa-
gates with a subluminal velocity), is related to v by v2 = c2

s + c2
b � 1,

where cs = (∂p/∂ρ)S (S is the entropy) is the adiabatic contribution to
velocity, and the upper limit ensures the causality. Assuming that the
pressure and temperature are barotropic, with p = wρ = (γ − 1)ρ, it
then follows c2

s = γ − 1 and c2
b � 1 − c2

s = 2 − γ . For a radiation
dominated Universe, γ = 4/3, and therefore c2

b � 2/3. The latter is
a general result. In the case of radiative fluids and taking for the trace
anomaly corrections 1 − 3w ∼ 10−2, we get c2

s = 45a0δ

2π2g∗ ∼ 10−5. Dif-

ferent results are inferred if one assumes the barotropic forms ζ ∼ ρς

and τ ∼ ρχ , with ς and χ constants [42,63–65].
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H(t) = HL

(
t

tL

)Υ

, (2.5)

where HL , tL and Υ are undetermined constants. To have a
hot early Universe we confine ourselves to the case Υ < 0.
From (2.2) one infers the relation between the cosmic time
and the temperature T ,

t = tLC

(
T

MPl

) 2
Υ

,

C ≡
(

8π3g∗
90

) 1
2Υ

(
MPl

HL

) 1
Υ

, (2.6)

which allows one to cast the expansion rate in the following
form4:

H = A(T )HGR, HGR = 1

2t
, (2.7)

where

A(T ) = η

(
T

Tref

)ν

, ν ≡ 2(Υ + 1)

Υ
, (2.8)

η ≡ 2HLtL

[(
4π3g∗

45

)1/2 T 2
ref

MPlHL

] Υ +1
Υ

.

Here Tref is a reference temperature, which can be fixed for
example as the BBN temperature TBBN (TBBN � (10−2–
10−4) GeV). Inserting (2.5) into (2.3) one derives the expres-
sion for the characteristic relaxation time,

τH = 1 + Υ
2Ht

3c2
b + Υ (1+Υ )

2H2t2

. (2.9)

Before we investigate the gravitino problem, we focus on
some aspects related to the cosmological model under con-
sideration:

– Due to the successful predictions of the BBN, we shall
refer to the pre-BBN epoch since it is not directly con-
strained by cosmological observations. We require that
at the instant t∗ the Universe starts to evolve according to
standard cosmological model, i.e. although the bulk vis-
cosity effects are small during the radiation dominated
era, we assume that at t > t∗ the adiabatic index is
exactly 1/3, so that they vanish. To determine t∗, we set
H(t∗) = HGR(t∗), which implies

t∗ = tL

(
1

2tL HL

) 1
1+Υ

, Υ �= −1. (2.10)

4 Expressions similar to (2.7) are obtained in different frameworks [67,
68]. For example, ν = 2 in Randall–Sundrum type II brane cosmology
[69], ν = 1 in kination models [70–72], ν = −1 in scalar–tensor
cosmology [73–83].

To preserve the BBN predictions, we then require t∗ �
tBBN, where

tBBN � (10−2–103) s ∼ (1022 − 1027) GeV−1.

– To get a first insight of the model (that considerably sim-
plify the Boltzmann equation) we work in the regime
|Ṫ /T | > H , where

Ṫ

T
= Υ

2t
= Υ

2CtL

(
T

MPl

)− 2
Υ

. (2.11)

The condition |Ṫ /T | > H occurs for

t < t̃, t̃ ≡ tL

( |Υ |
2tL HL

) 1
1+Υ = |Υ | 1

1+Υ t∗. (2.12)

3 Gravitino problem in cosmology with bulk viscosity

As pointed out in the Introduction, gravitino is generated by
means of thermal scattering in the primordial plasma. This
occurs during the reheating era after Inflation. To describe
the gravitino production one makes use of the Boltzmann
equation for the number density of species in a thermal bath.
The relevant equation for gravitino production is

dn3/2

dt
+ 3Hn3/2 = 〈σv〉n2

rad. (3.1)

Here n3/2,rad refers to gravitino and relativistic species, while
〈. . .〉 stands for the thermal average of the gravitino cross
section σ times the relative velocity of scattering radiation

(v ∼ 1), σv ∼ M−2
Pl . In (3.1) the term

m3/2

〈E3/2〉
n3/2

τ3/2
has been

neglected. Here
m3/2

〈E3/2〉 is the average Lorentz factor. Intro-

ducing the abundances of the gravitino and of the relativistic
particles, Y3/2 = n3/2/s and Yrad = nrad/s, respectively, the
Boltzmann equation (3.1) assumes the form

dY3/2

dT
+ 3

Ṫ

(
Ṫ

T
+ H

)
Y3/2 = s〈σv〉

Ṫ
Y 2

rad. (3.2)

In the regime |Ṫ /T | > H the Boltzmann equation (3.2)
reduces to the form

dY3/2

dT
+ 3

T
Y3/2 = s〈σv〉

Ṫ
Y 2

rad. (3.3)

The Y3/2-term in (3.2) survives because the adiabatic condi-
tion is lost in the cosmological model under consideration,
contrarily to the standard cosmology. By integrating from TR
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(�T̃ ) to the temperature T̃ , where T̃ � TBBN is the temper-
ature corresponding to the instant t̃ defined in (2.12), we find
that the general solution to (3.3) (with the initial condition
Y3/2(TR) = 0) is

Y3/2(T = T̃ ) = BΘΥ (TR, T̃ ), (3.4)

where

ΘΥ ≡
(

T̃

MPl

)Δ

−
(
TR

T̃

)3 (
TR
MPl

)Δ

(3.5)

Δ = 3 + 2

Υ
, (3.6)

B ≡ α0αL , (3.7)

α0 ≡ 2π2g∗
45(1 + 3Υ )

(
4π3g∗

45

) 1
2Υ [

M2
Pl〈σv〉Y 2

rad

]
, (3.8)

αL ≡ (MPltL)

(
MPl

HL

) 1
Υ

, (3.9)

with α0 ∼ O(0 − 1) for values of Υ here considered (the
above relations hold for Υ �= −1/3). From Eq. (2.10) one
obtains an expression for tL given by

tL = t∗(2HLt∗)
1
Υ , (3.10)

which inserted into (3.9) yields

αL = 2
1
Υ (MPlt∗)

1+Υ
Υ , MPlt∗ ∼ 1041 for t∗ = tBBN.

(3.11)

Interestingly, αL is independent on free parameter tL and HL .
Let us now determine the values of the gravitino abun-

dance Y3/2 for different values of Υ . First of all, it is simple
to show that values of Υ > 0 yield Y3/2 < 0, which is phys-
ically not acceptable. Moreover, Eqs. (3.4)–(3.9) and (3.11)
imply that αL � 1 for Υ varying in the range −1 < Υ < 0.
Consistently with the cosmological model with bulk viscos-
ity here considered, we have also to analyze the behavior of
the relaxation time τH during the evolution of the Universe.
From (2.9) it turns out to be given by (t < t̃ in the pre-BBN
era)

τH = 1 + Υ
|Υ |

1
x1+Υ

3c2
b + 2Υ (1+Υ )

|Υ |2
1

x2(1+Υ )

, x =
(
t

t̃

)
< 1. (3.12)

This function is plotted in Fig. 1, with c2
b = 2/3 and

c2
b = 10−5 (see Sect. 2). The parameters {Υ, x} have to

assume values such that5 0 � τH < 1.

5 If τ is of the order of the mean interaction time tc = 1
nσv

(here
n represents the number density of the target particles with which the

Fig. 1 τH vs. {Υ, x = t/t̃} (see Eq. (3.12)), with −1 < Υ < 0,
0 � x < 1, and c2

b = 2/3 (upper panel) and c2
b = 10−5 (lower panel)

As it is clear from (3.4)–(3.9), the gravitino abundance
is weakly depending on the reheating temperature TR for a
range of values of the parameter Υ . Let us set T̃ = 10ω GeV.
In the case |Υ | � 1, the gravitino abundance reads

Y3/2 � αL

(
MPl

T̃

) 2
|Υ | �

[
2 × 10−2(2+ω)

] 1
|Υ |

,

which implies ω > −2 in order that Y3/2 � 1 and we solve
the late abundance gravitino problem. Taking, for example,
ω = −1 and |Υ | ∼ 10−2 one gets T̃ � 102 MeV and
the gravitino abundance Y3/2(T̃ ) is completely negligible.
Moreover, in the regime |Υ | � 1 it follows that the relaxation
time is τH ∼ |Υ |x

2 � 1. As a specific example, consider
Υ = −1/6. In such a case the gravitino abundance Y3/2 is
again weakly depending on the reheating temperature TR .
Moreover, one has t∗ = tL(2tL HL)−6/5, t̃ � t∗/10, and the
late gravitino abundance turns out to be Y3/2 ∼ 10−18 � 1.
From Eqs. (2.5) and (2.10) one obtains

Footnote 5 continued
given species is interacting, σ the interaction cross section, and v the
mean relative speed of interacting particles), then the hydrodynamical
description requires τH < 1 [42].
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Fig. 2 τH vs. x = t/t̃ (see Eq. (3.13)), with 0 � x < 1

τH = 1 − 1
x5/6

3c2
b − 10

x5/3

, x =
(
t

t̃

)
< 1. (3.13)

The function τH vs. x is plotted in Fig. 2 for different values
of c2

b. As we can see, the relaxation time is, for all epochs
before BBN t < t̃ < t∗, smaller than the Hubble time, i.e.
τ < H−1, as expected for a fluid description.

As seen till now, particular values of Υ imply that the late
gravitino abundance Y3/2 is independent (or weakly depend-
ing) on the reheating temperature TR . The latter, however,
influences the evolution of Y3/2 for increasing values of Υ .
Consider, for example, the value Υ = −1/2. From Eq. (3.4)
it follows

Y3/2 � 2.5 × 10−23 GeV

T̃

(
TR

T̃

)2

, (3.14)

while t̃ � t∗/4. Notice that ΘΥ =−1/2 < 0 and α0 < 0,
so that the two negative signs compensate to give a positive
Y3/2 (see (3.5) and (3.8)). The behaviors of Y3/2 and τH are
plotted in Fig. 3.

The above analysis refers to −2/3 < Υ < 0, (Δ < 0).
Let us analyze now the regime −1 < Υ � −2/3 (Δ � 0).
For Υ = −2/3 one obtains t̃ � 0.3t∗, and

Y3/2 � 1.1 × 10−21
(
TR

T̃

)3

.

Requiring Y3/2 � 10−10 one infers TR/T̃ � 4.6 × 103, i.e.
to solve the late gravitino overproduction the temperature T̃
must be closer and closer to the reheating temperature TR ,
which does not seem a favorable scenario. Moreover, the
relaxation time turns out to be τH � O(1), as arises from
Fig. 1, making the model not suitable for the solution of the
gravitino abundance, at least in the approximation |Ṫ /T | >

H . A similar unfavorable scenario follows also for the cases
−1 < Υ < −2/3 and Υ < −1.

Fig. 3 Upper panel Y3/2 vs. TR/T̃ (see Eq. (3.14)), for different values
of T̃ such that TR � T̃ . Lower panel τH vs. x = t/t̃ (see Eq. (3.12)),
with 0 � x < 1

To summarize, the cosmological model with bulk viscos-
ity provides favorable scenarios for solving the late overpro-
duction of gravitinos in the case the parameter Υ falls down
in the range −2/3 < Υ � 0. In this case, in fact, the cosmo-
logical evolution of the Universe deviates considerably from
the one based on the standard cosmological model (without
bulk viscosity effects), as discussed in the previous section.
The range of values −1 < Υ � −2/3, Υ > 0 and Υ < −1,
instead, is excluded or partially acceptable, at least in the
approximation here considered.

4 Conclusions

In this paper, we have reviewed the gravitino problem in a
cosmological model in which bulk viscosity effects are taken
into account. To avoid the late overproduction of the graviti-
nos by thermal scattering in the primordial plasma, we have
exploited the fact that if the cosmic fluid is imperfect then the
cosmic evolution of the Universe gets modified as compared
with the case of perfect fluids (the expansion rate of the Uni-
verse can be written in the form H = A(T )HGR, where the
factor A(T ) accounts for bulk viscosity effects). This affects
the Boltzmann equation, which describes the time evolution
of the gravitino abundance. Moreover, for some choice of the
parameters, the late gravitino abundance is weakly depending
on the reheating temperature. Cosmology with bulk viscosity
provides therefore scenarios able to avoid the late overpro-
duction of gravitinos. It will certainly be interesting to extend
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this analysis to the case of non-thermal perturbative gravitino
production (see for example [84,85]). This analysis will be
addressed elsewhere.
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