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Abstract We derive a Tolman–Oppenheimer–Volkoff
equation in neutron star systems within the modified f (T, T )

-gravity class of models using a perturbative approach. In
our approach f (T, T )-gravity is considered to be a static
spherically symmetric space-time. In this instance the met-
ric is built from a more fundamental vierbein which can be
used to relate inertial and global coordinates. A linear func-
tion f = T (r) + T (r) + χh(T, T ) + O(χ2) is taken as
the Lagrangian density for the gravitational action. Finally
we impose the polytropic equation of state of neutron star
upon the derived equations in order to derive the mass pro-
file and mass–central density relations of the neutron star in
f (T, T )-gravity.

1 Introduction

Recently it has been shown that the universe is accelerat-
ing in its expansion [1,2]. The concept of the cosmological
constant together with the inclusion of dark matter yield the
�CDM model which explains a whole host of phenomena
within the universe [3–5]. We may also explain this accel-
eration by instead modifying the gravitational theory itself
with alternative theories of gravity an example of which is
f (R)-gravity [6–9].

Our focus of this paper is on one alternative theory of grav-
ity called f (T )-gravity, which makes use of a “teleparallel”
equivalent of GR (TEGR) [10] approach, in which instead
of the torsion-less Levi-Civita connection, the Weitzenböck
connection is used, with the dynamical objects being four lin-
early independent vierbeins [11,12]. The Weitzenböck con-
nection is curvature-free and describes the torsion of a man-
ifold.

The differences between f (T ) class of gravity and other
gravity forms such as f (R) and TEGR is in the choice of
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the function f (T ) which is taken [8]. Comparing f (T )-
gravity with f (R)-gravity it is noted that f (T )-gravity can-
not be reformulated as a teleparallel action plus a scalar field
through the conformal transformation due to the appearance
of additional scalar-torsion coupling terms [13,14]. The obvi-
ous difference is that f (T )-gravity has a class of equations
which is easier to work with because the field equations are
of second order rather than fourth order like in f (R)-gravity
class scenarios [8]. In f (T )-gravity more degrees of freedom
are obtained, which thus corresponds to one massive vector
field [15,16].

We make use of a pure tetrad [17], which means that
the torsion tensor is formed by a multiple of the tetrad and
its first derivative only. Under the assumption of invariance
under general coordinate transformations, global Lorentz
transformations, and the parity operation we construct the
Lagrangian density from this torsion tensor [9,10,12,17].
Also the Lagrangian density is of second order in the tor-
sion tensor [10,12]. Thus f (T )-gravity generalises the above
TEGR formalism, making the gravitational Lagrangian a
function of T [8–10].

Our goal for this paper is to derive a working model for
the TOV equations within a new modification of f (T ) class
gravity, called f (T, T )-gravity in a perturbative manner. We
make use of a perturbative approach due to the fact that a
non-physical assumption had to be taken whilst deriving the
TOV equations in an analytical manner.

f (T, T )-gravity couples the gravitational sector and the
standard matter one [8]. Instead of having the Ricci scalar
coupled with the trace of the energy-momentum tensor T as
is done in f (R, T )-gravity, f (T, T )-gravity couples the tor-
sion scalar T with the trace of the matter energy-momentum
tensor T [8,9,18]. Recently a modification to this theory
has been propose, that of allowing for a general functional
dependence on the energy-momentum trace scalar, T μ

μ = T
[8,9].

Our interest is in studying the behaviour of spherically
symmetric compact objects in this theory. We propose the use
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of a linear function, namely f (T, T ) = αT (r)+βT (r)+ϕ,
where α and β are arbitrary constants which may be varied to
align our star’s behaviour with current observations. ϕ is then
considered to be the cosmological constant. We consider the
linear modification since it is the natural first functional form
to consider, and the right place to start to understand how the
trace of the stress-energy tensor might effect f (T, T ) gravity.
In particular, our focus is on neutron stars in f (T, T ) gravity.

Besides the possibility of the existence of these exotic
stars, this is also a good place to study the behaviour of mod-
ified theories of gravity in terms of constraints. Moreover,
this also opens the door to considerations of stiff matter in
early phase transitions [19].

The plan of this paper is as follows: in Sect. 2 we go over
the mathematical tools and give an overview of f (T, T )-
gravity. In Sect. 3 we discuss the rotated tetrad taken and
discuss how the equations of motion in f (T, T )-gravity are
derived perturbatively. In Sect. 4 the two TOV equations are
derived and discussed along with the schwarzschild solution,
while the results are then used in Sect. 5 where we output
the numerical results given by the yielded TOV equations.
Finally we discuss the results in Sect. 6.

2 f (T,T )-gravity overview

f (T, T )-gravity generalises f (T )-gravity and thus is based
on the Weitzenbock’s geometry. We will follow a similar
notation style as that given in Refs. [7,8,10,20–22]. Using:
Greek indices μ, ν, . . . and capital Latin indices i, κ, . . . over
all general coordinate and inertial coordinate labels, respec-
tively [7,8,20,21].

Torsion tensor [20,21,23] is given by

T λ
μν(e

λ
μ, ωλ

iμ) = ∂μe
λ
ν − ∂νe

λ
μ

+ωλ
iμe

i
ν − ωi

λνe
i
μ, (1)

where ωλ
iμ is the spin connection [23]. The torsion tensor

has vanishing curvature. Therefore by doing so all the infor-
mation of the gravitational field is embedded in the torsion
tensor [22], while the gravitational Lagrangian is the torsion
scalar [23]. The contorsion tensor is then defined as

Kμν
ρ = −1

2
(Tμν

ρ − T νμ
ρ − T μν

ρ ), (2)

while the superpotential of teleparallel gravity is defined by
[20,21]

S μν
ρ = 1

2
(Kμν

ρ + δμ
ρ T

αν
α − δν

ρT
αμ

α). (3)

Unlike the contorsion tensor, the superpotential tensor does
not have any apparent physical meaning, instead is it purely
introduced to reduce the size of the Lagrangian.

The torsion scalar [20–22] is then given as

T = S μν
ρ T ρ

μν. (4)

As in the analogous f (R, T ) theories [24], we further gen-
eralised the gravitational Lagrangian by taking an arbitrary
function f and thus giving [25,26]

S = − 1

16πG

∫
d4xe [ f (T, T ) + Lm] . (5)

The function f (T, T ) is taken to be equal to T (r) + T (r) +
χh(T, T )+O(χ2) where χ is a very small parameter which
will aid in differentiating between the zeroth and first order
terms [27], and h(T, T ) is an arbitrary function of the torsion

scalar T and the trace T of the energy-momentum tensor
e−m
T

given by T = δν
μT

μ
ν . Lm is the matter Lagrangian density

[22,25]. In this instance f is an arbitrary function of the
torsion scalar T and the trace of the energy-momentum tensor
T [25]. The variation of the action defined in Eq. (5) with
respect to the tetrad leads to the field equations [27]

eρ
i S

μν
ρ ∂μTχhTT

+ eρ
i S

μν
ρ χhTT T + e−1∂μ

(
eeρ

i S
μν

ρ

)
(1 + χhT )

+ eμ
i T

λ
μκ S

νκ
λ (1 + χhT )

− eν
i T (r) + T (r) + χh(T, T )

4
+ (1 + χhT )ωi

λνS
νμ

i

− (1 + χhT )

2

(
eλ
i T ν

λ + p(r)eν
i

) = −4πeλ
i

e−m
T

ν

λ , (6)

where hT = ∂h

∂T
, hT = ∂h

∂T , and hTT = ∂2h

∂T ∂T .

3 Perturbative equations of motion in f (T,T )-gravity

In perturbative theory the field equations may be expanded
perturbatively in χ [27] and therefore the metric components
take on the form of the expansions A(r)χ = A(r)+χ A(r)1+
· · · and B(r)χ = B(r) + χB(r)1 + · · · [27]. The energy-
momentum tensor in the field equations is still the energy-
momentum tensor of the perfect fluid. The hydrodynamic
quantities are also defined perturbatively by ρ(r)χ = ρ(r)+
χρ(r)1 + · · · and p(r)χ = p(r) + χp(r)1 + · · · [27].

A spherically symmetric metric, which has a diagonal
structure, is considered for our system [28],

ds2 = −eA(r)χ dt2 + eB(r)χ dr2 + r2dθ2 + r2 sin2 dφ2, (7)

and we consider the fluid inside the star to be that of a perfect
fluid which yields a diagonal energy-momentum tensor

e−m
T

ν

λ = diag(−ρ(r)χ , p(r)χ , p(r)χ , p(r)χ ), (8)
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where ρ(r)χ and p(r)χ are the energy density and pressure
of the fluid, respectively [28]. These also make up the matter
functions which, along with the metric functions, A(r) and
B(r), are also taken to be independent of time [22]. Thus the
system is taken to be in equilibrium [5,28].

The equation of conservation of energy is given by

dp(r)

dr
= −(ρ(r) + p(r))

dA(r)

dr
. (9)

Following Ref. [17] the rotated tetrad

eaμ =

⎛
⎜⎜⎜⎜⎜⎜⎝

e

A(r)χ
2 0 0 0

0 e

B(r)χ
2 sin θ cos φ e

B(r)χ
2 sin θ sin φ e

B(r)χ
2 cos θ

0 −r cos θ cos φ −r cos θ sin φ r sin θ

0 r sin θ sin φ −r sin θ cos φ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

is used.
This form of vierbein is considered because it allows us

more degrees of freedom [29] and it allows us to acquire a
static and spherically symmetric wormhole solution in our
standard formulation of f (T, T )-gravity [29,30].

Also, because this is a pure form of tetrad [23], the spin
connection elements of the tetrad vanish and thus ensure that
the spin connection terms need not be included [23].

Inserting this vierbein into the field equations, from Eq.
(4) we get the resulting torsion scalar,

T (r) = 2e−B(r)

r2

⎛
⎝1 − e

B(r)

2

⎞
⎠

⎛
⎝1 − e

B(r)

2 + r A′(r)

⎞
⎠ ,

(10)

where the prime denotes the derivative with respect to r . The
resulting field equation components turn out to be as follows.
The t t component, given by i = ν = 0, results in

4πρ(r)χ = T (r)χ + T (r)χ + χh

4
+ e−B(r)

2r2 (1 + χhT )

×
⎡
⎣−2 + 2e

B(r)

2 + r A′(r)

⎛
⎝e

B(r)

2 − 1

⎞
⎠ + r B ′(r)

⎤
⎦

+ (1 + χhT )

2
(ρ(r) − p(r))

+ e−B(r)χ

r

⎛
⎝e

B(r)

2 − 1

⎞
⎠ (hTT T

′(r) + hTT T ′(r)).

(11)

The r -r component, given by i = ν = 1 results in

4πp(r)χ = T (r)χ + T (r)χ + χh

4
+ e−B(r)

2r2 (1 + χhT )

×
⎡
⎣2

⎛
⎝e

B(r)

2 −1

⎞
⎠ + r A′(r)

⎛
⎝e

B(r)

2 − 2

⎞
⎠

⎤
⎦

− p(r)(1 + χhT ). (12)

Note that the zeroth order quantities are given without a sub-
script.

4 Perturbative derivation in f (T,T )-gravity

We will now make use of the equations of motion given by
Eqs. (11) and (12) by first considering a solution for ρ(r)χ
and p(r)χ up to order χ . The zeroth order quantities are
considered from these two equations and they are given by

4πρ(r) = T (r)+T (r)

4
+ e−B(r)

2r2

[
− 2+2e

B(r)

2 +r A′(r)

×
⎛
⎝e

B(r)

2 −1

⎞
⎠+r B ′(r)

]
+ (ρ(r)− p(r))

2

(13)

and

4πp(r) = T (r) + T (r)

4
+ e−B(r)

2r2

⎡
⎣2

⎛
⎝e

B(r)

2 − 1

⎞
⎠

+ r A′(r)

⎛
⎝e

B(r)

2 − 2

⎞
⎠

⎤
⎦ − p(r). (14)

At this point the torsion scalar given by Eq. (10) and T (r) =
ρ(r) − 3p(r) are inserted into the two equations which after
manipulation results in

4πρ(r) = e−B(r)

2r2 (−1 + eB(r) + r B ′(r))

+ 1

4
(3ρ(r) − 5p(r)) (15)

and

4πp(r) = e−B(r)

2r2 (−1 + eB(r) − r A′(r))

+ 1

4
(ρ(r) − 7p(r)), (16)

respectively.
At this point it is convenient to take a mass parameter

ansatz. The solution is assumed to have the same form of
the exterior solution for the metric function Bχ . In order to
render a metric ansatz in line with the Schwarzschild metric
we take the following [27]:
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e−B(r)χ = 1 − �M(r)χ
r

+ ε(r)χ , (17)

where � is an arbitrary constant and ε(r) is taken to be a
function of r . Similar to ρχ , M(r)χ is expanded in χ as
Mχ = M + χM1 + · · · , [27] where M is the zeroth order
solution.

Taking a derivative of Mχ with respect to r the following
is obtained:

dMχ

dr
= 1

�
(1 − e−B(r)χ + ε(r)χ

+ e−B(r)χ r B ′(r)χ + rε′(r)χ ). (18)

Now we focus on the first equation of motion given by Eq.
(11) where we insert the torsion scalar equation and the
energy-momentum components and thus obtain the follow-
ing equation:

4πρ(r)χ = �

2r2

dMχ

dr
− (εχ (r))′

2r2 + 1

4
(3ρ(r)χ − 5p(r)χ )

+χ

{
h

4
+ e−B(r)hT

2r2

×
⎡
⎣−2+2e

B(r)

2 +r A′(r)

⎛
⎝e

B(r)

2 −1

⎞
⎠+r B′(r)

⎤
⎦

+ hT
2

(ρ(r) − p(r)) + e−B(r)

r

⎛
⎝e

B(r)

2 − 1

⎞
⎠

× (hT T T
′(r) + hTT T ′(r))

}
. (19)

Here we invoke a linear parameter for h, given by αT (r) +
βT (r)+ϕ, which after being inserted into this equation and
after further reduction yields

dMχ

dr
= 8πr2ρ(r)χ

�
+ (εχ (r))′

2r2 − r2

2�
(3ρ(r)χ − 5p(r)χ )

− r2χ

2�

{
αe−B(r)

r2

×
⎡
⎣2e

B(r)

2 −3+eB(r)+r A′(r)

⎛
⎝e

B(r)

2 −1

⎞
⎠+2r B ′(r)

⎤
⎦

+ ϕ + β (3ρ(r) − 5p(r))

}
. (20)

The main task at this point is to reduce the values of A′(r) and
B ′(r) where the definitions given by Eqs. (15), (16), and (17)
will be substituted, thus resulting in our first TOV equation,

dMχ

dr
= 8πr2ρ(r)χ

�
+ (εχ (r))′

2r2 − r2

2�
(3ρ(r)χ − 5p(r)χ )

− r2χϕ

2�
+ χα

4�

(
1 − �M(r)

r
+ ε(r)

)1

2

×
{

− 2 + r [r + rε(r) − M(r)�]−1

×[r2(p(r)(7 + 16π) − ρ(r)) − 2]

+
(

1 + ε(r) − �M(r)

r

)−1

2

[4−r2 (p(r)(17+16π)+ρ(r)(32π−7))]
}
. (21)

Now we shift our focus into deriving the pressure–radius
relation of the TOV equations. For this purpose, Eq. (12)
is considered where a similar treatment will be given i.e.
we substitute the torsion scalar equation and the energy-
momentum definition to give

A′(r)χ = eB(r)χ

{
1

r
(1 − e−B(r)χ )

+ r

2
(ρ(r)χ − 7p(r)χ ) − 8πp(r)χr

+ 2rχ

⎧⎨
⎩
h

4
+ hT e−B(r)χ

2r2

⎡
⎣2

⎛
⎝e

B(r)

2 − 1

⎞
⎠

+ r A′(r)

⎛
⎝e

B(r)

2 − 2

⎞
⎠ − hT p(r)

⎫⎬
⎭

⎫⎬
⎭ . (22)

Inserting the definition of h and Eq. (17) and reducing further
yields

A′(r)χ =
{

8p(r)πr (αχ − 1) + �M(r)

r2 − ε(r)

r
+ rχϕ

2

− r

2
(7p(r) − ρ(r)) (1 + β − αχ)

}

×
[

1 − �M(r)χ
r

+ ε(r)χ

]−1

. (23)

This result is then inserted into the continuity equation given
by Eq. (9) and thus results in the second TOV equation
required,

p(r)χ
pr

= − (
ρ(r)χ + p(r)χ

)

×
{

8p(r)πr (αχ − 1) + �M(r)

r2 − ε(r)

r
+ rχϕ

2

− r

2
(7p(r) − ρ(r)) (1 + β − αχ)

}

×
[

1 − �M(r)χ
r

+ ε(r)χ

]−1

. (24)
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5 Numerical modelling of neutron stars

Through Eqs. (21) and (24) any spherically symmetric mass
in f (T, T )-gravity can be investigated in terms of its phys-
ical properties. In order to obtain a mass profile relation for
the TOV equations, we numerically integrate our TOV equa-
tions of stellar structure to build models of neutron stars in
f (T, T )-gravity. Here we take the relativistic energy density
ρ(r) to be equal to

ρ(r) = ρ0(r) + p(r)

� − 1
, (25)

where ρ0(r) is the rest matter density [31]. We take the initial
conditions equal to m(0) = 0 and p(0) = Kρ�

0,c where

ρ�
0,c(r) = 1015gm/cm3 is the central density [31]. We take

� = 4/3 and G = 1 and c = 1 [31].
The value of � is taken to be 2, as one in Ref. [27] suggests,

and the value of ϕ is taken to be the cosmological constant,
2.036 × 10−35 [32]. Here we also consider our value of χ

as being a very small but non-zero value ∼10−12 cm−2 [27].
The value of α in Eqs. (21) and (24) is taken to be −1 and
the value of β is varied. We vary the value of β so as to
manipulate the dominance of the function T (r).

5.1 Mass profile curve

In Fig. 1 we show the mass profile curve of a neutron star.
We take β = −1 to include the GR case at this order of the
perturbation and contrast with decreasing values of β.

As the function T (r) = ρ(r)−3p(r) [26] is included i.e.
when β = −5 is taken, a similar mass profile is generated
from the TOV equations. Figure 1 shows that the neutron star
at first appears to be smaller in nature, however, around the
17 km mark it surpasses the neutron star generated by the
GR case to yield a larger stellar structure.

Current observations shown in the literature by [33] state
that such massive neutron stars may exist. In fact the figures
show that there is ≈4.67% increase in the maximum mass
value of the neutron star gained.

We further magnify this effect by taking β = −10 and
as may be seen from Fig. 1, the neutron star at first behaves
exactly like the previous case and again surpasses the other
cases at the 17 km mark to yield a more massive neutron star.
In fact by considering β = −10 the allowable maximum
mass of the neutron star is increased by 5.43% over the β =
−5 case and 10.35% over the GR case.

In order to better understand the physical behaviour of
neutron stars we investigate how mass varies over radius for
different settings of β in Fig. 1. Whichever values of β are
taken, the graphical output is similar in structure to that of
GR. Another aspect to note is that the general behaviour of
the stellar system remains the same, however, a new degree

Fig. 1 Mass profile graph of a neutron star where α = −1 and three
different variations of β. The value of � = 4/3, � = 2 [27] and
ϕ = 2.036 × 10−35 [32]

of freedom is allowed depending on the maximum mass and
radius of these stars.

In contrast the results gained in this paper are similar to
those gained by various other authors such as found in Refs.
[34–37]. The resulting mass profile curves behave in a similar
manner where mass steadily increases with radius to plateau
at an instance.

5.2 Radius–central density curve

Figure 1 is heavily dependent on the central density, not in
behaviour but in terms of the particular values being pro-
duced. To contrast this we plot the radius–central density
curve which was generated from the TOV equations. This
plot is given by Fig. 2.

Again we contrast with the GR case when taking β = −1.
When we decrease the value of β by taking β = −5 we may
note that the central density figure is significantly lower than
that of the GR case. It is noted that in both cases the curves
decrease at the same rate with radius and curve at the same
instance to intersect at a point close to 1 km.

To magnify this we again take a lower value of β by tak-
ing β = −10, this shows that the central density declines
somewhat rapidly at first initially with radius and then slowly
declines steadily similar to the previous cases, however, it
reaches the lowest value the fastest out of the three cases
considered. Thus this shows that a slightly larger neutron
star is allowed in such a gravitational framework.

Much like the mass profile curves the results gained from
Refs. [34–37] exhibit similar results as gained in this study.
The central density value increases significantly with radius
at first to gain a maximum value as we get closer to the centre
of the star.
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Fig. 2 Radius–central density graph of a neutron star where α = −1
and three different variations of β. The value of � = 4/3, � = 2 [27]
and ϕ = 2.036 × 10−35 [32]

6 Conclusion

In this study the TOV equations are derived in a perturbative
way for f (T, T )-gravity. Later the two equations are applied
to a polytropic equation of state which yielded the character-
istics of the neutron star in such a gravitational framework.

Our main goal throughout this research is to derive a work-
ing model which involved little to no assumptions in the
derivation. We also wanted to retain and include as many
general terms as possible. We did this also because we would
like to further fine tune our results to current observations.

A reasonable boundary condition was taken in order to
solve the TOV equations by numerical techniques. We apply
the polytropic equation of state in order to reduce our TOV
equations from a four variable equation to a three variable
equation by making one of the variables dependent on the
others.

Our approach considered a value of χ which is non-zero
but, however, very small,∼10−12 cm−2. The literature shown
in Ref. [27] shows that the typical value of the Ricci curvature
is calculated to be roughly of a similar order. Thus assuming
our value of χ to be so small is reasonable.

Our graphical representations are inspired by the work
carried out by the authors of Refs. [8,38]. The graphs show
that a larger neutron star is allowed in such a gravitational
framework. We vary the values of β accordingly to output
the variations occurring when we include the T (r) term. By
taking a lower value of this term we note that it allows for a
larger neutron star. This value will require future fine tuning
in order to align with current observations.

More values of β were considered in testing. The results
showed that when positive values of β were considered no

tangible neutron star would be yielded in such a gravitational
framework. When lower values of β were considered the
yielded stellar structures did not behave in accordance with
the theory as explained in Ref. [39]. Thus the range of values
for β considered to yield a tangible and proper neutron star
would be −10 � β � −1.

There have not yet been many extensive studies conducted
where the linear Lagrangian approach is considered as is
done in this manuscript. However, there have been cosmo-
logical studies that reconstruct the Lagrangian for various
state parameter conditions [26].

For future work we also hope to derive the TOV equations
using a non-linear Lagrangian, however, till now we have not
been able to yield working TOV equations. We also hope to
derive the TOV equations in f (T, T )-gravity in an analytical
manner.
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