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Abstract We show that the four-dimensional Lovelock–
Cartan action can be derived from a massless gauge theory
for the SO(1, 3) group with an additional BRST trivial part.
The model is originally composed of a topological sector
and a BRST exact piece and has no explicit dependence on
the metric, the vierbein or a mass parameter. The vierbein
is introduced together with a mass parameter through some
BRST trivial constraints. The effect of the constraints is to
identify the vierbein with some of the additional fields, trans-
forming the original action into the Lovelock–Cartan one. In
this scenario, the mass parameter is identified with Newton’s
constant, while the gauge field is identified with the spin
connection. The symmetries of the model are also explored.
Moreover, the extension of the model to a quantum version
is qualitatively discussed.

1 Introduction

In [1], Mardones and Zanelli proposed the most general grav-
ity action depending on the curvature and torsion without the
use of the Hodge dual operation for any spacetime dimen-
sion. This result generalizes the Lovelock theorem [2] which
states, for any dimension, the most general gravity action
depending only on the curvature. The Zanelli–Mardones
result was baptized as Lovelock–Cartan theory of gravity.
The main motivations of this result, in spite of the fact that
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torsion degrees of freedom have never been observed in grav-
ity, is that torsion might be relevant at the quantum level and
the fact that curvature and torsion are at the same level from
the geometry point of view [1,3–9].

The fact that curvature and torsion are independent quan-
tities in Lovelock–Cartan (LC) theories enables the use of
the Einstein–Cartan formalism of gravity [3,10–12], which
is based on the vierbein and spin connection as fundamen-
tal and independent variables. In this approach, gravity can
be interpreted as a kind of gauge theory where the gauge
symmetry is identified with the spacetime local isometries.
This equivalence opens the possibility of the application of
well-known quantization techniques of gauge theories.

In spite of how similar such formulations of gravity are
with respect to gauge theories, their quantization as funda-
mental theories still lacks. Essentially, these theories share
the same problems as pure metric and Palatini theories of
gravity [13–15]. In particular, the perturbative renormaliz-
ability or unitarity problems remain [16], as well as back-
ground independence [17,18] and so on.

In the present work we provide the construction of a gauge
theory which encodes the Lovelock–Cartan dynamics. The
gauge theory is constructed for the gauge group SO(1, 3)

over a four-dimensional manifold. In contrast to the gravity
theories in the Einstein–Cartan formalism, the gauge degrees
of freedom and the spacetime are independent, by construc-
tion. The original action is massless and is formed by a topo-
logical term and a BRST exact one and the fundamental fields
are the gauge connection, the ghost field and a quartet system
formed by two BRST doublets. Moreover, the gauge theory
is metric independent and also independent of the vierbein
field. On the side of the manifold, we provide no dynam-
ics to it. It is just a generic manifold where the gauge the-
ory lives on. Hence, with the help of extra BRST doublets,
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we introduce an algebraic quadratic coupling with the vier-
bein of the manifold. The extra doublets can be visualized
as Lagrange multipliers for extra constraints. The effect of
such constraints is to transform the gauge theory coupled to
the vierbein into the four-dimensional LC action. Essentially,
the constraints identify the gauge theory degrees of freedom
with spacetime, providing the LC dynamics to it.

The model enjoys a rich set of symmetries that can be
written as consistent Ward identities. This feature would be
important in a quantum version of the model. A possibility is
to quantize the gauge theory coupled to the classical vierbein.
The classical limit of such model would be the LC action. In
this scenario, the dynamics of spacetime would be ruled by a
quantum gauge theory composed of a topological piece and a
BRST exact one. Nevertheless, in this work, we remain at the
classical level. The formalization of the quantum version of
the model is left for future investigation due to the intricacies
of renormalizability and gauge fixing of metric free theories.

The article is organized as follows: In Sect. 2 we pro-
vide a small overview of the Lovelock–Cartan action in four
dimensions. In Sect. 3 we construct the massless gauge the-
ory composed of a topological term and a BRST exact one.
We also provide a complete discussion of the symmetries of
the model in terms of Ward identities. In Sect. 4 we intro-
duce the massive constraint carrying the vierbein classical
field and discuss how the constraint leads to the LC action.
In addition, we generalize all Ward identities of the previ-
ous section. In Sect. 5 we provide an extra discussion of the
BRST symmetry and a detailed, yet qualitative, discussion
of the quantum version of the model. Finally, in Sect. 6 we
display our conclusions.

2 Overview of the Lovelock–Cartan action in four
dimensions

The Lovelock–Cartan action [1] in four dimensions is given
by

S = S0 + Sμ, (2.1)

where

S0 =
∫

(z1εabcd R
abRcd + z2R

abRab) (2.2)

and

Sμ = μ2
∫

[εabcd(z3R
abeced + z4μ

2eaebeced)

+ z5Rabe
aeb + z6T

aTa], (2.3)

over a four-dimensional manifold M . The quantities Ra
b =

dωa
b + ωa

cω
c
b and T a = Dea = dea + ωa

be
b are, respec-

tively, the curvature and torsion 2-forms. The basic fields are
the vierbein 1-form ea and the connection 1-form ωa

b. All

parameters zi are dimensionless, while μ carries mass dimen-
sion 1. Moreover, the action (2.1) also contains the invariant
tensors εabcd and ηab.

The first term in (2.2) is recognized as the Gauss–Bonnet
topological term, while the second term is the Pontryagin
topological term. For z6 = −z5, the last two terms in (2.3) are
also reduced to a topological term, i.e., the Nieh–Yan term:
T aTa − Rabeaeb = d(eaT a). On the other hand, because
DT = Re, these terms are actually the same up to sur-
face terms. Thus, generically, S0 is topological, while Sμ

is dynamical. Obviously, the first term in the action Sμ is
the Einstein–Hilbert action while the second term in Sμ is
the a cosmological constant term. Hence, μ2z3 is identified
with Newton’s constant while μ2z4/z3 with the cosmological
constant.

The action (2.1) is invariant under gauge transformations
for the group SO(1, 3) whose infinitesimal version are

δea = −ξabe
b,

δωa
b = Dξab = dξab + ωa

cξ
c
b − ω c

b ξ a
c , (2.4)

which describe the local spacetime isometries associated
with the strong equivalence principle. The quantity ξab is the
infinitesimal gauge parameter and D the exterior covariant
derivative in the adjoint representation. These transforma-
tions correspond to transformations in the cotangent space at
a point x ∈ M . Moreover, since these transformations leave
the manifold coordinates unchanged, they can be interpreted
as gauge transformations. Thus, gravity can be interpreted as
a special type of gauge theories for which the fields have a
geometrical meaning.1 These transformation laws establish
that, from the gauge theory point of view, the gauge field of
the model is the spin connection ω, while the vierbein e is a
matter field.

3 A massless gauge theory

As discussed at the Introduction, the aim of the paper is to
show that the LC action (2.1) can be obtained from a trivial
theory (in the sense of containing just a topological and BRST
exact terms) by the introduction of a suitable algebraic linear
constraint. This section is devoted to the construction of such
trivial action.

3.1 Fundamental ingredients and action

We consider a massless SO(1, 3) gauge theory in a four-
dimensional manifold. The natural ingredients are the fun-
damental fields of the theory, namely the gauge field ωa

b
and the ghost field cab, and the invariant tensors εabcd and

1 The fields directly determine the spacetime dynamics.
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ηab. The most general action with vanishing ghost number,
dimension four, polynomial on the fields and their derivatives
and not explicitly dependent on the metric or the vierbein is
the topological part of the LC action, namely S0. Here, for
consistency, we define it as

S′
0 =

∫
(z′1εabcd RabRcd + z′2RabRab), (3.1)

where z′i are dimensionless parameters which eventually will
be identified with the original parameters zi of the topologi-
cal action (2.2). Because the model is massless by construc-
tion, there is no room for Sμ-like terms. Hence, the vierbein
independence is ensured at this point. The fundamental fields
transform under BRST symmetry as

sωa
b = −Dcab,

scab = −cacc
c
b, (3.2)

where s is the nilpotent BRST operator.
We also define a BRST quartet system of dimensionless

1-forms, namely,

sη̄a = σ̄ a − cabη̄
b,

sσ̄ a = −cabσ̄
b,

sσ a = ηa − cabσ
b,

sηa = −cabη
b. (3.3)

The 1-forms η̄a and ηa have fermionic statistics while σ̄ a and
σ a have a bosonic one. Moreover, it is clear from the trans-
formations (3.3) that the quartet is a double BRST doublet.
This means that they are non-physical fields, belonging to the
trivial sector of the BRST cohomology [19]. The existence
of the quartet system allows the introduction of an extra term
to the action,

Striv = s
∫

{εabcd(z′3Rabη̄cσ d + z′4η̄aσ bσ̄ cσ d)

+ z′5Rabη̄
aσ b + z′6Dη̄aDσa

+ z′7[η̄aσa(σ̄ bσb − η̄bηb) + η̄aσbη̄aη
b]}

=
∫

{εabcd [z′3Rab(σ̄ cσ d + η̄cηd)

+ z′4(σ̄ aσ b + η̄aηb)(σ̄ cσ d + η̄cηd)]
+ z′5Rab(σ̄

aσ b + η̄aηb) − z′6(Dσ̄ aDσa − Dη̄aDηa)

+ z′7[(σ̄ aσa + η̄aηa)(σ̄
bσb − η̄bηb)

+ 2η̄aη
b(σ̄ aσb − σ̄bσ

a) + η̄aηbη̄aηb]}, (3.4)

which is trivial with respect to the BRST cohomology. The
parameters z′i are dimensionless parameters.2

The action

ST = S′
0 + Striv (3.5)

2 Eventually, they will be associated with the Lovelock–Cartan param-
eters zi appearing in (2.1).

is dynamically empty because the topological term does not
contribute to the field equations and the BRST exact sec-
tor ensures that Striv is dynamically trivial. Moreover, the
action (3.5) is highly non-perturbative3 due to the absence
of quadratic terms. We also remark that this action is inde-
pendent of the metric, the vierbein and the ghost fields. As
a consequence the independence of the vierbein field in the
action can be taken as an independence between the gauge
symmetry and the manifold isometries. This property ensures
that the dynamics of spacetime is not related to any of the
fields in (3.5).

3.2 Symmetries and Ward identities

All continuous symmetries of the action ST can be character-
ized in a functional way through suitable Ward identities. It
is useful to define a set of BRST invariant sources in order to
control the non-linear character of the BRST transformations
of the fields through the external action

Sext = s
∫

(�b
aω

a
b+Lb

ac
a
b − Xa η̄

a − X̄aη
a+Ya σ̄

a+Ȳaσ
a)

=
∫

[−�b
aDcab − Lb

ac
a
c c

c
b

+ Xa(σ̄
a − cab η̄

b) − X̄ac
a
bη

b − Yac
a
b σ̄

b

+Ȳa(η
a − cabσ

b)], (3.6)

with

s� b
a = sL b

a = sXa = s X̄a = sYa = sȲa = 0. (3.7)

The full action is then

	0 = ST + Sext. (3.8)

We now can list all Ward identities.

• Slavnov–Taylor identity:

S(	0) = 0, (3.9)

where

S(	0) =
∫ (

δ	0

δ�b
a

δ	0

δωa
b

+ δ	0

δLb
a

δ	0

δcab
+ δ	0

δXa

δ	0

δη̄a

+ δ	0

δ X̄a

δ	0

δηa
+δ	0

δYa

δ	0

δσ̄ a
+δ	0

δȲa

δ	0

δσ a

)
. (3.10)

3 It is not difficult to check that the action (3.5), as it stands, has no
quadratic terms in the fields. As a consequence, there is no free theory
to be defined (and no tree-level propagators). Hence, a perturbative
expansion around a free theory is not at our disposal. In fact, all non-
vanishing terms in (3.5) are interacting terms. A theory of this type is
said to be highly non-perturbative. Of course, one can always define
background configurations and enforce a perturbative regime around
these configurations.
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• Ghost equation:

∫
δ	0

δcab
= 
 b

a , (3.11)

where


b
a =

∫
(−Lc

ac
b
c + Lb

cc
c
a − �c

aω
b
c

+�b
cω

c
a + Xa η̄

b + X̄aη
b − Ya σ̄

b − Ȳaσ
b)

(3.12)

is a linear breaking.
• Vierbein equation:

δ	0

δea
= 0. (3.13)

• Rigid supersymmetries:

R(i)	0 = 
(i), (3.14)

where i ∈ {1, 2, 3, 4}. The rigid supersymmetric opera-
tors are

R(1) = σ a δ

δηa
− η̄a

δ

δσ̄ a
− Ya δ

δXa
− X̄a δ

δȲ a
,

R(2) = σ̄ a δ

δη̄a
+ ηa

δ

δσ a
− Xa δ

δYa
+ Ȳ a δ

δ X̄a
,

R(3) = σ̄ a δ

δηa
− η̄a

δ

δσ a
− Ȳ a δ

δXa
− X̄a δ

δYa
,

R(4) = σ a δ

δη̄a
+ ηa

δ

δσ̄ a
+ Ya δ

δ X̄a
− Xa δ

δȲ a
, (3.15)

while the only non-vanishing 
(i) are


(1) = Xa η̄
a − X̄aη

a − Ya σ̄
a + Ȳaσ

a,


(4) = −2Xaη
a, (3.16)

which are linear in the fields.
• Rigid fermionic equations:

Q(i)	0 = �(i), (3.17)

where

Q(1) = −η̄a
δ

δηa
+ X̄a δ

δXa
,

Q(2) = ηa
δ

δη̄a
− Xa δ

δ X̄a
, (3.18)

and the only non-vanishing breaking is

�(1) = X̄a σ̄
a − Ȳa η̄

a, (3.19)

which is linear in the fields.
• First U 4(1) charge equation:

Q0	0 = 0, (3.20)

where

Q0 = σ a δ

δσ a
− σ̄ a δ

δσ̄ a
+ ηa

δ

δηa
− η̄a

δ

δη̄a

+ Xa δ

δXa
− X̄a δ

δ X̄a
+ Ya δ

δYa
− Ȳ a δ

δȲ a
.

(3.21)

Equation (3.20) expresses the existence of a quantum
number associated with a U 4(1) symmetry among the
quartet fields.

• Second U 4(1) charge equation:

Q̄0	0 = −2(Xa σ̄
a + Ȳaη

a), (3.22)

where

Q̄0 = σ a δ

δσ a
− σ̄ a δ

δσ̄ a
− ηa

δ

δηa
+ η̄a

δ

δη̄a

− Xa δ

δXa
+ X̄a δ

δ X̄a
+ Ya δ

δYa
− Ȳ a δ

δȲ a
.

(3.23)

Equation (3.22) expresses the existence of a second quan-
tum number associated with the other U 4(1) symme-
try among the quartet fields. Combination of (3.20) and
(3.22) results in

Q(i)
eff	0 = (−1)i−1(Xa σ̄

a + Ȳaη
a), (3.24)

where

Q(1)
eff = 1

2
(Q0 − Q̄0)

= ηa
δ

δηa
− η̄a

δ

δη̄a
+ Xa δ

δXa
− X̄a δ

δ X̄a
,

Q(2)
eff = Q(1)

eff + Q̄0

= σ a δ

δσ a
− σ̄ a δ

δσ̄ a
+ Ya δ

δYa
− Ȳ a δ

δȲ a
. (3.25)

For completeness, we display the quantum numbers of the
fields (including the vierbein) in Table 1 and the quantum
numbers of the sources in Table 2.
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Table 1 Quantum numbers of the fundamental fields and the quartet
system

Field ω c̄ e σ̄ σ η̄ η

Q-charge 0 0 0 −1 1 −1 1

Q̄-charge 0 0 0 −1 1 1 −1

Ghost no 0 1 0 0 0 −1 1

Form rank 1 0 1 1 1 1 1

Statistics 1 1 1 1 1 0 2

Table 2 Quantum numbers of the sources

Source � L X̄ X Ȳ Y

Q−charge 0 0 −1 1 −1 1

Q̄−charge 0 0 1 −1 −1 1

Ghost no −1 −2 0 −2 −1 −1

Form rank 3 4 3 3 3 3

Statistics 2 2 3 3 2 2

The commutation relations between the Ward operators
can also be obtained by a straightforward computation. Start-
ing with the Slavnov–Taylor operator, for instance, letF be a
general functional of even ghost and form number; we define
the Slavnov–Taylor operator action on F as

S(F) =
∫ (

δF
δ�b

a

δF
δωa

b
+ δF

δLb
a

δF
δcab

+ δF
δXa

δF
δη̄a

+ δF
δ X̄a

δF
δηa

+ δF
δYa

δF
δσ̄ a

+ δF
δȲa

δF
δσ a

)
.

(3.26)

Its linearized version reads

SF =
∫ (

δF
δ�b

a

δ

δωa
b

+ δF
δωa

b

δ

δ�b
a

+ δF
δLb

a

δ

δcab

+ δF
δcab

δ

δLb
a

+ δF
δXa

δ

δη̄a
+ δF

δη̄a

δ

δXa
+

+ δF
δ X̄a

δ

δηa
+ δF

δηa

δ

δ X̄a
+ δF

δYa

δ

δσ̄ a

+ δF
δσ̄ a

δ

δYa
+ δF

δȲa

δ

δσ a
+ δF

δσ a

δ

δȲa

)
. (3.27)

From (3.15), (3.26) and (3.27) we get

R(i)S(F) + SF R(i)(F) = 0. (3.28)

We also have the following commutation relations:

(R(i))2 = 0, {R(1), R(2)} = Q0,

{R(1), R(3)} = 2Q(1), {R(1), R(4)} = 0, {R(2),

R(3)} = 0, {R(2), R(4)} = 2Q(2), {R(3), R(4)} = −Q̄0.

(3.29)

Moreover,

[R(1), Q0] = 0, [R(2), Q0] = 0, [R(3), Q0] = 2R(3),

[R(4), Q0] = −2R(4), [R(1), Q(1)] = 0,

[R(1), Q(2)] = R(4), [R(2), Q(1)] = −R(3),

[R(2), Q(2)]=0, [R(3), Q(1)]=0, [R(3), Q(2)]= R(2),

[R(4), Q(1)] = −R(1), [R(4), Q(2)] = 0,

[Q(1), Q(2)] = Q(1)
eff , [Q(i), Q0] = (−1)i−12Q(i). (3.30)

The rich set of Ward identities ensures that 	0 is the most
general local classical action, polynomial in the fields and
their derivatives, with vanishing ghost number and indepen-
dent on the metric and the vierbein. Hence, the Ward identi-
ties ensure the triviality of the model as well as the fact that
the model has no relation with spacetime dynamics.

3.3 A remark about the BRST triviality

The quartet system (3.3) is composed of BRST doublets, and
thus, these fields live at the trivial sector of the BRST coho-
mology. Hence, Striv does not affect the physical dynamical
content of the topological action S0. Nevertheless, we can
decompose s as

s = so + δ̃, s2
o = δ̃2 = {so, δ̃} = 0, (3.31)

where so and δ̃ act on the fields as

soω
a
b = −Dcab,

soc
a
b = −cacc

c
b,

soη̄
a = −cabη̄

b,

soσ̄
a = −cabσ̄

b,

soσ
a = −cabσ

b,

soη
a = −cabη

b, (3.32)

and

δ̃η̄a = σ̄ a,

δ̃σ̄ a = 0,

δ̃σ a = ηa,

δ̃ηa = 0. (3.33)

Moreover, it is easy to check that

soStriv = δ̃Striv = 0 (3.34)

and

Striv �= so (something),

Striv = δ̃ (something). (3.35)

Thus, although s and δ̃ define the quartet system as trivial,
they are not trivial with respect to so. This means that these
fields can be interpreted as physical under the so cohomology.

123



249 Page 6 of 10 Eur. Phys. J. C (2017) 77 :249

4 Introducing a massive constraint and the vierbein

4.1 Constraint action

The LC action can be recovered from 	0 with the introduc-
tion of a set of suitable constraints. The only demand is that
the Ward identities could be broken only by linear terms in
the fields. Such a requirement is essential for the extension of
such Ward identities to the quantum level. In fact, it is easy
to see that these constraints are given by

σ̄ a = σ a = mea,

η̄a = ηa = 0, (4.1)

wherem is a mass parameter4 and ea the vierbein field, which
is taken to be a classical field.5 Within this construction, the
vierbein must be a BRST invariant quantity,

sea = 0. (4.2)

It is clear that these constraints introduce not only the vier-
bein, but also a mass scale.

To employ the constraint without spoiling the BRST triv-
iality of 	0, we introduce two extra BRST quartet systems,
namely,

sθ̄a = λ̄a,

sλ̄a = 0,

sθa = λa,

sλa = 0, (4.3)

and

sγ̄ a = ρ̄a,

sρ̄a = 0,

sγ a = ρa,

sρa = 0, (4.4)

which will work as Lagrange multipliers for the constraints
(4.1). The quantum numbers of the new quartet systems are
displayed at Table 3.

Then the constraint action is given by

Sc = s
∫

[θ̄a(σ a − mea) + θa(σ̄
a − mea) + γ̄ aηa + γa η̄

a]

=
∫

[λ̄a(σ a − mea) + λa(σ̄
a − mea) + θ̄a(η

a − cabσ
b)

− γa(σ̄
a−cab η̄

b)+ρ̄aη
a+ρa η̄

a−θac
a
b σ̄

b+γ̄ac
a
bη

b].
(4.5)

4 This parameter will, eventually, be identified with μ appearing in
(2.1).
5 Although we are at classical level, we mean that the vierbein would
remain classical in a possible quantum scenario.

Table 3 Quantum numbers of the constraint fields

Field θ̄ θ λ̄ λ γ̄ γ ρ̄ ρ

Q-charge −1 1 −1 1 −1 1 −1 1

Q̄-charge 1 −1 −1 1 −1 1 1 −1

Ghost no −1 −1 0 0 −2 0 −1 1

Form rank 3 3 3 3 3 3 3 3

Statistics 2 2 3 3 1 3 2 4

The action of interest is then

	 = 	0 + Sc, (4.6)

which is totally equivalent to the LC action (2.1) if a proper
relation between {z′i ,m} and {zi , μ} is obeyed. The first step
to check this is to set all external sources in (4.6) to zero.
Hence, we perform the elimination of the auxiliary fields
defined in (4.3) and (4.4) by the implementation of their
field equations (see equations from (4.21) to (4.28) in the
next subsection). This will lead to an action that is totally
equivalent to the Lovelock–Cartan action (2.1) if the gauge
parameters {z′i ,m} and the LC parameters {zi , μ} are related
accordingly to

z′1 = z1, z′2 = z2, z′3m2 = z3μ
2,

z′4m4 = z4μ
4, z′5m2 = z5μ

2, −z′6m2 = z6μ
2. (4.7)

On the other hand, at quantum level the set {z′i ,m} might
need renormalization before being identified with the LC
parameters. A discussion of the quantum scenario can be
found in Sect. 5.1.

4.2 Generalized Ward identities

The set of Ward identities enjoyed by the action (4.6) are
listed here:

• Slavnov–Taylor identity:

S(	) = 0, (4.8)

where

S(	) =
∫ (

δ	

δ�b
a

δ	

δωa
b

+ δ	

δLb
a

δ	

δcab
+ δ	

δXa

δ	

δη̄a

+ δ	

δ X̄a

δ	

δηa
+ δ	

δYa

δ	

δσ̄ a
+ δ	

δȲa

δ	

δσ a

+ λ̄a
δ	

δθ̄a
+ λa

δ	

δθa
+ ρ̄a δ	

δγ̄ a
+ ρa δ	

δγ a

)
.

(4.9)
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• Ghost equation:

∫ (
δ	

δcab
+θ̄a

δ	

δλ̄b
+θa

δ	

δλb
+γ̄a

δ	

δρ̄b
+γa

δ	

δρb

)
= 
̃ b

a ,

(4.10)

where


̃ b
a = 
 b

a − m
∫ (

θ̄a + θa
)
eb (4.11)

remains a linear breaking.
• Vierbein equation:

δ	

δea
= m

(
λ̄a + λa

)
, (4.12)

which is linearly broken.
• Rigid supersymmetries:

R̃(i)	 = 
̃(i), (4.13)

where i ∈ {1, 2, 3, 4}. The rigid supersymmetric opera-
tors are6

R̃(1) = R(1) + θa
(

δ

δγ a
+ δ

δλa

)
+ γ̄ a

(
δ

δθ̄a
− δ

δρ̄a

)

− (
θ̄a + ρ̄a) δ

δλ̄a
− (

λa − γ a) δ

δρa
,

R̃(2) = R(2) + γ a δ

δθa
− θ̄a

δ

δγ̄ a
+ λ̄a

δ

δρ̄a
− ρa δ

δλa
,

R̃(3) = R(3) + γ̄ a δ

δθa
+ θ̄a

δ

δγ a
− ρ̄a δ

δλa
− λ̄a

δ

δρa
,

(4.14)

while


̃(i) = 
(i) + ϒ(i), (4.15)

with

ϒ(1) = m
(
θ̄a − θa + ρ̄a

)
ea,

ϒ(2) = mρae
a,

ϒ(3) = mρ̄ae
a, (4.16)

which are linear in the fields.

6 The symmetry R(4) is quadratically broken and, thus, it is not an inter-
esting identity for the model. As a consequence, generalized versions
of Q(2) and Q̄0 are not at our disposal in the full model. Obviously,
since there is no generalization of the Q̄0 symmetry, there is no place
for generalizing Q(i)

eff as well.

• Rigid fermionic equation:

Q̃(1)	 = �̃(1), (4.17)

where

Q̃(1) = Q(1) + (
θ̄a + ρ̄a) δ

δρa
+ γ̄ a

(
δ

δγ a
+ δ

δλa

)
,

�̃(1) = �(1) − mγ̄ae
a, (4.18)

but it is also linear in the fields.
• U 4(1) charge equation:

Q̃0	 = m
(
λ̄a − λa

)
ea, (4.19)

where

Q̃0 = σ a δ

δσ a
− σ̄ a δ

δσ̄ a
+ ηa

δ

δηa
− η̄a

δ

δη̄a

+ Xa δ

δXa
− X̄a δ

δ X̄a
+ Ya δ

δYa
− Ȳ a δ

δYa

+ λa
δ

δλa
− λ̄a

δ

δλ̄a
+ θa

δ

δθa
− θ̄a

δ

δθ̄a

+ ρa δ

δρa
− ρ̄a δ

δρ̄a
+ γ a δ

δγ a
− γ̄ a δ

δγ a
. (4.20)

Equation (4.19) still expresses the existence of a quan-
tum number associated with a U 4(1) symmetry among
the quartet fields, even though the symmetry is linearly
broken.

• Field equations:

δ	

δλ̄a
= σ a − mea, (4.21)

δ	

δλa
= σ̄ a − mea, (4.22)

δ	

δθ̄a
− δ	

δȲa
= 0, (4.23)

δ	

δθa
− δ	

δYa
= 0, (4.24)

δ	

δγ̄a
+ δ	

δ X̄a
= 0, (4.25)

δ	

δγa
+ δ	

δXa
= 0, (4.26)

δ	

δρa
= ηa, (4.27)

δ	

δρa
= η̄a . (4.28)

We can conclude at this point that the effect of the intro-
duction of the constraints is that most of the Ward identities
are linearly broken. Moreover, Eqs. (3.28), (3.29) and (3.30)
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are easily generalized by rejecting all relations of R(4), Q(2)

and Q̄0.

5 Discussion

5.1 Quantization attempts

In light of gauge theories, let us take a closer look at the action
(2.1). First of all, we see that there are no quadratic terms7

in (2.1), only interacting terms in the fields ω and e. This is a
problem if one plans to quantize the LC action because this
property ruins the well-established perturbative program of
QFT, unless a background is previously chosen. Background
independence though requires that such a choice is arbitrary.

Another problem to be faced is the gauge fixing. A typical
gauge fixing is obtained by fixing the divergence of the gauge
field. However, to define the divergence of a field, the Hodge
dual operator is required. Hence, an explicit dependence on
the metric should be introduced.

The advantage in working with the action 	 instead is
that the model can be interpreted as a typical gauge theory
for the gauge field ω and the fields defined in (3.3). Hence,
the theory is composed of a topological piece and a BRST
trivial sector. The addition of the constraint (3.5) introduces
a coupling with the vierbein in such a way that (some of) the
BRST trivial fields are identified with the vierbein. Thus, the
interpretation of the field ω as the spin connection is natural.

A quantum version of such model would also be highly
non-perturbative since there are no quadratic terms of ω in
	. Moreover, the terms in the constraint action Sc are alge-
braic, i.e., there are no kinetic terms. To face this problem one
should, perhaps, employ the strategies developed in [20]. The
authors in [20] claim that a BRST exact gauge fixing can be
added to the action, even though it depends explicitly on the
spacetime metric. The reason is that, since the gauge fixing
is BRST exact, physical observables do not depend on the
metric. In addition, the gauge fixing term provides quadratic
terms for ω, making a perturbative analysis possible.

Another important property of the model is the existence
of a rich set of Ward identities, which are broken linearly, at
most. This is a very welcome property, which ensures their
validity at the quantum level [19]. In particular, the vierbein
equation (4.12) ensures that the vierbein should not appear at
the counterterm. This last feature is quite strong and ensures
that the constraint could be employed at quantum level while
maintaining e classical.

To understand what a quantum version of the model would
mean, let us consider a gauge fixed action 	̃ = 	 + s
g f ,
enjoying the above discussed properties. The partition func-
tion can be written as

7 This is a problem that also appears in the case of the pure Einstein–
Hilbert action.

Z̃ =
∫

D� exp{i	̃(�, e)}, (5.1)

where D� ≡ DωDcDσ̄DσDη̄DηDθ̄DθDρ̄DρDγ̄ Dγ

Dc̄Db, while c̄ is the Faddeev–Popov anti-ghost field and
b the Lautrup–Nakanishi field enforcing the referred gauge
fixing. The partition function 	̃ defines the quantum version
of the model coupled to the vierbein classical field. Since
there is no previous dynamics for the spacetime, it is the
model itself that defines the spacetime dynamics. Moreover,
the classical limit of such a model would provide a classical
gravity limit, which is exactly the Lovelock–Cartan action
(2.1). Hence, we have constructed a topological and BRST
exact quantum model that assigns dynamics to spacetime
and has the Lovelock–Cartan case as its classical limit. In
this limit, the identification of ω with the spin connection
and μ with Newton’s constant is natural.

5.2 Further symmetry aspects

Let us assume the existence of consistent BRST exact gauge
fixed action which allows the construction of a suitable par-
tition function Z and the usual perturbative tools [20]. More-
over, it is also reasonable to assume that the gauge fixing
would not spoil any of the Ward identities.8 In addition, since
the field equations (4.21) are exact or linearly broken, the
validity of constraints (4.1) at quantum level is ensured.

One effect of the constraint (4.6) is that, besides the BRST
symmetry being preserved, its decomposition (3.31) is not.
In fact, it is easy to check that

so	 = soSc = 
b,

δ̃	 = δ̃Sc = −
b, (5.2)

which is consistent with Eq. (3.31) and s	 = 0. As a conse-
quence, we have the relations

sZ = 0,

soZ �= 0,

δ̃Z �= 0. (5.3)

The field equations (4.21) can be written in the form of expec-
tation values9 as

〈σ a〉 = mea,

〈σ̄ a〉 = mea,

〈ηa〉 = 0,

〈η̄a〉 = 0,

−〈σ̄ a〉 + 〈cη̄a〉 = 〈sη̄a〉,
〈ηa〉 − 〈cσ a〉 = 〈sσ a〉,
8 See the previous section.
9 The expectation values are taken with respect to the functional mea-
sure D� as defined in Sect. 5.1.
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−〈cηa〉 = 〈sηa〉,
−〈cσ̄ a〉 = 〈sσ̄ a〉. (5.4)

Due to (5.3), the BRST operator s commutes with the expec-
tation values in (5.4). Hence, due to the first four rela-
tions in (5.4) and the s invariance of the vierbein we have
〈sη̄a〉 = 〈sηa〉 = 〈sσ̄ a〉 = 〈sσ a〉 = 0. Moreover, from
(3.32) and (3.33), we have

〈soη̄a〉 = −〈cabη̄b〉,
〈soσ̄ a〉 = −〈cabσ̄ b〉,
〈soσ a〉 = −〈cabσ b〉,
〈soηa〉 = −〈cabηb〉, (5.5)

and

〈̃δη̄a〉 = 〈σ̄ a〉,
〈̃δσ̄ a〉 = 0,

〈̃δσ a〉 = 〈ηa〉,
〈̃δηa〉 = 0. (5.6)

Now, combining (5.4), (5.5) and (5.6), we get

〈soη̄a〉 = −mea,

〈soσ̄ a〉 = 0,

〈soσ a〉 = 0,

〈soηa〉 = 0, (5.7)

and

〈̃δη̄a〉 = mea,

〈̃δσ̄ a〉 = 0,

〈̃δσ a〉 = 0,

〈̃δηa〉 = 0. (5.8)

From (5.7) and (5.8) we understand that the breaking of the
symmetries δ and so compensate each other, as in (5.2), while
the s symmetry remains a symmetry of the model. In addi-
tion, it is clear that these breaks are directly related with the
vierbein and the mass parameter since so and δ̃ exact terms
attain a non-vanishing vacuum expectation value equal to
mea .

6 Conclusions

We have constructed a massless gauge theory coupled with
the vierbein field through algebraic constraints quadratic in
the fields. Essentially, the action is composed of a topologi-
cal and a BRST exact term. The constraints also carry a mass
parameter which, eventually, is identified with Newton’s con-
stant. The interpretation of the model is that the gauge the-
ory induces a dynamics for the spacetime, resulting in the
Lovelock–Cartan action [1].

The constraints, being quadratic in the fields, ensure the
validity of a rich set of symmetries. These symmetries, in
the form of Ward identities, motivates the construction of a
quantum version of the model. However, due to intricacies
such as the gauge fixing problem and quantum stability, the
formal analysis of the quantization of the model is left for a
future paper.

Another possibility to be investigated is the generalization
of the model to other dimensions, at least at classical level.

Finally, an extra remark is that, at the classical level, the
model can be simplified to consider only Lovelock gravity [2]
or even general relativity. However, in a quantum version of
such simplified models, it seems that the Ward identities are
not strong enough to block the other terms of the Lovelock–
Cartan. So, they would probably appear in the counterterm,
requiring their introduction in the bare action.
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