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Abstract We study effects coming from finite size, chem-
ical potential and from a magnetic background on a mas-
sive version of a four-fermion interacting model. This is per-
formed in four dimensions as an application of recent devel-
opments for dealing with field theories defined on toroidal
spaces. We study effects of the magnetic field and chem-
ical potential on the size-dependent phase structure of the
model, in particular, how the applied magnetic field affects
the size-dependent critical temperature. A connection with
some aspects of the hadronic phase transition is established.

1 Introduction

The need to construct effective models sharing proper-
ties with realistic theories comes from the very involved
mathematical structure of these last ones. For instance,
this occurs in studies of quantum chromodynamics, which
practically prevents us from finding analytical results tak-
ing into account both confinement and asymptotic free-
dom. Rigorous calculations in this case, both at zero
and finite temperature, have been worked out [1,2], but
mainly treating the asymptotically-free domain at high ener-
gies or high temperatures, where perturbation theory is
applicable.

That is why simplified, phenomenological models have
been implemented along the years. Among them, one of
the simpler and most successful is the Gross—Neveu (GN)
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model [3], considered as an effective theory for many situ-
ations in condensed-matter and in hadronic physics [4—18].
It has proved to be an enlightening approach in describing
properties of superconductors and graphene in condensed
matter physics [5-8] and also phenomena in hadronic mat-
ter, such as spatial and thermal asymptotic freedom and the
spatial and thermal confinement/deconfinement phase transi-
tion [13—-18]. The GN model provides the simplest effective
theory which may be considered as describing interactions
between fermions, as a direct four-body coupling, where
gauge fields and degrees of freedom are integrated out. As
such, one needs not to worry about small values of the cou-
pling constant to perform perturbative summations, nor with
renormalizability. That is why we consider just a one-loop
correction to the mass. In this spirit, perturbative renormaliz-
ability is not an absolute requirement for an effective theory
to be a physically meaningful model; see for instance [19—
22]. In this context, the massive Gross—Neveu model can
be studied in an arbitrary dimension D, although it is not
renormalizable for D > 2. Models of this type, including
chemical-potential effects in an arbitrary dimension D, are
already present in the literature [23].

A recent work dealing with a large-N four-fermion inter-
acting model in arbitrary dimension D is in Ref. [16]; this
has been done by an analysis of the four-point function at
criticality, taking inspiration from linear response theory and
the BCS theory of superconductivity [24]. We here approach
the GN model in a non-standard way. As in [25], we deal
with a one-component version of a four-fermion interacting
model. Most importantly, instead of working directly with
the usual Dirac spinor degrees of freedom, a grand-canonical
thermal average <10T (x)¥ (x)) of the product of fermion fields
is performed, and an Ansatz is made by considering, to our
purposes, a free-energy density written in terms of such aver-
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ages. This approach has been previously used for instance in
Refs. [25,26]

In the present note, we determine a phase-transition tem-
perature for the model and investigate how this temperature
is affected by the presence of an external magnetic field, the
chemical potential and the finite size of the system. The study
performed here may be viewed as a fermionic counterpart,
including magnetic effects, of corresponding investigations
on the phase transition for scalar theories [26,27], using gen-
eral methods of quantum field theories defined on spaces with
toroidal topologies [28-30].

The general framework is the field-theoretical model
defined on a Euclidean D-dimensional space, under the influ-
ence of an external magnetic field B. We impose antiperi-
odic boundary conditions on the time coordinate of length
B = T-1, the inverse temperature, and also on a spatial
coordinate of length L; as is argued for instance in [28], this
is equivalent to consider the system limited by two paral-
lel planes orthogonal to the compactified spatial coordinate
a distance L apart from one another (the size of the sys-
tem). Then we study concurrently effects of the chemical
potential and of the applied external magnetic field on the
size-dependent phase structure for the second-order transi-
tion occurring in the system. We will consider an applied
magnetic field along the compactified spatial axis. In this
case, an effect of the external field is to break the symmetry
over two of the space dimensions orthogonal to the mag-
netic field, leaving a two-dimensional translationally invari-
ant space. This implies that the space dimensionality should
be at least D > 4. We restrict ourselves to the D = 4 case.
Notice that our system is strictly (3+1)-dimensional, with
three spatial dimensions, one of these corresponding to the
thickness of the system, so that we can establish, from our
formulas, the tendency to the bulk critical temperature as the
thickness grows. But we cannot consider this as an infinitely
short length, the system we study has a third dimension
which plays an important role, and should not be neglected.
From our point of view, the system cannot and should not be
reduced to a (2+1)-dimensional system.

One of the conclusions is that no transition exists below
a minimal size of the system. This size depends on the cho-
sen model, i.e., on the value of the coupling constant we
take and on the intensity of the applied field. In any case,
this is understandable from a physical point of view, since
long-range correlations cannot persist at very small distances.
We consider heuristically our model as describing a system
of fermion-antifermion pairs, a distance L apart from one
another and the transition temperature we find is interpreted
as the temperature at which the pairs dissociate. In this case,
dissociation of the system is favoured by stronger applied
fields and larger values of the coupling constant. An inter-
esting aspect of the results is that the sizes involved and the
critical temperatures obtained, are compatible with charac-
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teristic quantities in particle physics, e.g., the size of a meson
and the deconfining hadronic temperature.

2 Magnetic effects on the model

We consider the massive Gross—Neveu model in a D-
dimensional Euclidean manifold, R?, at zero chemical
potential, described by the Hamiltonian

A .
H= / dPx (W(x)(imD# —mo)Y (x) + 7"(1#1 (x)x/f(x»z) ,
(1

where m( and Aq are respectively the physical mass and cou-
pling constant at zero temperature and zero chemical poten-
tial in the absence of boundaries and of an applied mag-
netic field. In the above equation, D,, = 9, —ieA, is the
covariant derivative, and the gauge A, = (0,0, Bxy, ..., 0)
is adopted. A constant and uniform magnetic field B is
applied along the x3-direction (z axis). The y-matrices are
elements of the Clifford algebra and we use natural units,
i = ¢ = kg = 1. This Hamiltonian is based in conventions
for Euclidean field theories as presented in Ref. [31]. Dimen-
sional analysis of Eq. (1) shows that ¢ has the dimension of
(mass)?~P.

Let us introduce in the model finite-temperature ! and
chemical-potential p corrections to the mass, considering
one spatial dimension compactified with a compactification
length L. In the spirit of effective theories, we introduce
one-loop thermal and boundary corrections to m( and define
the temperature-, chemical-potential-, magnetic-field-, and
boundary-dependent mass, m(D, B, L, i, ®), by

m(D, B, L, i, w) =mo+X(D, B, L, u,w), 2

where we have defined w = eB, which is the so-called
cyclotron frequency.

As we have mentioned in the Introduction, we now make
the following Ansatz: the fermionic fields in the Hamilto-
nian of Eq. (1) are submitted to a thermal average in the
grand-canonical ensemble, denoted by (-). We then define
p(x) = /(¥ (x)¥(x)) and make the approximation that
the average of the square of the product of two fields is the
square of the respective average of the two fields, namely,
(TP E)?) ~ @@y ) = ¢*(x) . As a conse-
quence, our model assumes the form of an effective free-
energy density of the Ginzburg—Landau type,

f@)=—m(D, B, L, u,)¢> + 1o ¢*. )

In an analogous way as in Refs. [25,26], we consider that all
dependence on the physical parameters (temperature, chem-
ical potential, finite size, external applied field) are concen-
trated in the coefficient of ¢? in the free energy. The new field
@(x) is interpreted as the order parameter for the transition.
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Notice that the thermally corrected mass in Eqgs. (2) and (3)
incorporates the chemical potential automatically, by the use
of the appropriate Matsubara rule for introducing tempera-
ture in the grand-canonical ensemble.

The minus sign for the mass in Eq. (3) implies that, in the
disordered phase, we have m(D, 8, L, u, ) < 0 and, for
the ordered phase, m(D, 8, L, u, ) > 0. A second-order
phase transition occurs for the set of pointsinthe (8, L, u, )
-space where m(D, B, L, u, w) = 0, characterizing a spon-
taneous symmetry breaking.

The influence of a constant external magnetic field on the
fermionic propagator can be completely determined through
the eigenvalue method devised by Ritus a few decades
ago [32,33], on which a renewed interest appeared in more
recent years [34,35]. It uses some w-dependent eigenfunc-
tions E,(x) of the covariant Dirac operator. They provide
a kind of Fourier transform to diagonalize a momentum
space which has lost translation invariance due to the pres-
ence of the magnetic field along a definite direction. The
elegance of the Ritus method lies in that the magnetic-field-
dependent propagator results in the same form of the free
one. Its Euclidean version reads

oo
Sh) =) 5 p=mo), @
=0 p°+mg
where the momentum 4-vector is replaced by the w-
dependent vector p which is

pu = (po, P1> P2, P3), )

with

P+ =wl+1—0).
(6)

Here 0 = =1 is the spin variable. Also, one sees that the
integer parameter £ identifies the Landau levels. If one is
interested just in strong magnetic fields, only the lower level
(¢ = 0) may be taken into account. In the present paper, we
shall keep the contribution of all levels in our calculations.

PP=pi+pi+pi+h;

3 The corrected mass with an applied magnetic field

In the presence of an external magnetic field, before introduc-
ing temperature and spatial compactification, the corrected
mass is written as

m(w) = mo [1 + X(w)], N

where the self-energy X, for D = 4, at one-loop order is
given by

B = Z/@n)z [

with the integration being over the variables pg and p3.

o (p —myo)
27 (p? +m2):| ®

Taking into account that the odd term p does not contribute
to the integral, Eq. (8) can be rewritten, in a convenient form
for analytic regularization, as

2\
o= Z5 Y Z/an)z

o==%1¢=0

. O)
[po + 3+ w(ZE +1—0)+myl" =1
Finite-temperature and density (chemical potential) cor-
rections to the self-energy, together with the compactification
of one of the spatial dimensions, are taken into account by
using the appropriate generalized Matsubara formalism, i.e.,
the Feynman rules are modified accordingly to [28-30,36]

dﬁ() 1 +00
g — E Z s ﬁo g a)ﬂ] — il/L 5
ny=—o00
dps 1 8
? — Z Z , p3 — a)nz, (10)
ny=—00
where w,, = 2n1 + )n/B and w,, = (2ny + 1) /L are

generalized Matsubara frequencies. Using this recipe, the
self-energy becomes
AStE > =
2(,6,7,8) = = Z Z
¢=0n

1
X )
[a1(n1 — b2 + az(ny — by)? +c7]” lv=1
(11)

where we have defined the dimensionless coupling constant
A, the reduced temperature ¢, the reduced chemical poten-
tial y, the reduced inverse length of the system &, and the
reduced magnetic field 8, in such a way that we have the set
of dimensionless parameters defined by
-1
Amagmd t= g2t s=— y=——, (12
mo mo mgy mo

and

§20+1—0)+1 B
¢ =cj.0)= = = mop) =

ar = (moL) "> = €2, =iBu/2w —1/2 =iy/2xt —1/2;
by = —1/2. (13)

The double sum over n; and ny in Eq. (11) is recognized
as one of the two-variable Epstein—-Hurwitz zeta function,
defined by [37]

o0

2
C
Zy ian,abi b)) = Y

np,np=—00

x[ai (1 —b1)*+az(ny — bp)*+c217".
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This Epstein—Hurwitz zeta function has an analytical contin-
uation, valid in the whole complex v-plane [37], and can be
written as [26,27]

wlee(8,0)1*72 T(w — 1)

C2
Zy) (vi{a;}i {bj)) =

23 r'w)
4 [ee(8, )1V ,
qu(a,a)(vvlsfs)’),
(14)
where
> . niy\ (ni\v-1
Fesn (Vi1 £7) = 3 (D" eosh (=5) (%)
=
2
XK1—V( ﬂCe(S,G)nl)
t
(e ¢ 5 v—1
+y (=" (—)
ny=1 é
2
XKI—V( nc((S,cr)nz)
&
_1\yn+n2 17
+2 3 (-1 cosh( t )
ni,np=1
> 5 v—1
ny , nm
X [_2 =+ ?
x K 2mwcy(8, 0) ﬁ + é
1—v @ £ [2 Sz
(15)

The first term in the representation of the zeta function pre-
sented in Eq. (14) is divergent for v — 1, while the second
term is regular in this limit. To get a finite self-energy, we
implement a minimal subtraction by discarding this singular
term. Actually, we make an expansion around v = 1, which
leads to a pole term at v = 1, plus a logarithmic term in
c¢(8, 0), and finite terms. Using the definition of c¢¢(§, o)
and summing over the spin polarizations, and taking into
account all Landau levels, it can be shown that this logarith-
mic contribution is divergent, no matter how small be the
applied field. In this case, this contribution should be sub-
tracted along with the pole term to get a finite mass. Such a
procedure is equivalent to taking out the whole first term in
Eq. (14).

Substituting Eq. (14) in Eq. (11), after subtraction of the
divergent term, we get a finite correction to the mass,

218 >
SR 67,0 =5 Y Y Hawe(inEy),  (16)
o=%x1¢=0

where Z.,(5,0)(1; , &, y) is given by Eq. (15).

@ Springer

The corrected mass is obtained by taking Eq. (16) into
Eq. (7). Performing the summation over the spin polariza-
tions, we obtain

t,E,v,6 2M8
nnsy )y, 2
mo T
o
x [%(us, .8 +2)  Fult,, M)] :
=1
(17)
where
o
Fot,£.y.8) = Y (=1 cosh (g) Ko (W:rl"l)
ni=1
o0
3 1k («/282+1n2)
ny=1 g
> n
+2 ) (=112 cosh (l—y)
ni,np=1 !
I’l2 l’lz
xKo [ V250 +1 [—21+€—§ . (18)

The expression in Eq. (18) has a well-defined meaning for
values of the reduced chemical potential in the interval
0 < y < 1. The sums in Eq. (18) also occur in formulas
obtained in the study of the bosonic ¢* theory [26] under
the same physical conditions (that is, presence of chemi-
cal potential and external magnetic field, and size limita-
tion). As argued in Ref. [26], the large-nlimit allows us to
employ the asymptotic form of the Bessel function, that is,
Ko(z) = /7 /2ze~%, for large z. In the case of the first sum of
Z , the argument of the functionis 7z = "1—1«/282 —+ 1, which,
together with the definition of the hyperbolic cosine, leads to
an expression proportional to exp [—”7' (\/ 260+ 1 — y)] +
exp[—2 (v28€ 4+ 1+ y)]. The last term, which gives a
convergent sum over n1, is of no consequence to the possible
values of y > 0; however, the first one implies convergence
only when 0 < y < 4/28¢ + 1. And, in fact, if one wishes to
consider arbitrarily vanishing of the applied magnetic field,
the restriction on the chemical potential becomes 0 < y < 1.
The same conclusion comes about for the last sum in Eq. (18)
and also for .%.

Criticality is attained when the corrected mass, given by
Eq. (17), vanishes. The solutions of m(z, &, y, §) = 0 pro-
vide the size-dependent critical temperatures as a function
the applied magnetic field.

An entirely analogous (and simpler) calculation leads to
the critical equation in the absence of an applied field but,
in this case, an integral over two momentum variables (those
whose symmetry over the corresponding coordinates is bro-
ken by the magnetic field) should be evaluated using dimen-
sional regularization methods; one obtains [38]
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m(t,&,y)
mo

21
T

in this case, ¢ = 1/27.

4 Phase structure

In Fig. 1, we plot a set of curves that give the reduced criti-
cal temperature, #., as a function of the reduced inverse size
of the system &, for three values of the reduced chemical
potential: y = 0.0, 0.35, and 0.7, corresponding to the full,
dotdashed and dotted lines respectively; we take a fixed value
of the reduced applied field, § = 8.0 and the dimensionless
coupling constant & = 2.0. For each value of y the broken
phase is at the interior of the corresponding curve. In Fig. 2,
we exhibit four curves for the reduced critical temperature,

t., as a function of the reduced inverse size of the system, &,

for vanishing chemical potential, y = 0.0, fixed A = 1.0 and

some values of the magnetic field: § = 0.0, 0.3, 2.0, and

7.0, full, dashed, dotdashed and dotted lines, respectively.
Notice that the curve for vanishing applied field, full line in
the Fig. 2, is obtained from Eq. (19), valid in the absence of
an applied field.

From the figures we see that the qualitative behaviour of
the size-dependent critical temperature has similarities with
and without an applied field. In both cases there is a mini-
mal size, L, corresponding to a reduced inverse size, &, for
which the transition temperature vanishes. This minimal size

0.2

1 L L L 1 L L L 1

0.2 0.6

0.4 0.8 f
Fig. 1 Phase diagram (£ x f.) for fixed values of the magnetic field,
6 = 8.0, and the coupling constant, A = 2.0, and three values of the

chemical potential: y = 0.0; 0.35; and 0.7, corresponding to the full,
dotdashed and dotted lines respectively
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25
Fig. 2 Reduced critical temperature, 7, as a function of the reduced
inverse size of the system, &, for a vanishing chemical potential, y =

0.0, fixed A = 1.0, and some values of the magnetic field: § = 0.0; 0.3;
2.0; and 7.0, full, dashed, dotdashed and dotted lines, respectively
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Fig. 3 Reduced transition temperature as a function of the reduced
inverse size, for fixed y = 0.3 and § = 5.0, and distinct values of the

quartic self-coupling: A = 0.5; 1.0; and 2.0, full, dashed and dotdashed
lines, respectively

appears to be independent of the chemical potential. Actu-
ally, this can be explicitly shown by taking the r — 0 limit
in the critical equation (17). A similar behaviour was found
for a scalar field in Ref. [26]. We see that the behaviour of

@ Springer
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f(e)
3.0
25
2.0
15
1.0

0.5

Fig. 4 Ginzburg—Landau free-energy density for fixed values: £ =
0.001, y = 0.35,6 = 7.0 and & = 2.0. Disordered phase is represented
by full curve, which has temperature equal 1.7. Critical temperature is
got at 7. & 0.95 (dotted curve). Ordered phase is got below #.. We have
t = 0.01 in dashed curve

the size-dependent critical temperature, illustrated in Fig. 1
shows that it is weakly dependent on the chemical potential
and that this dependence is mainly concentrated for higher
critical temperatures and larger sizes of the system. We notice
also that the intensity of the quartic coupling has a significa-
tive influence on the behaviour of the system: As illustrated in
Fig. 3, higher values of A leads to larger values of the minimal
allowed size L and lower values of the critical temperature.
This reinforces the effect due to the magnetic field of low-
ering the critical temperature, as can be seen from Fig. 2.
In Fig. 4, we show the free-energy behaviour for different
temperatures; above 7., the free-energy has a single absolute
minimum at ¢ = 0, while below 7. the minimum occurs at a
finite value, ¢ (), which goes continuously to zero as t — ¢,
from below, thus ensuring that the transition is a second order
one.

5 Comments

As a central part of this work, we have analyzed joint effects
due to an external applied field, chemical potential, and the
finite size of the system, on a second-order phase transition.
One of the conclusions is that no transition exists below a
minimal size. This size depends on the chosen model, i.e.,
on the value of the coupling constant we take and on the
intensity of the applied field. In any case, this is understand-
able from a physical point of view, since long-range corre-
lations cannot persist at very small distances. The results in
this note have been possible by employing the massive GN
model as an effective theory. In previous works devoted to get
insights into the behaviour of hadronic matter, the massless
GN model, in its version with a large number of components,
has been often employed. Using the one-component massive
GN model and taking the fermion mass as a physical param-
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eter, we have been able, through analytical means, to study
finite-size effects on the transition.

Let us adopt a heuristic approach, in which sense we think
of the model as a simplified description (a “toy model”) of
a heated system of fermion-antifermion pairs of size L in
equilibrium at temperature f~'. The transition temperature
could be interpreted as the temperature at which the pairs
dissociate.

Under this heuristic point of view, let us make some com-
ments about our results. Let us first consider the system in the
absence of an applied field. Using Eq. (12), we find a minimal
size of the system of Ly = 1/m&p. In this case, we get from
Fig. 2 that at zero temperature and withy = 0.0and A = 1.0,
the reduced inverse size is roughly &y = 2.57. Taking for
mo the effective current quark mass of ~ 68.3MeV [39]
(which corresponds approximately to half of the mass of a
pion), we obtain, using the conversion MeV~! ~ 196.9 fm,
Ly ~ 1.12fm,; this is of the order of magnitude of the esti-
mated size of a meson. On the other hand, we see from the
full line in Fig. 2, that for reduced inverse sizes such that
& < 1.20, the reduced temperature is almost constant and
has a value of t &~ 2.56. This gives a transition temperature
of T, ~ 175 MeV for all sizes L > 2.40 fm, much larger that
the zero-temperature minimal size, which we think as being
the size of a fermion-antifermion bound state. The transition
temperature that we have is close to the estimated deconfining
temperature for hadrons. We can think of this temperature as
the temperature at which the mesons dissociate in the absence
of an applied field. When an applied field is present, for
instance, 6 = 2.0, we find from Fig. 2, £,(6 = 2.0) = 1.83,
corresponding to a minimal size of Lo(6 = 2.0) ~ 1.58 fm.
Comparing with the value Lo(§ = 0.0) ~ 1.12fm , we see
that, even at zero temperature, the action of the magnetic field
tends to dissociate the system. This effect is more important
for stronger magnetic fields and higher temperatures. Also,
dissociation of the system is favored for higher values of the
coupling constant; as already mentioned above, larger values
of the quartic coupling constant leads to larger values of the
minimal allowed size Lq and lower values of the critical tem-
perature. A particularly interesting aspect of the results is that
the sizes involved and the critical temperatures obtained, are
compatible with characteristic quantities in particle physics,
e.g., the size of a meson and the deconfining hadronic tem-
perature.
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