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Abstract The ground and first excited states of the decu-
plet baryons are studied using the two-point QCD sum rule
approach. The mass and residue of these states are com-
puted and compared with the existing experimental data and
other theoretical predictions. The results for the masses of the
ground state particles as well as the excited � and �∗ states
are in good consistency with experimental data. Our results
on the excited �∗ and �− states reveal that the experimen-
tally poorly known �(1950) and �−(2250) can be assigned
to the first excited states in �∗ and �− channels, respectively.

1 Introduction

In recent years, the spectroscopy of hadrons is living its
renaissance period due to the discovery of many new par-
ticles. The study of the spectroscopy and internal structure
of hadrons is one of the main problems in hadron physics.
Investigation of the properties of hadrons will give a clear pic-
ture for understanding the dynamics of their excited states.
The experimental study of the spectrum of excited baryons is
one of the central elements of the physics programs of many
accelerators. During the last years, there has been made sig-
nificant progress in collecting data on excited state hadrons
at JLAB, MIT-Bates, LEGS, MAMI, ELSA, etc. In experi-
ments, radial excitations of hadrons having the same quantum
numbers as the ground states were discovered [1].

The analysis of the properties of excited hadrons repre-
sents a formidable task due to the fact that they can interact
with many hadrons and it leads to the difficulty in their identi-
fication. For studying the properties of ground state hadrons
the QCD sum rule approach [2,3] has occupied a special
place and has been very successful. It is based on the fun-
damental QCD Lagrangian and all non-perturbative effects
are parametrized in terms of quark and gluon condensates.
Now, the question is: how successful is this method in the
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study of the radially excited baryons, which carry the same
quantum numbers as the ground states? In the present letter
we apply this method to a study of the excitations of decuplet
baryons. It should be noted that the radial excitations of light–
heavy mesons, the mass of first radial excitations of mesons
and nucleon by using the least square method within the
QCD sum rules method were analyzed in [4,5], respectively.
Recently, this method has been applied to an estimation of
the mass and residue of the first radial excitations of octet
baryons in [6] and it has been found that the method is very
predictive for radial excitations of the baryons as well. The
excited baryons have also been studied using lattice QCD in
[7,8]. For a theoretical study on the excited baryons see for
instance [9] and the references therein.

This paper is organized as follows. In Sect. 2, the mass
sum rules for decuplet baryons including their first radial
excitations are calculated. In Sect. 3, the numerical analysis
of the obtained sum rules is presented. The last section is
devoted to our summary and conclusions.

2 QCD sum rules for the mass and residue of decuplet
baryons including their radial excitations

In order to derive the two-point QCD sum rules required for
obtaining the mass and residue of the radially excited decu-
plet baryons, we consider the following correlation function:

�μν(q) = i
∫

d4xeiq·x 〈0|T {ηD
μ (x)η̄D

ν (0)}|0〉, (1)

where ηD
μ (x) is the interpolating current of the decuplet

baryon and q is its four momentum. The interpolating current
of the decuplet baryons coupled to the ground and excited
states with the same quantum numbers can be written as

ηD
μ = Aεabc

{
(qaT1 Cγμq

b
2 )qc3 + (qaT2 Cγμq

b
3 )qc1

+(qaT3 Cγμq
b
1 )qc2

}
, (2)
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Table 1 The value of the
normalization constant A and
the quark fields q1, q2, q3 for the
decuplet baryons

A q1 q2 q3

�
√

1/3 d d u

�∗ √
2/3 u d s

�∗ √
1/3 s s u

�− 1/3 s s s

where a, b, c are color indices, C is the charge conjugation
operator and A is the normalization constant. The light quark
fields q1, q2, q3 and the normalization constant for different
members of decuplet baryons are collected in Table 1 (for
details see for instance [3,10–12]). We shall also remark that
the above current couples to both the spin-1/2 and the spin-
3/2 baryons with both the negative and the positive parities
(see for instance [13,14]). In the present study, we consider
only the positive parity baryons. As we consider both the
ground states and the first excited states, taking into account
the negative parity baryons requires implementing both the
negative parity ground states and the negative parity first
excited states. This will require either additional sum rules
obtained by applying derivatives to those obtained from the
two Dirac structures entering the calculations or experimental
knowledge of the ground state negative parity and the first
excited state positive/negative parity baryons. This brings
about more uncertainties, which makes a reliable estimation
of the masses difficult, especially in the case of first excited
states.

To derive the aimed QCD sum rules for the mass and
residue of the considered baryons, the above correlation func-
tion has to be calculated using both the hadronic and the OPE
(operator product expansion) languages. By equating these
two representations, one can get the QCD sum rules for the
physical quantities of the considered baryons.

2.1 Hadronic representation

The correlation function in the hadronic side is calculated in
terms of the hadronic degrees of freedom which contains the
physical parameters of the decuplet baryons. After insertion
of a complete set of baryonic state with the same quantum
numbers as the interpolating current, we get

�Had
μν (q) = 〈0|ηD

μ |D(q, s)〉〈D(q, s)|η̄ν |0〉
m2

D − q2

+〈0|ηD
μ |D′(q, s)〉〈D′(q, s)|η̄ν |0〉

m2
D′ − q2

+ · · · , (3)

with mD and mD′ being the mass of the ground state and
the first excited states of the decuplet baryons, respectively.
The dots indicates the contributions coming from the higher
states and continuum. Since the ground state and the first
radial excitations of decuplet baryons have the same quantum

numbers, their matrix elements between vacuum and one
particle states are defined in a similar manner, i.e.,

〈0|ηD
μ |D(q, s)〉 = λDuμ(q, s),

〈0|ηD
μ |D′(q, s)〉 = λD′u′

μ(q, s), (4)

where λD(′) is the residue of the corresponding baryon. By
using summations over the spins of the Rarita–Schwinger
spinor,

∑
s

u(′)
μ (q, s)ū(′)

ν (q, s) = −(�q + mD(′) )

[
gμν − 1

3
γμγν

− 2qμqν

3m2
D(′)

+ qμγν − qνγμ

3mD(′)

]
, (5)

for the physical part we get

�Had
μν (q) = λ2

D

q2 − m2
D

(�q + mD)

[
gμν − 1

3
γμγν

−2qμqν

3m2
D

+ qμγν − qνγμ

3mD

]

+ λ2
D′

q2 − m2
D′

(�q + mD′)

[
gμν − 1

3
γμγν

−2qμqν

3m2
D′

+ qμγν − qνγμ

3mD′

]
+ · · · . (6)

As we previously mentioned the current ημ couples
not only to the spin-3/2 particles but also to the spin-1/2
states. Hence, the unwanted spin-1/2 contributions should be
removed. To this end, we try to make the entering structures
independent of each other by a special ordering of the Dirac
matrices and separate the spin-1/2 contributions, which can
easily be removed from the correlation function. The matrix
element of ημ between vacuum and spin-1/2 states can be
parametrized as〈

0|ηD
μ |1

2
(q)

〉
= (

C1qμ + C2γμ

)
u(q), (7)

where C1 and C2 are some constants and u(q) is the Dirac
spinor of momentum q. By imposing the condition ηD

μ γμ =
0, one immediately finds C1 in terms of C2,
〈
0|ηD

μ |1

2
(q)

〉
= C2

(
− 4

m 1
2

qμ + γμ

)
u(q), (8)

where m 1
2

is the spin-1/2 mass. It is clear from this formula
that the unwanted spin-1/2 contributions are proportional to
either qμ or γμ. After insertion of this equation into the cor-
relation function and ordering of the corresponding Dirac
matrices, γμ � qγν , we remove the terms with the γμ in the
beginning, γν at the end and those proportional to qμ or qν

in order to get rid of the spin-1/2 contributions. Note that in
the results only two structures, � qγμν and gμν , contain con-
tributions from spin-3/2 states. Hence, for the hadronic part
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of the correlation function, we get

�Had
μν (q) = λ2

D

q2 − m2
D

(�qgμν + mDgμν

)

+ λ2
D′

q2 − m2
D′

(�qgμν + mD′gμν

) + · · · . (9)

The Borel transformation with respect to q2, with the aim of
suppressing the contributions of the higher states and contin-
uum, leads to the final form of the hadronic representation:

B̂q2�Had
μν (q) = λ2

De
−m2

D
M2

(�qgμν + mDgμν

)

+λ2
D′e

−m2
D′

M2
(�qgμν + mD′gμν

) + · · · .

(10)

Here we remark that we perform our analysis in the zero
width approximation since the resonance widths of the first
radial excitations are not known yet. Taking into account
these widths can bring about additional uncertainties to the
sum rules.

2.2 OPE representation

The OPE side of the correlation function is calculated at
large space-like region, where q2 � 0 in terms of quark–
gluon degrees of freedom. For this purpose, we substitute the
interpolating current given by Eqs. (2) into (1), and contract
the relevant quark fields. As a result, we get

�OPE,�
μν (q) = i

3
εabcεa′b′c′

∫
d4xeiqx

×
〈
0|

{
2Sca

′
d (x)γν S̃

ab′
d (x)γμS

bc′
u (x)

−2Scb
′

d (x)γν S̃
aa′
d (x)γμS

bc′
u (x)

+4Scb
′

d (x)γν S̃
ba′
u (x)γμS

ac′
d (x)

+2Sca
′

u (x)γν S̃
ab′
d (x)γμS

bc′
d (x)

−2Sca
′

u (x)γν S̃
bb′
d (x)γμS

ac′
d (x)

−Scc
′

u (x)Tr
[
Sba

′
d (x)γν S̃

ab′
d (x)γμ

]

+ Scc
′

u (x)Tr
[
Sbb

′
d (x)γν S̃

aa′
d (x)γμ

]

−4Scc
′

d (x)Tr
[
Sba

′
u (x)γν S̃

ab′
d (x)γμ

]}
|0

〉
,

(11)

�OPE,�∗
μν (q) = −2i

3
εabcεa′b′c′

×
∫

d4xeiqx
〈
0|

{
Sca

′
d (x)γν S̃

bb′
u (x)γμS

ac′
s (x)

+Scb
′

d (x)γν S̃
aa′
s (x)γμS

bc′
u (x)

+Sca
′

s (x)γν S̃
bb′
d (x)γμS

ac′
u (x)

+Scb
′

s (x)γν S̃
aa′
u (x)γμS

bc′
d (x)

+Sca
′

u (x)γν S̃
bb′
s (x)γμS

ac′
d (x)

+Scb
′

u (x)γν S̃
aa′
d (x)γμS

bc′
s (x)

+Scc
′

s (x)Tr
[
Sba

′
d (x)γν S̃

ab′
u (x)γμ

]

+ Scc
′

u (x)Tr
[
Sba

′
s (x)γν S̃

ab′
d (x)γμ

]

+ Scc
′

d (x)Tr
[
Sba

′
u (x)γν S̃

ab′
s (x)γμ

]}
|0

〉
,

(12)

�OPE,�∗
μν (q)= i

3
εabcεa′b′c′

×
∫

d4xeiqx
〈
0|

{
2Sca

′
s (x)γν S̃

ab′
s (x)γμS

bc′
u (x)

− 2Scb
′

s (x)γν S̃
aa′
s (x)γμS

bc′
u (x)

+ 4Scb
′

s (x)γν S̃
ba′
u (x)γμS

ac′
s (x)

+ 2Sca
′

u (x)γν S̃
ab′
s (x)γμS

bc′
s (x)

− 2Sca
′

u (x)γν S̃
bb′
s (x)γμS

ac′
s (x)

− Scc
′

u (x)Tr
[
Sba

′
s (x)γν S̃

ab′
s (x)γμ

]

+ Scc
′

u (x)Tr
[
Sbb

′
s (x)γν S̃

aa′
s (x)γμ

]

− 4Scc
′

s (x)Tr
[
Sba

′
u (x)γν S̃

ab′
s (x)γμ

]}
|0

〉
,

(13)

and

�OPE,�−
μν (q)= εabcεa′b′c′

×
∫

d4xeiqx
〈
0|

{
Sca

′
s (x)γν S̃

ab′
s (x)γμS

bc′
s (x)

− Sca
′

s (x)γν S̃
bb′
s (x)γμS

ac′
s (x)

− Scb
′

s (x)γν S̃
aa′
s (x)γμS

bc′
s (x)

+ Scb
′

s (x)γν S̃
ba′
s (x)γμS

ac′
s (x)

− Scc
′

s (x)Tr
[
Sba

′
s (x)γν S̃

ab′
s (x)γμ

]

+ Scc
′

s (x)Tr
[
Sbb

′
s (x)γν S̃

aa′
s (x)γμ

]}
|0

〉
,

(14)

where S̃(x) = CST (x)C and the quantity Sabq (x) with
q = u, d, s appearing in Eqs. (11)–(14) is the light quark
propagator. The explicit expression for the light quark prop-
agator in x−space has the following form:

Sq(x) = i /x

2π2x4 − mq

4π2x2 − 〈q̄q〉
12

(
1 − i

mq

4
/x
)

123
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− x2

192
m2

0〈q̄q〉
(

1 − i
mq

6
/x
)

−igs

∫ 1

0
du

[
/x

16π2x2 Gμν(ux)σμν

− i

4π2x2 ux
μGμν(ux)γ

ν

−i
mq

32π2 Gμνσ
μν

(
ln

(−x2�2

4

)
+ 2γE

) ]
,

(15)

where γE 	 0.577 is the Euler constant and � is a scale
parameter.

By using this propagator in Eqs. (11)–(14) and performing
the Fourier and Borel transformations as well as applying the
continuum subtraction, after very lengthy calculations, we
get

B̂q2�OPE
μν (q) = �̃1 �qgμν + �̃2 gμν + · · · , (16)

where the functions �̃1 and �̃2, for instance for �∗, are
obtained as

�̃�∗
1 = 1

π2

×
∫ s0

0
dse− s

M2

{
s2

5 × 25π2

+ 1

3 × 22

[〈d̄d〉 (md − 2mu − 2ms)

+〈ūu〉 (mu − 2md − 2ms)

+ 〈s̄s〉 (ms − 2mu − 2md)] − 5〈g2
s G

2〉
32 × 27π2

+ 7〈g2
s G

2〉
33 × 24M4

[〈d̄d〉 (mu + ms) + 〈ūu〉 (md + ms)

+ 〈s̄s〉 (mu + md)] Log
[ s

�2

] }

+ m2
0〈d̄d〉

32 × 23π2 (7mu + 7ms − 5md)

+ m2
0〈ūu〉

32 × 23π2 (7md + 7ms − 5mu)

+ m2
0〈s̄s〉

32 × 23π2 (7mu + 7md − 5ms)

+ 4

32

(〈ūu〉〈d̄d〉 + 〈ūu〉〈s̄s〉 + 〈d̄d〉〈s̄s〉)

− 7

33M2 m
2
0

(〈ūu〉〈d̄d〉 + 〈ūu〉〈s̄s〉 + 〈d̄d〉〈s̄s〉)

+ 〈g2
s G

2〉
33 × 24π2M2

{〈d̄d〉 [4(mu + ms) − md]

+〈ūu〉 [4(md + ms) − mu]

+〈s̄s〉 [4(mu + md) − ms]}
+ 〈g2

s G
2〉

34 × 27π2M4m
2
0

{〈d̄d〉 [md − 48(mu + ms)]

+〈ūu〉 [mu − 48(md + ms)]

+〈s̄s〉 [ms − 48(mu + md)]}
+ 7〈g2

s G
2〉

33 × 24π2s0M2

{
〈d̄d〉(mu+ms)+〈ūu〉(md+ms)

+〈s̄s〉(md + mu)

} [
M2 + s0Log

[ s

�2

]]
e− s0

M2 (17)

and

�̃�∗
2 = 1

π2

∫ s0

0
dse− s

M2

{
s2 (mu + md + ms)

26π2

−
(〈ūu〉 + 〈d̄d〉 + 〈s̄s〉) s

32 − m2
0

(〈ūu〉 + 〈d̄d〉 + 〈s̄s〉)
32 × 2

+ 〈g2
s G

2〉 (mu + md + ms)

32 × 27π2

[
(8γE − 3) − 8Log

[ s

�2

]]

+ 〈g2
s G

2〉2 (mu + md + ms)

33 × 29π2M4 Log
[ s

�2

]}

+2

3

[〈d̄d〉〈s̄s〉mu + 〈d̄d〉〈ūu〉ms + 〈d̄d〉〈ūu〉md
]

− m2
0

33 × 22M2

[〈d̄d〉〈s̄s〉 (4mu + 9md + 9ms)

+ 〈d̄d〉〈ūu〉 (9mu + 9md + 4ms)

+〈d̄d〉〈ūu〉 (9mu + 4md + 9ms)
]

− 〈g2
s G

2〉
32 × 24π4 M

2 (mu + md + ms) γE

(
1 − e− s0

M2
)

+〈g2
s G

2〉2 (mu + md + ms)

34 × 29π4M2s0

×
(

5s0 + 3M2e− s0
M2 + 3s0Log

[ s0

�2

]
e− s0

M2
)

+ 〈g2
s G

2〉
33 × 23π2

(〈ūu〉 + 〈d̄d〉 + 〈s̄s〉)

+ 〈g2
s G

2〉
32 × 2M4

(
mu〈d̄d〉〈s̄s〉 + ms〈d̄d〉〈ūu〉 + md〈ūu〉〈s̄s〉)

− 〈g2
s G

2〉
33 × 26π2M2

(
m2

0〈d̄d〉 + m2
0〈ūu〉 + m2

0〈s̄s〉
)

+ 〈g2
s G

2〉
32 × 2π2M6

(
mum

2
0〈d̄d〉〈s̄s〉

+mdm
2
0〈ūu〉〈s̄s〉 + msm

2
0〈ūu〉〈d̄d〉

)
. (18)

The results for the �, �∗ and �− baryons can be obtained
from Eqs. (17) and (18) with the help of the following replace-
ments:

�̃�
1,2 = �̃�∗

1,2 (u → d, s → u) ,

�̃�∗
1,2 = �̃�∗

1,2 (u → s, d → s, s → u) ,

�̃�−
1,2 = �̃�∗

1,2 (u → s, d → s) . (19)

Having calculated both the hadronic and the OPE sides of
the correlation function, we match the coefficients of the
structures � qgμν and gμν from these two sides and obtain
the following sum rules, which will be used to extract the
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Table 2 Some input parameters

Parameters Values

mu 2.2+0.6
−0.4 MeV[15]

md 4.7+0.5
−0.4 MeV [15]

ms 96+8
−4 MeV [15]

〈q̄q〉 (−0.24 ± 0.01)3 GeV3 [11]

〈s̄s〉 0.8〈q̄q〉 [11]

m2
0 (0.8 ± 0.1) GeV2 [11]

〈g2
s G

2〉 4π2(0.012 ± 0.004) GeV4[12]

� (0.5 ± 0.1) GeV [16]

masses and residues of the ground and first excited states:

λ2
De

−m2
D

M2 + λ2
D′e

−m2
D′

M2 = �̃D
1 ,

mDλ2
De

−m2
D

M2 + mD′λ2
D′e

−m2
D′

M2 = �̃D
2 . (20)

3 Numerical results

As is seen from Eq. (20), in order to obtain the numerical
values of the mass and residue of the radial excitations of
the decuplet baryons, we need to have the values of the mass
and residue of the ground states. Because of this, first of all
we calculate the mass and residue of the ground state parti-
cles by choosing an appropriate threshold s0 according to the
standard prescriptions. The working region of the threshold
parameter is found requiring that the sum rules show a good
convergence of the OPE and lead to a maximum possible pole
contribution. Besides, the physical quantities are required to
demonstrate relatively weak dependencies on this parame-
ter in its working interval. The sum rules contain numer-
ous parameters, i.e. quark, gluon and mixed condensates and
mass of the light quarks, the values of which are shown in
Table 2.

In addition to the input parameters, the auxiliary parame-
ter M2 should also be fixed. We find the working region of
M2 such that the physical quantities weakly depend on it as
much as possible. This is achieved requiring that not only
the contributions of the higher states and continuum should
be small compared to the ground and first excited states con-
tributions, but also the higher dimensional operators should
have small contributions and the series of sum rules should
converge.

Using the above procedures, the working regions of M2

for different channels are obtained. These intervals together
with the working regions of s0 for the ground states are given
in Table 3. After standard analysis of the sum rules, we extract
the values of the mass and residue of the ground state decu-
plet baryons as presented in Table 4. Note that the presented

Table 3 The working regions of M2 and s0 for the ground state �, �∗,
�∗ and �− baryons

Baryon M2 (GeV2) s0 (GeV2)

� 1.5 ≤ M2 ≤ 3.0 1.72 ≤ s0 ≤ 1.92

�∗ 1.6 ≤ M2 ≤ 3.5 1.82 ≤ s0 ≤ 2.02

�∗ 1.9 ≤ M2 ≤ 4.0 2.02 ≤ s0 ≤ 2.22

�− 2.0 ≤ M2 ≤ 5.0 2.12 ≤ s0 ≤ 2.32

values are obtained taking the average of the corresponding
values obtained via two different sum rules presented in Eq.
(20). The two some rules’ predictions differ by an amount of
maximally 5% from each other; this we have included in the
errors. We also compare our results with the existing exper-
imental data and other theoretical predictions in this table.
From this table, we see that our predictions on the ground
state mass of the decuplet baryons are well consistent with
the average experimental data presented in PDG [15]. In the
case of the residues, our predictions for the residues of ground
states are overall comparable with those obtained in [10,17].

At this stage, we proceed to find the values of the masses
and residues of the radially excited baryons considering
the values of the masses and residues of the corresponding
ground state baryons as inputs. For this purpose the sum
rules in Eq. (20) are used. When taking into account the con-
tributions of the radial excitations, the continuum threshold
should be changed compared to the previous case. Using
the standard criteria, the continuum threshold (s′

0) including
the first excited states is found as presented in Table 5. Our
analyses show that by the above intervals for M2, s0 and
s′

0, the OPE nicely converges and the pole ground and the
first excited states constitute the main part of the total result
and the effects of higher states and continuum are relatively
small. Taking the average of the values in the channels under
consideration, the pole and first excited state contribution
is found to be 59% of the total contribution. The mass and
residue of the excited D′ baryons versus M2 at different val-
ues of the new continuum threshold are shown in Figs. 1, 2, 3
and 4. Extracted from our analysis, we depict the numerical
values of the masses and residues of D′ baryons in Table 6.

A quick glance at Table 6 leads to the following results:

• The values of the masses obtained for the radially excited
�′ and �∗′

baryons are well consistent with the exper-
imentally well-known �(1600) and �(1730) baryons
masses.

• Our result on the mass of the radially excited �∗′
baryon

is in nice consistency with the experimentally observed
�(1950) state presented in PDG [15]. The quantum num-
bers of this state have not been established yet from the
experiment. This consistency suggests that the �(1950)
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Table 4 The numerical values of masses and residues of the ground
state �, �∗, �∗ and �− baryons. In [17] the numerical values of λ̃2 =
4π2λ2 are given in chiral-odd and chiral-even sum rules approaches. To

compare with our results, we calculate the average λ from those results
and do not show the uncertainties of the results

Mass m� (MeV) m�∗ (MeV) m�∗ (MeV) m�− (MeV)

Present study 1226 ± 124 1389 ± 142 1577 ± 163 1657 ± 172

Experiment [15] 1209 − 1211 1382.80 ± 0.35 1531.80 ± 0.32 1672.45 ± 0.29

Residue λ� (GeV3) λ�∗ (GeV3) λ�∗ (GeV3) λ�− (GeV3)

Present study 0.029 ± 0.008 0.036 ± 0.010 0.045 ± 0.013 0.049 ± 0.015

[10] 0.038 ± 0.010 0.043 ± 0.012 0.053 ± 0.014 0.068 ± 0.019

[17](average central values) 0.044 0.051 0.062 0.073

Table 5 The working regions of
s′

0 for the radially excited �′,
�∗′

, �∗′
and �−′

baryons

Baryon s′
0 (GeV2)

�′ 2.22 ≤ s′
0 ≤ 2.42

�∗′
2.52 ≤ s′

0 ≤ 2.72

�∗′
2.82 ≤ s′

0 ≤ 3.02

�−′
3.12 ≤ s′

0 ≤ 3.32

state can be assigned to the first excited state of the
ground state �(1530). For more information as regards
the �(1950) state, see for instance [18–24] and the ref-
erences therein.

• In the �− channel, our prediction for the excited state
is also consistent with the mass of the experimentally
observed (but unknown quantum numbers) �(2250)−
state within the errors. Therefore our analyses show that

the �(2250)− listed in the PDG [15] at �− channel can
be assigned to the first excited state of the ground state �−
with quantum numbers J P = 3

2
+

. For more information
as regards the �(2250)− state, see for instance [25,26]
and the references therein.

4 Conclusion

We have studied the spin-3/2, �, �∗, �∗ and �− baryons and
calculated the mass and residue of the corresponding ground
and first excited states in the framework of two-point QCD
sum rules. First, we extracted the mass and residue of the
ground state baryons by choosing an appropriate threshold
from the obtained sum rules. We then used those values as
inputs to obtain the mass and residue of the first excited state

Fig. 1 Left the mass of the
radially excited �′ baryon vs.
Borel parameter M2. Right the
residue of the radially excited �′
baryon vs Borel parameter M2

Fig. 2 The same as Fig. 1, but
for the radially excited �∗′

baryon
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Fig. 3 The same as Fig. 1, but
for the radially excited �∗′

baryon

Fig. 4 The same as Fig. 1, but
for the radially excited �−′

baryon

Table 6 The numerical values
of masses and residues of the
radially excited �′, �∗′

, �∗′
and

�−′
baryons

Mass m�′ (MeV) m�∗′ (MeV) m�∗′ (MeV) m�−′ (MeV)

Present study 1483 ± 133 1719 ± 179 1965 ± 178 2176 ± 219

Experiment [15] 1460 − 1560 1727 ± 27 – –

Residue λ�′ (GeV3) λ�∗′ (GeV3) λ�∗′ (GeV3) λ�−′ (GeV3)

Present study 0.057 ± 0.016 0.076 ± 0.022 0.103 ± 0.030 0.129 ± 0.039

in each channels. Our results for the ground states are in nice
agreement with the experimental data and the existing theo-
retical predictions. In the case of excited states, our predic-
tions for the mass of the excited �′ and �∗′

states are in good
consistency with the experimentally known �(1600) and
�(1730) states’ masses. In the case of excited �∗′

and �−′

baryons, our results suggest that the experimentally poorly
known �(1950) and �(2250)− states can be assigned to the
first excited states in �∗ and �− channels with J P = 3

2
+

.
Our results for the residues can be verified via different the-
oretical approaches.
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