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Abstract The determination of the fundamental parame-
ters of the Standard Model (and its extensions) is often lim-
ited by the presence of statistical and theoretical uncertain-
ties. We present several models for the latter uncertainties
(random, nuisance, external) in the frequentist framework,
and we derive the corresponding p values. In the case of the
nuisance approach where theoretical uncertainties are mod-
eled as biases, we highlight the important, but arbitrary, issue
of the range of variation chosen for the bias parameters. We
introduce the concept of adaptive p value, which is obtained
by adjusting the range of variation for the bias according to
the significance considered, and which allows us to tackle
metrology and exclusion tests with a single and well-defined
unified tool, which exhibits interesting frequentist properties.
We discuss how the determination of fundamental parame-
ters is impacted by the model chosen for theoretical uncer-
tainties, illustrating several issues with examples from quark
flavor physics.

1 Introduction

In particle physics, an important part of the data analysis is
devoted to the interpretation of the data with respect to the
Standard Model (SM) or some of its extensions, with the aim
of comparing different alternative models or determining the
fundamental parameters of a given underlying theory [1–3].
In this activity, the role played by uncertainties is essential,
since they constitute the limit for the accurate determina-
tion of these parameters, and they can prevent from reach-
ing a definite conclusion when comparing several alternative
models. In some cases, these uncertainties are from a sta-
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tistical origin: they are related to the intrinsic variability of
the phenomena observed, they decrease as the sample size
increases and they can be modeled using random variables.
A large part of the experimental uncertainties belong to this
first category. However, another kind of uncertainties occurs
when one wants to describe inherent limitations of the anal-
ysis process, for instance, uncertainties in the calibration or
limits of the models used in the analysis. These uncertainties
are very often encountered in theoretical computations, for
instance when assessing the size of higher orders in pertur-
bation theory or the validity of extrapolation formulas. Such
uncertainties are often called “systematics”, but they should
be distinguished from less dangerous sources of systematic
uncertainties, usually of experimental origin, that roughly
scale with the size of the statistical sample and may be rea-
sonably modeled by random variables [4]. In the following
we will thus call them “theoretical” uncertainties: by con-
struction, they lack both an unambiguous definition (leading
to various recipes to determine these uncertainties) and a
clear interpretation (beyond the fact that they are not from
a statistical origin). It is thus a complicated issue to incor-
porate their effect properly, even in simple situations often
encountered in particle physics [5–7].1

The relative importance of statistical and theoretical
uncertainties might be different depending on the problem
considered, and the progress made both by experimentalists
and theorists. For instance, statistical uncertainties are the

1 The issue of theoretical uncertainties is naturally not the only question
that arises in the context of statistical analyses. The statistical framework
used to perform these analyses is also a matter of choice, with two main
approaches, frequentist and Bayesian, adopted in different settings and
for various problems in and beyond high-energy physics [1–3,8–10].
In this paper, we choose to focus on the frequentist approach to discuss
how to model theoretical uncertainties.
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main issue in the analysis of electroweak precision observ-
ables [11,12]. On the other hand, in the field of quark fla-
vor physics, theoretical uncertainties play a very important
role. Thanks to the B-factories and LHCb, many hadronic
processes have been very accurately measured [13,14],
which can provide stringent constraints on the Cabibbo–
Kobayashi–Maskawa matrix (in the Standard Model) [15–
17], and on the scale and structure of New Physics (in
SM extensions) [18–21]. However, the translation between
hadronic processes and quark-level transitions requires infor-
mation on hadronization from strong interaction, encoded
in decay constants, form factors, bag parameters… The lat-
ter are determined through lattice QCD simulations. The
remarkable progress in computing power and in algorithms
over the last 20 years has led to a decrease of statistical uncer-
tainties and a dominance of purely theoretical uncertain-
ties (chiral and heavy-quark extrapolations, scale chosen to
set the lattice spacing, finite-volume effects, continuum lim-
it…). As an illustration, the determination of the Wolfenstein
parameters of the CKM matrix involves many constraints
which are now limited by theoretical uncertainties (neutral-
meson mixing, leptonic and semileptonic decays, …) [22].

The purpose of this note is to discuss theoretical uncer-
tainties in more detail in the context of particle physics phe-
nomenology, comparing different models not only from a
statistical point of view, but also in relation with the prob-
lems encountered in phenomenological analyses where they
play a significant role. In Sect. 2, we summarize fundamental
notions of statistics used in particle physics, in particular p
values and test statistics. In Sect. 3, we list properties that
we seek in a good approach for theoretical uncertainties. In
Sect. 4, we propose several approaches and in Sect. 5, we
compare their properties in the most simple one-dimensional
case. In Sect. 6, we consider multi-dimensional cases (prop-
agation of theoretical uncertainties, average of several mea-
surements, fits and pulls), which we illustrate using flavor
physics examples related to the determination of the CKM
matrix in Sect. 7, before concluding. An appendix is devoted
to several issues connected with the treatment of correlations.

2 Statistics concepts for particle physics

We start by briefly recalling frequentist concepts used in par-
ticle physics, highlighting the role played by p values in
hypothesis testing and how they can be used to define confi-
dence intervals.

2.1 p values

2.1.1 Data fitting and data reduction

First, we would like to illustrate the concepts of data fitting
and data reduction in particle physics, starting with a specific

example, namely the observation of the time-dependent CP
asymmetry in the decay channel B0(t) → J/ψKS by the
BaBar, Belle and LHCb experiments [23–25]. Each exper-
iment collects a sample of observed decay times ti corre-
sponding to the B-meson events, where this sample is theo-
retically known to follow a PDF f . The PDF is parameter-
ized in terms of a few physics parameters, among which we
assume the ones of interest are the direct and mixing-induced
C and S CP asymmetries. The functional form of this PDF
is dictated on very general grounds by the CPT invariance
and the formalism of two-state mixing (see, e.g., [26]), and
is independent of the particular underlying phenomenolog-
ical model (e.g. the Standard Model of particle physics). In
practice, however, detector effects are required to be modeled
by additional parameters that modify the shape of the PDF.
We denote by θ the set of parameters θ = (C, S, . . .) that are
needed to specify the PDF completely. The likelihood for the
sample {ti } is defined by

L{ti }(θ) =
n∏

i=1

f (ti ; θ) (1)

and can be used as a test statistic to infer constraints on the
parameters θ , and/or construct estimators for them, as will be
discussed in more detail below. The combination of different
samples/experiments can be done simply by multiplication
of the corresponding likelihoods. On the other hand one can
choose to work directly in the framework of a specific phe-
nomenological model, by replacing in θ the quantities that
are predicted by the model in terms of more fundamental
parameters: for example in the Standard Model, and neglect-
ing the “penguin” contributions, one has the famous relations
C = 0, S = sin 2β where β is one of the angles of the Uni-
tarity Triangle and can be further expressed in terms of the
Cabibbo–Kobayashi–Maskawa couplings.

The latter choice of expressing the experimental likeli-
hood in terms of model-dependent parameters such as β has,
however, one technical drawback: the full statistical analysis
has to be performed for each model one wants to investi-
gate, e.g., the Standard Model, the Minimal Supersymmetric
Standard Model, GUT models, … In addition, building a
statistical analysis directly on the initial likelihood requires
one to deal with a very large parameter space, depending on
the parameters in θ that are needed to describe the detector
response. One common solution to these technical difficulties
is a two-step approach. In the first step, the data are reduced to
a set of model- and detector-independent2 random variables

2 It may happen that the detector and/or background effects have a
sizable impact on the fitted quantities Ĉ and Ŝ; this can be viewed
as uncertainties in the modeling of the event PDF f . These effects are
reported as systematic uncertainties and in particle physics, it is custom-
ary to treat them on the same footing as the pure statistical uncertainties.
Although we will not try to follow this avenue in the examples discussed
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that contains the same information as the original likelihood
(to a good approximation): in our example the likelihood-
based estimators Ĉ and Ŝ of the parameters C and S can
play the role of such variables (estimators are functions of
the data and thus are random variables). In a second step,
one can work in a particular model, e.g., in the Standard
Model, to use Ĉ and Ŝ as inputs to a statistical analysis of
the parameter β. This two-step procedure gives the same
result as if the analysis were done in a single step through
the expression of the original likelihood in terms of β. This
technique is usually chosen if the PDF g of the estimators Ĉ
and Ŝ can be parameterized in a simple way: for example, if
the sample size is sufficiently large, then the PDF can often
be modeled by a multivariate normal distribution, where the
covariance matrix is approximately independent of the mean
vector.

Let us now extend the above discussion to a more gen-
eral case. A sample of random events is {Ei , i = 1 . . . n},
where each event corresponds to a set of directly measur-
able quantities (particle energies and momenta, interaction
vertices, decay times…). The distribution of these events
is described by a PDF, the functional form f of which is
supposed to be known. In addition to the event value E ,
the PDF value depends on some fixed parameters θ , hence
the notation f (E; θ). The likelihood for the sample {Ei } is
defined by L{Ei }(θ) = ∏n

i=1 f (Ei ; θ). We want to interpret
the event observation in a given phenomenological scenario
that predicts at least some of the parameters θ describing
the PDF in terms of a set of more fundamental parame-
ters χ .

To this aim we first reduce the event observation to a
set of model- and detector-independent random variables X
together with a PDF g(X;χ), in such a way that the infor-
mation that one can get on χ from g is equivalent to the
information one can get from f , once θ is expressed in terms
of χ consistently with the phenomenological model of inter-
est. Technically, it amounts to identifying a minimal set of
variables x depending on θ that are independent of both the
experimental context and the phenomenological model. One
performs an analysis on the sample of events Ei to derive
estimators x̂ for x . The distribution of these estimators can
be described in terms of a PDF that is written in the χ

parametrization as g(X;χ), where we have replaced x̂ by
the notation X , to stress that in the following X will be con-
sidered as a new random variable, setting aside how it has
been constructed from the original data {Ei }. Obviously, in
our previous example for B0(t) → J/ψKS , {ti } correspond
to {Ei }, C ans S to x , and β to χ .

Footnote 2 continued
here, it would be possible to consider these systematic uncertainties as
theoretical uncertainties, to be modeled according to the methods that
we describe in the following sections.

2.1.2 Model fitting

From now on we work with one or more observable(s) x ,
with associated random variable X , and an associated PDF
g(X;χ) depending on purely theoretical parameters χ . With
a slight abuse of notation we include in the symbol g not
only the functional form, but also all the needed parameters
that are kept fixed and independent of χ . In particular for a
one-dimensional Gaussian PDF we have

g(X;χ) ∼ exp

[
−1

2

(
X − x(χ)

σ

)2
]

, (2)

where X is a potential value of the observable x and x(χ)

corresponds to the theoretical prediction of x given χ . This
PDF is obtained from the outcome of an experimental anal-
ysis yielding both a central value X0 and an uncertainty σ ,
where σ is assumed to be independent of the realization X0

of the observable x and is thus included in the definition of g.
Our aim is to derive constraints on the parameters χ , from

the measurement X0 ± σ of the observable x . One very gen-
eral way to perform this task is hypothesis testing, where one
wants to quantify how much the data are compatible with the
null hypothesis that the true value of χ , χt , is equal to some
fixed value χ :

Hχ : χt = χ. (3)

In order to interpret the observed data X0 measured in a given
experiment in light of the distribution of the observables X
under the null hypothesis Hχ , one defines a test statistic
T (X;χ), that is, a scalar function of the data X that measures
whether the data are in favor or not of the null hypothesis.
We indicated the dependence of T on χ explicitly, i.e., the
dependence on the null hypothesis Hχ . The test statistic is
generally a definite positive function chosen in a way that
large values indicate that the data present evidence against
the null hypothesis. By comparing the actual data value t =
T (X0;χ) with the sampling distribution of T = T (X;χ)

under the null hypothesis, one is able to quantify the degree
of agreement of the data with the null hypothesis.

Mathematically it amounts to defining a p value. One cal-
culates the probability to obtain a value for the test statistic at
least as large as the one that was actually observed, assuming
that the null hypothesis is true. This tail probability is used to
define the p value of the test for this particular observation

1 − p(X0;χ) =
∫ T (X0;χ)

0
dT h(T |Hχ )

= P[T < T (X0;χ)], (4)

where the PDF h of the test statistic is obtained from the PDF
g of the data as

h(T |Hχ ) =
∫

dX δ [T − T (X;χ)] g(X;χ) (5)
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Fig. 1 Illustration in the simple case where X is predicted as x(μ) = μ.
Under the hypothesis μt = μ, and having measured X = 0±1, one can
determine the associated p value p(0; μ) by examining the distribution
of the quadratic test statistic T (X; μ) = (X − μ)2 assuming X is
distributed as a Gaussian random variable with central value 0 and width
1. The blue dashed line corresponds to the value of T associated with
the hypothesis μ = −1.4, with a p value obtained by considering the
gray area. The red dotted line corresponds to the hypothesis μ = 2.5

which can be obtained easily from comparing the convolu-
tion of dT

dX h(T ) = g(X) with a test function of T with the
convolution of the r.h.s. of (5) with the same test function.
A small value of the p value means that T (X0;χ) belongs
to the “large” region, and thus provides evidence against the
null hypothesis. This is illustrated for a simple example in
Figs. 1 and 2.

From its definition, one sees that 1 − p(X0;χ) is nothing
else but the cumulative distribution function of the PDF h

CDF[h](T (X0;χ)|Hχ )

=
∫

dX θ [T (X0;χ) − T (X;χ)] , g(X;χ) (6)

where θ is the Heaviside function. This expression corre-
sponds to the probability for the test statistic to be smaller
than a given value T (X0;χ). The p value in Eq. (4) is defined
as a function of X0 and as such, is a random variable.

Through the simple change of variable dp
dT

dP
dp = dP

dT , one
obtains that the null distribution (that is, the distribution when
the null hypothesis is true) of a p value is uniform, i.e., the
distribution of values of the p value is flat between 0 and
1. This uniformity is a fundamental property of p values
that is at the core of their various interpretations (hypothesis
comparison, determination of confidence intervals…) [1,2].

In the frequentist approach, one wants to design a proce-
dure to decide whether to accept or reject the null hypothesis
Hχ , by avoiding as much as possible either incorrectly reject-
ing the null hypothesis (Type-I error) or incorrectly accepting
it (Type-II error). The standard frequentist procedure con-
sists in selecting a Type-I error α and determining a region
of sample space that has the probability α of containing the

data under the null hypothesis. If the data fall in this critical
region, the hypothesis is rejected. This must be performed
before data are known (in contrast to other interpretations,
e.g, Fischer’s approach of significance testing [1]). In the
simplest case, the critical region is defined by a condition of
the form T ≥ tα , where tα is a function of α only, which can
be rephrased in terms of p value as p ≤ α. The interest of
the frequentist approach depends therefore on the ability to
design p values assessing the rate of Type-I error correctly
(its understatement is clearly not desirable, but its overstate-
ment yields often a reduction in the ability to determine the
truth of an alternative hypothesis), as well as avoiding too
large a Type-II error rate.

A major difficulty arises when the hypothesis to be tested
is composite. In the case of numerical hypotheses like (3),
one gets compositeness when one is only interested in a sub-
set μ of the parameters χ . The remaining parameters are
called nuisance parameters3 and will be denoted by ν, thus
χ = (μ, ν). In this case the hypothesis Hμ : μt = μ is com-
posite, because determining the distribution of the observ-
ables requires the knowledge of the true value νt in addition
to μ. In this situation, one has to devise a procedure to infer a
“p value” forHμ out of p values built for the simple hypothe-
ses where both μ and ν are fixed. Therefore, in contrast to
a simple hypothesis, a composite hypothesis does not allow
one to compute the distribution of the data.4

At this stage, it is not necessarily guaranteed that the dis-
tribution of the p value for Hμ is uniform, and one may get
different situations:

p exact : P(p ≤ α|Hμ) = α (7)

p conservative : P(p ≤ α|Hμ) < α (8)

p liberal : P(p ≤ α|Hμ) > α (9)

which may depend on the value of α considered. Naturally,
one would like to design as much as possible an exact p value
(exact coverage), or if this is not possible, a (reasonably)
conservative one (overcoverage). Such p values will be called
“valid” p values. In the case of composite hypotheses, the
conservative or liberal nature of a p value may depend not
only on α, but also on the structure of the problem and of
the procedure used to construct the p value, and it has to be
checked explicitly [1,2].

3 “Nuisance” does not mean that these parameters are necessarily
unphysical, “pollution” parameters. They can be fundamental constants
of Nature, and interesting as such.
4 We have defined compositeness for numerical hypotheses, since this is
our case of interest in the following. More generally, compositeness also
occurs in the case of non-numerical hypotheses such as “The Standard
Model is true”, for which it is not possible to compute the distribution
of data either. Indeed assuming that the Standard Model is true does not
imply anything on the value of its fundamental parameters, and thus
one cannot compute the distribution of a given observable under this
hypothesis.
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Fig. 2 On the left for a given observation X = 0 ± 1, p value p(0; μ)

as a function of the value of μ being tested. Blue dashed and red dot-
ted lines correspond to μ = −1.4 and μ = 2.5. A confidence interval
for μ at 68% CL is obtained by considering the region of μ with a p

value larger than 0.32, as indicated by the green dotted dashed line and
arrows. On the right the same information is expressed in Gaussian
units of σ , where the 68% CL interval corresponds to the region below
the horizontal line of significance 1
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Fig. 3 A α-CL interval built from a p value with exact coverage has
a probability of α of containing the true value. This is illustrated in
the simple case of a quantity X which has a true value μt = 0 but
is measured with an uncertainty σ = 1. Each time a measurement is
performed, it will yield a different value for X0 and thus a different p
value curve as a function of the hypothesis tested μt = μ. From each
measurement, a 68% CL interval can be determined by considering the
part of the curve above the line p = 0.32, but this interval may or may
not contain the true value μt = 0. The curves corresponding to the first
case (second case) are indicated with 6 green solid lines (4 blue dotted
lines). Asymptotically, if the p value has exact coverage, 68% of these
confidence intervals will contain the true value

Once p values are defined, one can build confidence inter-
vals out of them by using the correspondence between accep-
tance regions of tests and confidence sets. Indeed, if we have
an exact p value, and the critical region Cα(X) is defined
as the region where p(X;μ) < α, the complement of this
region turns out to be a confidence set of level 1 − α, i.e.,
P[μ /∈ Cα(X)] = 1−α. This justifies the general use of plot-
ting the p value as a function of μ, and reading the 68 or 95%
CL intervals by looking at the ranges where the p value curve
is above 0.32 or 0.05. This is illustrated for a simple example
in Figs. 2 and 3. Once again, this discussion is affected by
issues of compositeness and nuisance parameters, as well as

the requirement of checking the coverage of the p value used
to define these confidence intervals: an overcovering p value
will yield too large confidence intervals, which will prove
indeed conservative.

A few words about the notation and the vocabulary are
in order at this stage. A p value necessarily refers to a null
hypothesis, and when the null hypothesis is purely numerical
such as (3) we can consider the p value as a mathematical
function of the fundamental parameter μ. This of course does
not imply that μ is a random variable (in frequentist statis-
tics, it is always a fixed, but unknown, number). When the p
value as a function of μ can be described in a simple way by a
few parameters, we will often use the notation μ = μ0 ±σμ.
In this case, one can easily build the p value and derive any
desired confidence interval. Even though this notation is sim-
ilar to the measurement of an observable, we stress that this
does not mean that the fundamental parameter μ is a random
variable, and it should not be seen as the definition of a PDF.
In line with this discussion, we will call uncertainties the
parameters like σ that can be given a frequentist meaning,
e.g., they can be used to define the PDF of a random vari-
able. On the other hand, we will call errors the intermediate
quantities such as σμ that can be used to describe the p value
of a fundamental parameter, but cannot be given a statistical
meaning for this parameter.

2.2 Likelihood-ratio test statistic

Here we consider test statistics that are constructed from the
logarithm of the likelihood5

T ∼ −2 lnLX (χ) LX (χ) ≡ g(X;χ) (10)

5 Strictly speaking, the likelihood is only defined for the actually mea-
sured data X0: L0(χ) ≡ g(X0; χ) and thus is only a function of the
parameters χ . Nevertheless it is common practice to use the word “like-
lihood” for the object g(X; χ), considered as a function of both the
observables X and the parameters χ .
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More precisely, one uses tests based on the likelihood ratio
in many instances. Its use is justified by the Neyman–Pearson
lemma [1,2,27] showing that this test has appealing features
in a binary model with only two alternatives for χt , corre-
sponding to the two simple hypotheses Hχ1 and Hχ2 . Indeed
one can introduce the likelihood ratio LX (χ1)/LX (χ2),
define the critical region where this likelihood ratio is smaller
than a given α, and decide that one rejects Hχ1 whenever the
observation falls in this critical region. This test is the most
powerful test that can be built [1,2], in the sense that among
all the tests with a given Type-I error α (probability of reject-
ing Hχ1 when Hχ1 is true), the likelihood ratio test has the
smallest Type-II error (probability of accepting Hχ1 when
Hχ2 is true). These two conditions are the two main criteria
to determine the performance of a test.

In the case of a composite hypothesis, there is no
such clear-cut approach to choose the most powerful test.
The maximum likelihood ratio (MLR) is inspired by the
Neynman–Pearson lemma, comparing the most plausible
configuration under Hμ with the most plausible one in gen-
eral:

T (X;μ) = −2 ln
MaxνtLX (μ, νt )

Maxμt ,νtLX (μt , νt )

= Minνt [−2 lnLX (μ, νt )]
−Minμt ,νt [−2 lnLX (μt , νt )]. (11)

Let us emphasize that even though T is constructed not to
depend on the nuisance parameters ν explicitly, its distri-
bution Eq. (5) a priori depends on them (through the PDF
g). Even though the Neyman–Pearson lemma does not apply
here, there is empirical evidence that this test is powerful,
and in some cases it exhibits good asymptotic properties
(easy computation and distribution independent of nuisance
parameters) [1,2].

For the problems considered here, the MLR choice fea-
tures alluring properties, and in the following we will use test
statistics that are derived from this choice. First, if g(X;χt )

is a multi-dimensional Gaussian function, then the quantity
−2 lnLX (χt ) is the sum of the squares of standard normal
random variables, i.e., is distributed as a χ2 with a number of
degrees of freedom (Ndof ) that is given by dim(X). Secondly,
for linear models, in which the observables X depend linearly
on the parameters χt , the MLR Eq. (11) is again a sum of
standard normal random variables, and is distributed as a χ2

with Ndof = dimension(μ). Wilks’ theorem [28] states that
this property can be extended to non-Gaussian cases in the
asymptotic limit: under regularity conditions and when the
sample size tends to infinity, the distribution of Eq. (11) will
converge to the same χ2 distribution depending only on the
number of parameters tested.

The great virtue of the χ2-distribution is that it only
depends on the number of degrees of freedom, which means

in particular that the null-distribution of Eq. (11) is indepen-
dent of the nuisance parameters ν, whenever the conditions
of the Wilks’ theorem apply. Furthermore the integral (4)
can be computed straightforwardly in terms of complete and
incomplete Γ functions:

p(X0;μ) = Prob (T (X0;μ), Ndof )

≡ Γ (Ndof/2, T (X0;μ)/2)

Γ (Ndof/2)
. (12)

In practice the models we want to analyze, such as the
Standard Model, predict nonlinear relations between the
observables and the parameters. In this case one has to check
whether Wilks’ theorem applies, by considering whether the
theoretical equations can be approximately linearized.6

3 Comparing approaches to theoretical uncertainties

We have argued before that an appealing test statistic is pro-
vided by the likelihood ratio Eq. (11) due to its properties
in limit cases (linearized theory, asymptotic limit). These
properties rely on the fact that the likelihood ratio can be
built as a function of random variables described by mea-
surements involving only statistical uncertainties. However,
in flavor physics (as in many other fields in particle physics),
there are not only statistical but also theoretical uncertainties.
Indeed, as already indicated in the introduction, these phe-
nomenological analyses combine experimental information
and theoretical estimates. In the case of flavor physics, the
latter come mainly from QCD-based calculations, which are
dominated by theoretical uncertainties.

Unfortunately, the very notion of theoretical uncertainty is
ill-defined as “anything that is not due to the intrinsic variabil-
ity of data”. Theoretical uncertainties (model uncertainty) are
thus of a different nature with respect to statistical uncertain-
ties (stochastic uncertainty, i.e. variability in the data), but
they can only be modeled (except in the somewhat academic
case where a bound on the difference between the exact value
and the approximately computed one can be proven). The
choice of a model for theoretical uncertainties involves not
only the study of its mathematical properties and its physical
implications in specific cases, but also some personal taste.
One can indeed imagine several ways of modeling/treating
theoretical uncertainties:

– one can (contrarily to what has just been said) treat the
theoretical uncertainty on the same footing as a statistical

6 More precisely, the asymptotic limit is reached when the model can
be linearized for all values of the data that contribute significantly to
the integral (4). It corresponds to the situation where the errors on the
parameters derived from computing p values are small with respect to
the typical parameter scales of the problem.
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Table 1 Summary table of
various approaches to
theoretical uncertainties
considered in the text

Approach Random-δ Nuisance-δ External-δ

Hypothesis Random var. Composite hyp. Family of simple hyp.

PDFΔ(δ) Hμ : μt = μ H(δ)
μ : μt = μ + δ

Test Likelihood ratio Quadratic Quadratic

Constraint on δ – Ω Ω

Associativity Yes if normal PDF Yes if Ω hyperball Yes if Ω hyperball

Splitting of errors Yes if normal PDF Yes for all Ω Yes for all Ω

Stationarity Yes Yes Yes

Simple asympt. lim. Yes if normal PDF Yes Yes

Simple σ → 0 limit Depends on PDF Ω Ω

Particular cases Naive Gaussian Fixed/adaptive nuis. Scan

If we take Normal PDF Fixed/adaptive Ω Sup over fixed Ω

uncertainty; in this case, in order to follow a meaningful
frequentist procedure, one has to assume that one lives in
a world where the repeated calculation of a given quantity
leads to a distribution of values around the exact one, with
some variability that can be modeled as a PDF (“random-
δ approach”),

– one can consider that theoretical uncertainties can be
modeled as external parameters, and perform a purely
statistical analysis for each point in the theoretical uncer-
tainty parameter space; this leads to an infinite collec-
tion of p values that will have to be combined in some
arbitrary way, following a model averaging procedure
(“external-δ approach”),

– one can take the theoretical uncertainties as fixed asymp-
totic biases,7 treating them as nuisance parameters that
have to be varied in a reasonable region (“nuisance-δ
approach”).

There are some desirable properties for a convincing treat-
ment of theoretical uncertainties:

– as general as possible, i.e., apply to as many “kinds” of
theoretical uncertainties as possible (lattice uncertainties,
scale uncertainties) and as many types of physical models
as possible,

– leading to meaningful confidence intervals, in reason-
able limit cases: obviously, in the absence of theoretical
uncertainties, one must recover the standard result; one
may also consider the type of constraint obtained in the
absence of statistical uncertainties,

7 A bias is defined as the difference between the average of the estima-
tor among a large number of experiments with finite sample size and
the true value. An estimator is said to be consistent if it converges to
the true value when the size of the sample tends to infinity (e.g., maxi-
mum likelihood estimators). Consistency implies that the bias vanishes
asymptotically, while inconsistency may stem from theoretical uncer-
tainties.

– exhibiting good coverage properties, as it benchmarks
the quality of the statistical approach: the comparison
of different models provides interesting information but
does not shed light on their respective coverage,

– associated with a statistically meaningful goodness-of-
fit,

– featuring reasonable asymptotic properties (large sam-
ples),

– yielding the errors as a function of the estimates eas-
ily (error propagation), in particular by disentangling the
impact of theoretical and statistical contributions,

– leading to a reasonable procedure to average indepen-
dent estimates – if possible, it should be equivalent for
any analysis to include the independent estimates sep-
arately or the average alone (associativity). In addition,
one may wonder whether the averaging procedure should
be conservative or aggressive (i.e., the average of simi-
lar theoretical uncertainties should have a smaller uncer-
tainty or not), and if the procedure should be stationary
(the uncertainty of an average should be independent of
the central values or not),

– leading to reasonable results in the case of averages of
inconsistent measurements.

Finally a technical requirement is the computing power
needed to calculate the best-fit point and confidence inter-
vals for a large parameter space with a large number of con-
straints. Even though it should not be the sole argument in
favor of a model, it should be kept in mind (a very compli-
cated model for theoretical uncertainties would not be par-
ticularly interesting if it yields very close results to a much
simpler one).

We summarize some of the points mentioned above in
Table 1. As it will be seen, it will, however, prove challenging
to fulfill all these criteria at the same time, and we will have
to make compromises along the way.
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4 Illustration of the approaches in the one-dimensional
case

4.1 Situation of the problem

We will now discuss the three different approaches and some
of their properties in the simplest case, i.e. with a single
measurement (for an experimental quantity) or a single the-
oretical determination (for a theoretical quantity). Following
a fairly conventional abuse of language, we will always refer
to this piece of information as a “measurement” even though
some modeling may be involved in its extraction through data
reduction, as discussed in Sect. 2. The main, yet not alone,
aim is to model/interpret/exploit a measurement like8

X = X0 ± σ (exp) ± Δ(th) (13)

to extract information on the value of the associated funda-
mental parameter μ. Without theoretical uncertainty (Δ =
0), one would use this measurement to build a PDF

PDFno th(X;μ) = N(μ,σ )(X) (14)

yielding the MLR test statistic

Tno th = (X − μ)2

σ 2 (15)

and one can build a p value easily from Eq. (4)

pno th(μ) = 1 − Erf

[ |μ − X0|√
2σ

]
(16)

In the presence of a theoretical uncertainty Δ, the situa-
tion is more complicated, as there is no clear definition of
what Δ corresponds to. A possible first step is to introduce
a theoretical uncertainty parameter δ that describes the shift
of the approximate theoretical computation from the exact
value, and that is taken to vary in a region that is defined by
the value of Δ. This leads to the PDF

PDF(X;μ) = N(μ+δ,σ )(X) (17)

in such a way that in the limit of an infinite sample size
(σ → 0), the measured value of X reduces to μ + δ. The
challenge is to extract some information on μ, given the fact
that the value of δ remains unknown.

The steps (to be spelt out below) to achieve this goal are:

– Take a model corresponding to the interpretation of δ:
random variable, external parameter, fixed bias as a nui-
sance parameter…

8 We discuss how the method can be adapted for asymmetric uncer-
tainties in Appendix C.

– Choose a test statistic T (X;μ) that is consistent with the
model and that discriminates the null hypothesis: Rfit,
quadratic, other…

– Compute, consistently with the model, the p value, which
is in general a function of μ and δ.

– Eliminate the dependence with respect to δ by some well-
defined procedure.

– Exploit the resulting p value (coverage, confidence inter-
vals, goodness-of-fit).

Since we focus on Gaussian experimental uncertainties
(the generalization to other shapes is formally straightfor-
ward but may be technically more complicated), for all
approaches that we discuss in this note we take the following
PDF:

PDF(X;μ) = N(μ+δ,σ )(X), (18)

where, in the limit of an infinite sample size (σ → 0), μ can
be interpreted as the exact value of the parameter of interest,
and μ + δ the approximately theoretically computed one.
The interpretation of δ will differ depending on the approach
considered, which we will discuss now.

4.2 The random-δ approach

In the random-δ approach, δ would be related to the variabil-
ity of theoretical computations, which one can model with
some PDF for δ, such as N(0,Δ) (normal) or U(−Δ,+Δ) (uni-
form). The natural candidate for the test statistic T (X;μ) is
the MLR built from the PDF. One considers a model where
X = s + δ is the sum of two random variables, s being
distributed as a Gaussian of mean μ and width σ , and δ as
an additional random variable with a distribution depending
on Δ.

One may often consider for δ a variable normally dis-
tributed with a mean zero and a width Δ (denoted naive
Gaussian or “nG” in the following, corresponding to the most
common procedure in the literature of particle physics phe-
nomenology). The resulting PDF for X is then the convolu-
tion of two Gaussian PDFs, leading to

PDFnG(X;μ) = N
(μ,

√
σ 2+Δ2)

(X) (19)

to which corresponds the usual quadratic test statistic
(obtained from MLR)

TnG = (X − μ)2

σ 2 + Δ2 , (20)

recovering the p value that would be obtained when the two
uncertainties are added in quadrature

pnG(μ) = 1 − Erf

[ |μ − X |√
2
√

σ 2 + Δ2

]
. (21)
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We should stress that considering δ as a random variable
corresponds to a rather strange frequentist world,9 and there
is no strong argument that would help to choose the asso-
ciated PDF (for instance, δ could be a variable uniformly
distributed over [−Δ,Δ]). However, for a general PDF, the
p value has no simple analytic formula and it must be com-
puted numerically from Eq. (4). In the following, we will
only consider the case of a Gaussian PDF when we discuss
the random-δ approach.

4.3 The nuisance-δ approach

In the nuisance approach, δ is not interpreted as a random
variable but as a fixed parameter so that in the limit of an
infinite sample size, the estimator does not converge to the
true value μt , but to μt+δ. The distinction between statistical
and theoretical uncertainties is thus related to their effect as
the sample size increases, statistical uncertainties decreasing
while theoretical uncertainties remaining of the same size
(see Refs. [29–31] for other illustrations in the context of
particle physics). One works with the null hypothesis Hμ :
μt = μ, and one has then to determine which test statistic is
to be built.

In the frequentist approach, the choice of the test statistic
is arbitrary as long as it models the null hypothesis correctly,
i.e., the smaller the value of the test statistic, the better the
agreement of the data with the hypothesis. A particularly
simple possibility consists in the quadratic statistic already
introduced earlier:

Tnuisance = Minδ

[(
X − μ − δ

σ

)2

+
(

δ

Δ

)2
]

= (X − μ)2

σ 2 + Δ2 , (22)

where the minimum is not taken over a fixed range, but on
the whole space. The great virtue of the quadratic shape is
that in linear models it remains quadratic after minimization
over any subset of parameters, in contrast with alternative,
non-quadratic, test statistics.

The PDF for X is normal, with mean μ + δ and variance
σ 2

PDFnuisance(X;μ) = N(μ+δ,σ )(X). (23)

Although we choose test statistics for the random-δ and
nuisance-δ of the same form, Eqs. (20) and (22), the different
PDFs Eqs. (19) and (23) imply very different constructions
for the p values and the resulting statistical outcomes. Indeed,
with this PDF for the nuisance-δ approach, T is distributed as

9 On the other hand, this is natural in the Bayesian approach, where
incomplete information is modeled as a PDF for the unknown parame-
ters associated with a theoretical uncertainty [8–10].

a rescaled, non-central χ2 distribution with a non-centrality
parameter (δ/σ )2 (this non-centrality parameter illustrates
that the test statistic is centered around μ whereas the distri-
bution of X is centered around μ + δ). δ is then a genuine
asymptotic bias, implying inconsistency: in the limit of an
infinite sample size, the estimator constructed from T is μ,
whereas the true value is μ + δ. Using the previous expres-
sions, one can easily compute the cumulative distribution
function of this test statistic,

1 − CDFδ(μ) = 1 + 1

2
Erf

(
δ − |μ − X |√

2σ

)

−1

2
Erf

(
δ + |μ − X |√

2σ

)
, (24)

which depends explicitly on δ but not on Δ (as indicated
before, even if T is built to be independent of nuisance param-
eters, its PDF depends on them a priori).

To infer the p value one can take the supremum value for
δ over some interval Ω

pΩ = Maxδ∈Ω [1 − CDFδ(μ)] (25)

The interpretation is the following: if the (unknown) true
value of δ belongs to Ω , then pΩ is a valid p value for μ,
from which one can infer confidence intervals for μ. This
space cannot be the whole space (as one would get p = 1
trivially for all values of μ), but there is no natural candidate
(i.e., coming from the derivation of the test statistic). More
specifically, should the interval Ω be kept fixed or should it be
rescaled when investigating confidence intervals at different
levels (e.g. 68 vs. 95%)?

– If one wants to keep it fixed, Ωr = r [−Δ,Δ]:

pfixed Ωr = Maxδ∈Ωr [1 − CDFδ(μ)]. (26)

One may wonder what the best choice is for r , as the
p value gets very large if one works with the reason-
able r = 3, while the choice r = 1 may appear as
non-conservative. We will call this treatment the fixed
r -nuisance approach.

– One can then wonder whether one would like to let Ω

depend on the value considered for p. In other words,
if we are looking at a k σ range, we could consider the
equivalent range for δ. This would correspond to

padapt Ω = Maxδ∈Ωkσ (p) [1 − CDFδ(μ)] (27)

where kσ (p) is the “number of sigma” corresponding to
p

kσ (p)2 = Prob−1(p, Ndof = 1), (28)
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where the function Prob has been defined in Eq. (12). We
will call this treatment the adaptive nuisance approach.
The correct interpretation of this p value is: p is a valid
p value if the true (unknown) value of δ/Δ belongs to
the “would be” 1 − p confidence interval around 0. This
is not a standard coverage criterion: one can use adap-
tive coverage, and adaptively valid p value, to name
this new concept. Note that Eqs. (27), (28) constitute a
non-algebraic implicit equation that has to be solved by
numerical means.

Let us emphasize that the fixed interval is very close to
the original ‘Rfit’ method of the CKMfitter group [15,16]
in spirit, but not numerically, as will be shown below by an
explicit comparison. In contrast the adaptive choice is more
aggressive in the region of δ close to zero, but allows this
parameter to take large values, provided one is interested
in computing small p values accordingly. In this sense, the
adaptive approach provides a unified approach to deal with
two different issues of importance, namely the metrology of
parameters (at 1 or 2σ ) and exclusion tests (at 3 or 5σ ).

4.4 The external-δ approach

In this approach, the parameter δ is also considered as a fixed
parameter. The idea behind this approach is very simple, and
it is close to what experimentalists often do to estimate sys-
tematic effects: in a first step one considers that δ is a fixed
constant, and one performs a standard, purely statistical anal-
ysis that leads to a p value that explicitly depends on δ. If one
takes X ∼ N(μ+δ,σ ) and T quadratic [either (X−μ−δ)2/σ 2

or (X − μ − δ)2/(σ 2 + Δ2)]:10

pδ(μ) = 1 − Erf

[ |X − μ − δ|√
2σ

]
. (29)

Note that this procedure actually corresponds to the simple
null hypothesis H(δ)

μ : μt = μ + δ instead of Hμ: μt = μ,
hence one gets an infinite collection of p values instead of a
single one related to the aimed constraint on μ.

Since δ is unknown one has to define a procedure to aver-
age all the pδ(μ) obtained. The simplest possibility is to take
the envelope (i.e., the maximum) of pδ(μ) for δ in a definite
interval (e.g. [−Δ,+Δ]), leading to

pnRfit = 1 if |X − μ| ≤ Δ (30)

= 1 − Erf

[ |X − μ ± Δ|√
2σ

]
otherwise. (31)

10 The choice of the weight in the denominator of the test statistic will
be discussed in the multi-dimensional case in Sect. 6.2.3, but it does not
impact the result for the p value in one dimension where it plays only
the role of an overall normalization that cancels when computing the p
value.

By analogy with the previous case, we will call this treatment
the fixed r -external approach for δ ∈ Ωr . This is equiva-
lent to the Rfit ansatz used by CKMfitter [15,16] in the one-
dimensional case (but not in higher dimensions), proposed
to treat theoretical uncertainties in a different way from sta-
tistical uncertainties, treating all values within [−Δ,Δ] on
an equal footing. We recall that the Rfit ansatz was obtained
starting from a well test statistic, with a flat bottom with a
width given by the theoretical error and parabolic walls given
by statistical uncertainty.

A related method, called the Scan method, has been devel-
oped in the context of flavor physics [32,33]. It is however
slightly different from the case discussed here. First, the test
statistic chosen is not the same, since the Scan method uses
the likelihood rather than the likelihood ratio, i.e. it relies
on the test statistic T = −2 logL(μ, ν) which is interpreted
assuming that T follows a χ2-law with the corresponding
number of degrees of freedom N , including both parame-
ters of interest and nuisance parameters.11 Then the 1 − α

confidence region is then determined by varying nuisance
parameters in given intervals (typically Ω1), but accepting
only points where T ≤ Tc, where Tc is a critical value so
that P(T ≥ Tc; N |H0) ≥ α (generally taken as α = 0.05).
This latter condition acts as a test of compatibility between
a given choice of nuisance parameters and the data.

5 Comparison of the methods in the one-dimensional
case

In the following, we will discuss properties of the different
approaches in the case of one dimension. More specifically,
we will consider:

• the random-δ approach with a Gaussian random variable,
or naive Gaussian (nG), see Sect. 4.2,

• the nuisance-δ approach with quadratic statistic and fixed
range, or fixed nuisance, see Sect. 4.3,

• the nuisance-δ approach with quadratic statistic and adap-
tive range, or adaptive nuisance, see Sect. 4.3,

• the external-δ approach with quadratic statistic and fixed
range, equivalent to the Rfit approach in one dimension;
see Sect. 4.4.

Note that we will not consider other (nonquadratic) statistics.
Finally, we consider

X = 0 ± σ ± Δ σ 2 + Δ2 = 1, (32)

11 Such a test statistic tends typically to be less sensitive to discrepancies
in a global fit than the likelihood ratio. In the presence of quantities
having no or little dependence on the scanned parameters, the impact
of discrepancies is diluted in the case of the likelihood statistic.
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Fig. 4 Comparison of different treatments of theoretical uncertainties
of the measurement X = 0 ± σ (exp) ± Δ(th), with different val-
ues of Δ/σ (with the normalization

√
Δ2 + σ 2 = 1). The p values

have been converted into a significance in Gaussian units of σ fol-

lowing the particle physics conventions. The various approaches are:
nG (dotted, red), Rfit or 1-external (dashed, black), fixed 1-nuisance
(dotted-dashed, blue), fixed 3-nuisance (dotted-dotted-dashed, purple),
adaptive nuisance (solid, green)

with varying Δ/σ as an indication of the relative size of the
experimental and theoretical uncertainties.

5.1 p values and confidence intervals

We can follow the discussion of the previous section
and plot the results for the p values obtained from the
various methods discussed above in Fig. 4, where we
compare nG, Rfit, fixed nuisance and adaptive nuisance
approaches. From these p values, we can infer confidence
intervals at a given significance level and a given value of
Δ/σ , and determine the length of the (symmetric) con-
fidence interval (see Table 2). We notice the following
points:

– By construction, nG always provides the same errors
whatever the relative proportion of theoretical and sta-
tistical uncertainties, and all the approaches provide the
same answer in the limit of no theoretical uncertainty
Δ = 0.

– By construction, for a given nσ confidence level, the
interval provided by the adaptive nuisance approach is
identical to the one obtained using the fixed nuisance

approach with a [−n, n] interval. This explains why the
adaptive nuisance approach yields identical results to
the fixed 1-nuisance approach at 1σ (and similarly for
the fixed 3-nuisance approach at 3σ ). The corresponding
curves cannot be distinguished on the upper and central
panels of Fig. 5.

– The adaptive nuisance approach is numerically quite
close to the nG method; the maximum difference occurs
for Δ/σ = 1 (up to 40% larger error size for 5σ inter-
vals).

– The p value from the fixed-nuisance approach has a very
wide plateau if one works with the ‘reasonable’ range
[−3Δ,+3Δ], while the choice of [−Δ,+Δ] might be
considered as nonconservative.

– The 1-external and fixed 1-nuisance approaches are close
to each other and less conservative than the adaptive
approach, which is expected, but also than nG, for con-
fidence intervals at 3 or 5σ when theory uncertainties
dominate.

– When dominated by theoretical uncertainties (Δ/σ

large), all approaches provide 3 and 5σ errors smaller
than the nG approach, apart from the adaptive nuisance
approach.
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Table 2 Comparison of the size of one-dimensional confidence inter-
vals at 1, 3, 5σ for various methods and various values of Δ/σ

nG 1-nuisance Adaptive nuisance 1-external

Δ/σ = 0.3

1σ 1.0 1.0 1.0 1.2

3σ 3.0 3.0 3.5 3.2

5σ 5.0 5.0 6.1 5.1

Δ/σ = 1

1σ 1.0 1.1 1.1 1.4

3σ 3.0 2.7 4.1 2.8

5σ 5.0 4.1 7.0 4.2

Δ/σ = 3

1σ 1.0 1.1 1.1 1.3

3σ 3.0 1.8 3.7 1.9

5σ 5.0 2.5 6.3 2.5

Δ/σ = 10

1σ 1.0 1.0 1.0 1.1

3σ 3.0 1.3 3.3 1.3

5σ 5.0 1.5 5.5 1.5

5.2 Significance thresholds

Another way of comparing methods consists in taking the
value of μ for which the p value corresponds to 1, 3, 5σ

(in significance scale) in a given method, and compute the
corresponding p values for the other methods. The results are
gathered in Tables 3 and 4. Qualitatively, the comparison of
significances can be seen from Fig. 4: if the size of the error is
fixed, the different approaches quote different significances
for this same error.

In agreement with the previous discussion, we see that
fixed 1-nuisance and 1-external yield similar results for 3
and 5σ , independently of the relative size of statistical and
theoretical effects. Moreover, they are prompter to claim a
tension than nG, the most conservative method in this respect
being the adaptive nuisance approach.

As a physical illustration of this problem, we can consider
the current situation for the anomalous magnetic moment of
the muon, namely the difference between the experimental
measurement and the theoretical computation in the Standard
Model [34]:

(aexp
μ − aSM

μ ) × 1011 = 288 ± 63stat ± 49th (33)

This discrepancy has a different significance depending on
the model chosen for theoretical uncertainties, which can be
computed from the associated p value (under the hypothesis
that the true value of aSM

μ −aexp
μ is μ = 0).12 The nG method

12 In full generality, one should have kept the different sources of the-
oretical uncertainties separated, as their combination in a single theo-
retical uncertainty depends on the precise model used for theoretical
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Fig. 5 Comparison of the size of the (1, 3, 5)σ errors (upper, cen-
tral and lower panels, respectively) as a function of Δ/σ . Different
approaches are shown: nG (dotted, red), Rfit or 1-external (dashed,
black), fixed 1-nuisance (dotted-dashed,blue), fixed 3-nuisance (dotted-
dotted-dashed, purple), adaptive nuisance (solid, green). In the upper
panel (1σ confidence level), the adaptive and fixed 1-nuisance
approaches yield the same result by construction, and the two curves
cannot be distinguished (only the adaptive one is shown). The same sit-
uation occurs in the central panel corresponding to 3σ with the adaptive
and fixed 3-nuisance approaches

Footnote 12 continued
uncertainties. We consider here the result of Ref. [34] where all theo-
retical uncertainties are already combined.
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Table 3 Comparison of 1D
1, 3, 5σ significance thresholds
for Δ/σ = 1. For instance, the
first line should read: if with nG
a p value = 1σ is found, then the
corresponding values for the
three other methods are
0.9/1.0/0.4σ . ∞ means that the
corresponding p value was
numerically zero (corresponding
to more than 8σ )

nG 1-nuisance Adaptive nuisance 1-external

1σ signif. threshold

nG 1 0.9 1.0 0.4

1-nuisance 1.1 1 1.0 0.5

Adaptive nuisance 1.1 1.0 1 0.5

1-external 1.4 1.4 1.2 1

3σ signif. threshold

nG 3 3.4 2.3 3.2

1-nuisance 2.7 3 2.0 2.8

Adaptive nuisance 4.1 4.9 3 4.8

1-external 2.8 3.2 2.1 3

5σ signif. threshold

nG 5 6.2 3.6 6.1

1-nuisance 4.1 5 3.0 4.9

Adaptive nuisance 7.0 ∞ 5 ∞
1-external 4.2 5.1 3.1 5

Table 4 Comparison of 1D
1, 3, 5σ significance thresholds
for Δ/σ = 3. Same comments
as in the previous table

nG 1-nuisance Adaptive nuisance 1-external

1σ signif. threshold

nG 1 0.8 0.9 0.2

1-nuisance 1.1 1 1.0 0.5

Adaptive nuisance 1.1 1.0 1 0.5

1-external 1.3 1.4 1.1 1

3σ signif. threshold

nG 3 6.6 2.4 6.5

1-nuisance 1.8 3 1.5 2.8

Adaptive nuisance 3.7 ∞ 3 ∞
1-external 1.9 3.2 1.6 3

5σ signif. threshold

nG 5 ∞ 4.0 ∞
1-nuisance 2.5 5 2.0 4.9

Adaptive nuisance 6.3 ∞ 5 ∞
1-external 2.5 5.1 2.1 5

yields 3.6σ , the 1-external approach 3.8σ , the 1-nuisance
approach 4.0σ , and the adaptive nuisance approach 2.7σ .
The overall pattern is similar to what can be seen from the
above tables, with a significance of the discrepancy which
depends on the model used for theoretical uncertainties.

5.3 Coverage properties

As indicated in Sect. 2.1.2, p values are interesting objects if
they cover exactly or slightly overcover in the domain where
they should be used corresponding to a given significance;
see Eqs. (7)–(9). If coverage can be ensured for a simple
hypothesis [1,2], this property is far from trivial and should
be checked explicitly in the case of composite hypotheses,

where compositeness comes from nuisance parameters that
can be related to theoretical uncertainties, or other parameters
of the problem.

For all methods we study coverage properties in the stan-
dard way: one first fixes the true values of the parameters μ

and δ (which are not assumed to be random variables), from
which one generates a large sample of toy experiments Xi .
Then for each toy experiment one computes the p value at
the true value of μ. The shape of the distribution of p values
indicates over, exact or under coverage. More specifically,
one can determine P(p ≥ 1 −α) for a CL of α: if it is larger
(smaller) than α, the method overcovers (undercovers) for
this particular CL, i.e. it is conservative (liberal). We empha-
size that this property is a priori dependent on the chosen CL.

123



214 Page 14 of 41 Eur. Phys. J. C (2017) 77 :214

Table 5 Coverage properties of the various methods at 68.27, 95.45 and 99.73% CL, for different true values of δ/Δ contained in, at the border of,
or outside the fixed volume Ω , and for various relative sizes of statistical and theoretical uncertainties Δ/σ

68.27% CL 95.45% CL 99.73% CL 68.27% CL 95.45% CL 99.73% CL

Δ/σ = 1, δ/Δ = 1 Δ/σ = 1, δ/Δ = 0

nG 65.2% 96.6% 99.9% 84.1% 99.5% 100.0%

1-nuisance 68.2% 95.4% 99.7% 86.5% 99.3% 100.0%

Adaptive nuisance 68.3% 99.6% 100.0% 86.4% 100.0% 100.0%

1-external 83.9% 97.8% 99.9% 95.4% 99.7% 100.0%

1-ext. (excl. p ≡ 1) 69.2% 95.7% 99.8 % 85.5% 99.1% 100.0 %

Δ/σ = 1, δ/Δ = 3 Δ/σ = 3, δ/Δ = 0

nG 5.76% 43.2% 89.1% 99.8% 100.0% 100.0%

1-nuisance 6.60% 38.0% 78.4% 100.0% 100.0% 100.0%

Adaptive nuisance 6.53% 75.4% 99.8% 99.9% 100.0% 100.0%

1-external 16.0% 50.3% 84.2% 100.0% 100.0% 100.0%

1-ext. (excl. p ≡ 1) 14.0% 49.1% 83.8 % 98.5% 100.0% 100.0 %

Δ/σ = 3, δ/Δ = 3 Δ/σ = 3, δ/Δ = 1

nG 0.00% 0.35% 68.7% 56.3% 100.0% 100.0%

1-nuisance 0.00% 0.00% 0.07% 68.1% 95.5% 99.7%

Adaptive nuisance 0.00% 9.60% 99.8% 68.2% 100.0% 100.0%

1-external 0.00% 0.00% 0.13% 84.1% 97.7% 99.9 %

1-ext. (excl. p ≡ 1) 0.00% 0.00% 0.13% 68.2% 95.4% 99.7%

In order to compare the different situations, we take
σ 2 + Δ2 = 1 for all methods, and compute for each method
the coverage fraction (the number of times the confidence
level interval includes the true value of the parameter being
extracted) for various confidence levels and for various val-
ues of Δ/σ . Note that the coverage depends also on the true
value of δ/Δ (the normalized bias). The results are gathered
in Table 5 and Fig. 6. We also indicate the distribution of p
values obtained for the different methods.

One notices in particular that the 1-external approach has
a cluster of values for p = 1, which is expected due to the
presence of a plateau in the p value. This behavior makes
the interpretation of the coverage more difficult, and as a
comparison, we also include the results when we consider
the same distribution with the p = 1 values removed. Indeed
one could imagine a situation where reasonable coverage
values could only be due to the p = 1 clustering, while other
values of pwould systematically undercover: such a behavior
would either yield no constraints or too liberal constraints on
the parameters depending on the data.

The results are the following:

• If Ω is fixed and does not contain the true value of
δ/Δ (“unfortunate” case), both external-δ and nuisance-δ
approaches lead to undercoverage; the size of the effect
depends on the distance of δ/Δ with respect to Ω . This
is also the case for nG.

• If Ω is fixed and contains the true value of δ/Δ (“for-
tunate” case), both the external-δ and the nuisance-δ
approaches overcover. This is also the case for nG.

• If Ω is adaptive, for a fixed true value of δ, a p value
becomes valid if it is sufficiently small so that the corre-
sponding interval contains δ. Therefore, for the adaptive
nuisance-δ approach, there is always a maximum value
of CL above which all p values are conservative; this
maximum value is given by 1 − Erf[δ/(√2Δ)].

To interpret the pattern of coverage seen above in the exter-
nal and nuisance approaches, note that one starts with a p
value that has exact coverage under the individual simple
hypotheses when δ is fixed. Therefore, as long as the true
value δ lies within the range over which one takes the supre-
mum, this procedure yields a conservative envelope. This
explains the overcoverage/undercoverage properties for the
external-δ and nuisance-δ approaches given above.

5.4 Conclusions of the uni-dimensional case

It should be stressed that, by construction, all methods are
conservative if the true value of the δ parameter satisfy the
assumption that has been made for the computation of the
p value. Therefore coverage properties are not the only cri-
terion to investigate in this situation in order to assess the
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Δ/σ = 1, δ/Δ = 1 Δ/σ = 1, δ/Δ = 0

Δ/σ = 1, δ/Δ = 3 Δ/σ = 3, δ/Δ = 0

Δ/σ = 3, δ/Δ = 3 Δ/σ = 3, δ/Δ = 1

Fig. 6 Distribution of p value (for a fixed total number of events) for
different true values δ/Δ and various relative sizes of statistical and
theoretical uncertainties Δ/σ . The following approaches are shown:
nG (dotted, red), Rfit or 1-external (dashed, black), fixed 1-nuisance
(dotted-dashed, blue), adaptive nuisance (solid, green). Since the 1-

external approach produces clusters of p = 1 p values, the coverage
values excluding these clusters are also shown, as well as the distribu-
tion of p values (dotted-dotted-dashed, grey). Note that the behavior of
the 1-external p value around p = 1 is smoothened by the graphical
representation

methods: in particular one has to study the robustness of the
p value when the assumption set on the true value of δ is not
true. The adaptive approach provides a means to deal with a
priori unexpected true values of δ, provided one is interested
in a small enough p value, that is, a large enough significance
effect. Other considerations (size of confidence intervals, sig-
nificance thresholds) suggest that the adaptive approach pro-
vides an interesting and fairly conservative framework to deal
with theoretical uncertainties. We are going to consider the
different approaches in the more general multi-dimensional
case, putting emphasis on the adaptive nuisance-δ approach
and the quadratic test statistic.

6 Generalization to multi-dimensional cases

Up to here we only have discussed the simplest exam-
ple of a single measurement X linearly related to a sin-
gle model parameter μ. Obviously the general case is
multi-dimensional, where we deal with several observables,
depending on several underlying parameters, possibly in a
non-linear way, with several measurements involving dif-
ferent sources of theoretical uncertainty. Typical situations
correspond to averaging different measurements of the same
quantity, and performing fits to extract confidence regions for
fundamental parameters from the measurement of observ-
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ables. In this section we will discuss the case of an arbitrary
number of observables in a linear model with an arbitrary
number of parameters, where we are particularly interested in
a one-dimensional or two-dimensional subset of these param-
eters.

6.1 General formulas

We start by defining the following quadratic test statistic:

T (X;χ, δ) = (X − x(χ) − Δδ̃)T · Ws · (X − x(χ) − Δδ̃)

+ δ̃T · W̃t · δ̃ (34)

where X = (Xi , i = 1, . . . , n) is the n-vector of measure-
ments, x = (xi , i = 1, . . . , n) is the n-vector of model
predictions for the Xi that depends on χ = (χ j , j =
1, . . . , nχ ), the nχ -vector of model parameters, δ̃ is the m-
vector of (dimensionless) theoretical biases, Ws is the (pos-
sibly non-diagonal) n×n inverse of the statistical covariance
matrix Cs , W̃t is the inverse of the (possibly non-diagonal)
m×m theoretical correlation matrix C̃t , Δ is the n×m-matrix
of theoretical uncertainties Δiα , so that the reduced biases
δ̃α have a range of variation within [−1, 1] (this explains the
notation with tildes for the reduced quantities rescaled to be
dimensionless).

After minimization over the δ̃α , T can be recast into the
canonical form,

T (X;χ) = (X − x(χ))T · W̄ · (X − x(χ)) (35)

where

W̄ = Ws − BT · A−1 · B (36)

with

B = (WsΔ)T A = W̃t + BΔ. (37)

The definition of W̄ involves the inverse of matrices that
can be singular. This may occur in particular in cases where
the statistical uncertainties are negligible and some of the
theoretical uncertainties are assumed to be 100% correlated.
This requires us to define a generalized inverse, including
singular cases, which is described in detail in Appendix A
and corresponds to a variation of the approach presented in
Ref. [5]. Ambiguities and simplifications that can occur in
the definition of T are further discussed in Appendix C. In
particular, one can reduce the test statistic to the case m = n
with a diagonal Δ matrix without losing information. In the
case where both correlation/covariance matrices are regular,
Eq. (36) boils down to W̄ = [Cs +Ct ]−1 withCt = ΔC̃tΔ

T .
This structure is reminiscent of the discussion of theoretical
uncertainties as biases and the corresponding weights given

in Ref. [29], but it extends it to the case where correlations
yield singular matrices.

We will focus here on the case where the model is linear,
i.e., the predictions xi depend linearly on the parameters χ j :

xi (χ) =
nχ∑

k=1

aikχk + bi , (38)

where aik and bi are constants. We leave the phenomeno-
logically important non-linear case and its approximate lin-
earization for a dedicated discussion in a separate paper [35].

Following the one-dimensional examples in the previous
sections, we always assume that the measurements Xi have
Gaussian distributions for the statistical part. We will con-
sider two main cases of interest in our field: averaging mea-
surements and determining confidence intervals for several
parameters.

6.2 Averaging measurements

We start by considering the averages of several measurements
of a single quantity, each with both statistical and theoreti-
cal uncertainties, with possible correlations. We will focus
mainly on the nuisance-δ approach, starting with two mea-
surements before moving to other possibilities.

6.2.1 Averaging two measurements and the choice of a
hypervolume

A first usual issue consists in the case of two uncorrelated
measurements X1±σ1±Δ1 and X2±σ2±Δ2 that we want to
combine. The procedure is well defined in the case of purely
statistical uncertainties, but it depends obviously on the way
theoretical uncertainties are treated. As discussed in Sect. 3,
associativity is a particularly appealing property for such a
problem as it allows one to replace a series of measurements
by its average without loss of information.

Averaging two measurements amounts to combining them
in the test statistic. The nuisance-δ approach, together with
the quadratic statistic Eq. (34), in the absence of correlations
yields

T = (X1 − μ)2

σ 2
1 + Δ2

1

+ (X2 − μ)2

σ 2
2 + Δ2

2

= (μ − μ̂)2(w1 + w2) + Tmin (39)

with

μ̂ = w1X1 + w2X2

w1 + w2
wi = 1

σ 2
i + Δ2

i

Tmin = (X1 − X2)
2

σ 2
1 + Δ2

1 + σ 2
2 + Δ2

2

.

(40)
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μ̂ is a linear combination of Gaussian random variables, and
is thus distributed according to a Gaussian p.d.f, with mean
μ + δμ and variance σ 2

μ

δμ = w1δ1 + w2δ2

w1 + w2
σ 2

μ = w2
1σ

2
1 + w2

2σ
2
2

(w1 + w2)2 . (41)

Therefore, T − Tmin is distributed as a rescaled uni-
dimensional non-central χ2 distribution with non-centrality
parameter (δμ/σμ)2.

σμ corresponds to the statistical part of the error on μ. δ1

and δ2 remain unknown by construction, and the combined
theory error can only be obtained once a region of variation is
chosen for the δ’s (as a generalization of the [−1, 1] interval
in the one-dimension case). If one maximizes the p value over
a rectangle C (called the “hypercube case” in the following, in
reference to its multi-dimensional generalization), δμ varies
in Δμ, with

Δμ = w1Δ1 + w2Δ2

w1 + w2
(42)

recovering the proposal in Ref. [29] for the treatment of sys-
tematic uncertainties. In this case, δ1 and δ2 are allowed to
be varied separately, without introducing any relation in their
values, and can assume both extremal values. On the other
hand, if one performs the maximization over a disk (referred
to as the “hyperball case” for the same reasons as above) one
has the range

Δμ =
√

w2
1Δ

2
1 + w2

2Δ
2
2

w1 + w2
. (43)

In this case, the values of δ1 and δ2 are somehow related, since
they cannot both reach extremal values simultaneously.

Each choice of volume provides an average with differ-
ent properties. As discussed earlier, associativity is a very
desirable property: one can average different observations
of the same quantity prior to the full fit, since it gives the
same result as keeping all individual inputs. The hyperball
choice indeed fulfills associativity. On the other hand, the
hypercube case does not: the combination of the inputs 1
and 2 yields the following test statistic: (w1 + w2)(μ − μ̂)2,
whereas the resulting combination μ̂ ± σμ ± Δμ has the
statistic (μ − μ̂)2/(σ 2

μ + Δ2
μ). The two statistics are propor-

tional and hence lead to the same p value, but they are not
equivalent when added to other terms in a larger combination.

A comment is also in order concerning the size of the
uncertainties for the average. In the case of the hypercube,
the resulting linear addition scheme is the only one where the
average of different determinations of the same quantity can-
not lead to a weighted theoretical uncertainty that is smaller

than the smallest uncertainty among all determinations.13 In
the case of the hyperball, it may occur that the average of dif-
ferent determinations of the same quantity yields a weighted
theoretical uncertainty smaller than the smallest uncertainty
among all determinations.

Whatever the choice of the volume, a very important and
alluring property of our approach is the clean separation
between the statistical and theoretical contribution to the
uncertainty on the parameter of interest. This is actually a
general property that directly follows from the choice of a
quadratic statistic, and in the linear case it allows one to per-
form global fits while keeping a clear distinction between
various sources of uncertainty.

6.2.2 Averaging n measurements with biases in a hyperball

We will now consider here the problem of averaging n, pos-
sibly correlated, determinations of the same quantity, each
individual determination coming with both a Gaussian sta-
tistical uncertainty, and a number of different sources of theo-
retical uncertainty. We focus first on the nuisance-δ approach,
as it is possible to provide closed analytic expressions in this
case. We will first discuss the variation of the biases over a
hyperball, before discussing other approaches, which will be
illustrated and compared with examples from flavor physics
in Sect. 7.

We use the test statistic Eq. (34) for μ, with x(χ) simply
replaced by μU , where U is the n-vector (1, . . . , 1). After
minimization over the δ̃α , T can be recast into the canonical
form

T (μ) = (X − μU )T · W̄ · (X − μU ) (44)

The minimization of Eq. (44) over μ leads to an estimator μ̂

of the average in terms of the measurements Xi

μ̂ =
∑

i

wi Xi wi =
∑

j

W̄i j ×
⎡

⎣
∑

i, j

W̄i j

⎤

⎦
−1

(45)

that allows one to compute the statistical uncertainty σμ in
the following way:

σ 2
μ =

∑

i, j

(Cs)i jwiw j (46)

The theoretical bias is given by δμ = ∑
i,α wiΔiαδ̃α . We

would like to vary δ̃α in ranges required to infer the theoret-
ical uncertainty, identifying the combination of biases that

13 This is true at least for approaches where theoretical errors are mod-
eled by fixed bias parameters: the combined error on the quantity of
interest is a weighted sum as in Eq. (42), and the maximal value of this
quantity can only be made always larger than each individual contribu-
tion if the corners of the hypercube are included in the maximization
region.

123



214 Page 18 of 41 Eur. Phys. J. C (2017) 77 :214

is uncorrelated. This is a well-known problem of statistics,
and it can easily be achieved in a linear manner by noticing
that the relevant combination is ΔT C̃tΔ, cf. Eq. (36), and by
introducing the Cholesky decomposition for the theoretical
correlation matrix C̃t = P · PT , with P a lower triangular
matrix with diagonal positive entries. This yields the expres-
sion for the bias,

δμ =
∑

i,α

wiΔiαδ̃α =
∑

i,α,β

wiΔiαPαβ(P−1δ̃)β, (47)

where (P−1δ̃)β are uncorrelated biases. If the latter biases
are varied over a hyperball, the biases δ̃ are varied over a
hyperellipsoid elongated along the directions corresponding
to strong correlations (see Appendix B for illustrations) and
one gets

Δμ =

√√√√√
∑

β

⎛

⎝
∑

i,α

wiΔiαPαβ

⎞

⎠
2

=
√

wTCtw (hyperball). (48)

Known (linear) statistical correlations between two mea-
surements are straightforward to implement, by using the
full covariance matrix in the test statistic Eq. (46). On the
other hand, in the physical problems considered here (involv-
ing hadronic inputs from lattice QCD simulations), it often
happens that two a priori independent calculations of the
same quantity are statistically correlated, because they use
the same (completely or partially) ensemble of gauge con-
figurations. The correlation is not perfect of course, since
usually different nonlinear actions are used to perform the
computation. However, the accurate calculation of the full
covariance matrix is difficult, and in many cases it is not
available in the literature. For definiteness, we will assume
that if two lattice calculations are statistically correlated, then
the (linear) correlation coefficient is one. In such a case the
covariance matrix is singular, and its inverseWs is ill-defined,
as well as all quantities that are defined above in terms of
Ws . A similar question arises for fully correlated theoreti-
cal uncertainties (coming from the same method), leading to
ambiguities in the definition of W̃t . Details of these issues
are given in Appendices A and B.

Statistical uncertainties are assumed here to be strictly
Gaussian and hence symmetric (see Appendix C for more
details of the asymmetric case). In contrast, in the nuisance
approach, a theoretical uncertainty that is modeled by a
bias parameter δ may be asymmetric: that is, the region
in which δ is varied may depend on the sign of δ, e.g.,
δ ∈ [−Δ−,+Δ+] in one dimension with the fixed hyper-
cube approach (Δ± ≥ 0). In order to keep the stationarity
property that follows from the quadratic statistic, we take
the conservative choice Δ = Max(Δ+,Δ−) in the defini-

tion Eq. (34). Let us emphasize that this symmetrization of
the test statistic is independent of the range in which δ is
varied: if theoretical uncertainties are asymmetric, one com-
putes Eqs. (46)–(48) to express the asymmetric combined
uncertainties Δμ,± in terms of the Δiα,±.

6.2.3 Averages with other approaches

In Sect. 6.2.1, we indicated that other domains can be chosen
in principle in order to perform the averages of measure-
ments, for instance a hypercube rather than a hyperball. If
we do not try to take into account theoretical correlations in
the range of variation, it is quite easy to determine the result
for Δ

Δμ =
∑

α

∣∣∣∣∣
∑

i

wiΔiα

∣∣∣∣∣

×(hypercube, no theoretical correlation) (49)

reminiscent of the formulas derived in Ref. [29]. However,
we encountered severe difficulties when trying to include
theoretical correlations in the discussion. Similarly to the
hyperball case, it would be interesting to consider a linear
transformation P of the biases (for instance, the Cholesky
decomposition of Ct , but the discussion is more general), so
that (P−1δ̃)β are uncorrelated biases varied within a hyper-
cube. This would lead to δ̃ varied within a deformed hyper-
cube, which corresponds to cutting the hypercube by a set of
(δ̃i , δ̃ j ) hyperplanes. It can take a rather complicated convex
polygonal shape that is not symmetric along the diagonal in
the (δ̃i , δ̃ j ) plane, leading to the unpleasant feature that the
order in which the measurements are considered in the aver-
age matters to define the range of variation of the biases (an
illustration is given in Appendix B).14

As indicated before, this discussion occurs for any linear
transformation P and is not limited to the Cholesky decom-
position. We have not been able to find other procedures that
would avoid these difficulties while paralleling the hypercube
case. In the following, we will thus use Eq. (49) even in the
presence of theoretical correlations: therefore, the latter will
be taken into account in the definition of T through W̄ , but
not in the definition of the range of variations to compute the
error Δ. We also notice that the problems that we encounter
are somehow due to contradicting expectations concerning
the hypercube approach. In Sect. 6.2.1, the hypercube corre-
sponds to values of δ1 and δ2 left free to vary without relation
among them (contrary to the hyperball case). It seems there-
fore difficult to introduce correlations in this case which was

14 This problem does not occur in the hyperball case, where the section
of the hyperellipsoid by a hyperplane always yields an ellipse symmet-
ric along the diagonal, with an elongation according to the theoretical
correlation between the biases.
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designed to avoid them initially. Our failure to introduce cor-
relations in this case might be related to the fact that the
hypercube is somehow designed to avoid such correlations
from the start and cannot accommodate them easily.

In the case of the external-δ approach, the scan method
leads to the same discussion as for the nuisance case, pro-
vided that one uses the following statistic: T = (X − μ −
δ)2/(σ 2 +Δ2). This choice is different from Ref. [32] by the
normalization (σ 2 + Δ2 rather than σ 2) in order to take into
account of the importance of both uncertainties when com-
bining measurements (damping measurements which are
imprecise in one way or the other). As indicated in Sect. 4.4,
the difference of normalization of the test statistic does not
affect the determination of the p value in the uni-dimensional
case, but it has an impact once several determinations are
combined. The choice above corresponds to the usual one
when Δ is of statistical nature. It gives a reasonable balance
when two or more inputs are combined that all come with
both statistical and theoretical uncertainties.

A similar discussion holds for the random-δ approach.
However, if the combined errors σμ and Δμ are the same
between the nuisance-δ (with hyperball), the random-δ and
the external-δ (with hyperball) approaches, we emphasize
that the p value for μ built from these errors is different and
yields different uncertainties for a given confidence level for
each approach, as discussed in Sect. 4.

6.2.4 Other approaches in the literature

There are other approaches available in the literature, often
starting from the random-δ approach (i.e., modeling all
uncertainties as random variables).

The Heavy Flavor Averaging Group [36] choose to per-
form the average including correlations. In the absence of
knowledge on the correlation coefficient between uncertain-
ties of two measurements (typically coming from the same
method), they tune the correlation coefficient so that the
resulting uncertainty is maximal (which is not ρ = 1 in the
case where the correlated uncertainties have a different size
and are combined assuming a statistical origin; see Appendix
A.2). This choice is certainly the most conservative one when
there is no knowledge concerning correlations.

The Flavor Lattice Averaging Group [37] follows the pro-
posal in Ref. [38]: they build a covariance matrix where cor-
related sources of uncertainties are included with 100% cor-
relation, and they perform the average by choosing weights
wi that are not optimal but are well defined even in the pres-
ence of ρ = ±1 correlation coefficients. As discussed in
Appendix A.2, our approach to singular covariance matrices
is similar but more general and guarantees that we recover
the weights advocated in Ref. [38] for averages of fully cor-
related measurements.

Finally, the PDG approach [34] combines all uncertainties
in a single covariance matrix. In the case of inconsistent mea-
surements, one may then obtain an average with an uncer-
tainty that may be interpreted as ‘too small’ (notice how-
ever that the weighted uncertainty does not increase with the
incompatibility of the measurements). This problem occurs
quite often in particle physics and cannot be solved by purely
statistical considerations (even in the absence of theoretical
uncertainties). If the model is assumed to be correct, one may
invoke an underestimation of the uncertainties. A (commonly
used) recipe in the pure statistical case has been adopted by
the Particle Data Group, which consists in computing a fac-
tor S = √

χ2/(Ndof − 1) and rescaling all uncertainties by
this factor. A drawback of this approach is the lack of asso-
ciativity: the inconsistency is either removed or kept as it is,
depending on whether the average is performed before any
further analysis, or inside a global fit. Furthermore since the
ultimate goal of statistical analyses is indeed to exclude the
null hypothesis (e.g. the Standard Model), it looks counter-
intuitive to first wash out possible discrepancies by an ad hoc
procedure. Therefore we refrain to define a S factor in the
presence of theoretical uncertainties, and we leave the discus-
sion of discrepancies between independent determinations of
the same quantity to a case-by-case basis, based on physical
(and not statistical) grounds.

In the case of the Rfit approach adopted by the CKMfitter
group [15,16], a specific recipe was chosen to avoid under-
estimating combined uncertainties in the case of marginally
compatible values. The idea is first combine the statistical
uncertainties by combining the likelihoods restricted to their
statistical part, then assign to this combination the smallest of
the individual theoretical uncertainties. This is justified by the
following two points: the present state of the art is assumed
not to allow one to reach a better theoretical accuracy than
the best of all estimates, and this best estimate should not
be penalized by less precise methods. In contrast with the
plain (or naive) Rfit approach for averages (consisting in just
combining Rfit likelihoods without further treatment), this
method of combining uncertainties was called educated Rfit
and is used by the CKMfitter group for averages [17,19,22].
Let us note finally that the calculation of pull values, dis-
cussed in Sect. 6.3, is a crucial step for assessing the size of
discrepancies.

6.3 Global fit

6.3.1 Estimators and errors

Another prominent example of multi-dimensional problem is
the extraction of a constraint on a particular parameter of the
model from the measured observables. If the model is linear,
Eq. (38), the discussion follows closely that of Sect. 6.2.2. In
the case where there is a single parameter of interest μ, we
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do not write explicitly the calculations and refer to Sect. 7
for numerical examples.

We start from the test statistic Eq. (34) in the linear case
defined in Eq. (38), reducing the number of theoretical biases
to the case m = n as indicated in Appendix C. Following
the same discussion as in Sect. 6.2.2, we can minimize with
respect to δ̃α , leading to the canonical form,

T (X;χ) = (X − x(χ))T · W̄ · (X − x(χ)). (50)

The minimum of this function is found at the point χ̂k where

∂T

∂χq

∣∣∣∣
χ=χ̂

= 0, χ̂ = (aT W̄a)−1 · (aT W̄ (X − b)), (51)

so that we have

χ̂q =
∑

w
(q)
i (Xi − bi ), w

(q)
i = [(aT W̄a)−1aT W̄ ]qi .

(52)

The minimum χ̂q is thus linearly related to the measured
observables Xi and their statistical properties are closely
related. The test statistic for a particular parameter μ = χq

will lead to T (X;μ) = (μ − χ̂q)
2 × (aT W̄a)qq , so that the

discussion of the p value for μ follows exactly the discussion
for uni-dimensional measurements.15

For instance, if the observables Xi have central values Xi0

and variances σ 2
Xi

, the central value and the variance for χ̂q

(corresponding also to the central value and statistical uncer-
tainty for the p value for μ = χq ), can readily be obtained
from

μ0 = χ̂q0 =
n∑

i, j,l=1

(aT W̄a)−1
q j × [

ai j W̄il
] × (Xl0 − bl)

= w(q)T (X0 − b), (53)

σ 2
μ = σ̂ 2

χq0 =
n∑

i, j,l=1

[
(aT W̄a)−1

q j

]2 × [
ai j W̄il

]2 × (
σXl

)2

= w(q)TCsw
(q). (54)

Similar to the previous section, the theoretical uncertainty on
μ = χq is obtained in the hyperball case as

Δμ =
√√√√

n∑

i, j,l=1

[
(aT W̄a)−1

q j

]2 × [
ai j W̄il

]2 × (
ΔXi

)2

=
√

w(q)TCtw(q) (hyperball). (55)

It remains to determine how to define the theoretical corre-
lation in this framework, denoted κqr corresponding to the

15 As discussed in Sect. 4.4, the overall normalization of T (X; μ) is
irrelevant to derive uni-dimensional p values.

actual parameters of interest. This can be seen as trying to
infer a scalar product on the vectors [w(q)ΔP]i from the
knowledge of a norm, here L2. We will thus define the theo-
retical correlation in the following way:

κqr = w(q)TCtw
(r)

√
w(q)TCtw(q)

√
w(r)TCtw(r)

(hyperball). (56)

In Sect. 6.2.2 we encountered difficulties in extending the
discussion to the hypercube case. We can define errors vary-
ing the biases without correlations in the definition of the
hypercube

Δμ =
n∑

i=1

∣∣∣∣∣∣

n∑

j,l=1

(aT W̄a)−1
q j × [

ai j W̄il
] × ΔXi

∣∣∣∣∣∣
×(hypercube no correlation), (57)

but we could not determine a way of defining this hypercube
taking into account theoretical correlations. Moreover, there
is no obvious way to extend the definition of theoretical cor-
relation for the hypercube in a similar way to Eq. (56), as
there is no scalar product associated to the L1-norm. We will
thus not quote theoretical correlations for the hypercube case.

6.4 Goodness-of-fit

We would like also to compute the distribution of Tmin in
presence of biases and extract a goodness-of-fit value. Com-
ing back to the initial problem, we see that Tmin can be written
as

Tmin = (X − b)T (W̄ − W̄a(aT W̄a)−1aT W̄ )(X − b)

= (X − b)T M(X − b) (58)

where the X are distributed following a multivariate normal
distribution, with central value aχ + b + Δδ̃ and correla-
tion matrix Cs . The CDF Hδ̃ (t) for Tmin at fixed δ̃ can thus
be rephrased in the following way: considering a vector Y
distributed according to a multivariate normal distribution
of covariance Cs centered around 0, Hδ̃ (t) is the probability
P[(Y − aχ − Δδ̃)T M(Y − aχ − Δδ̃) ≤ t].

We are able to reexpress this problem as a linear combi-
nation of non-central χ2 distributions. Indeed, we can define

Cs = LLT , LT ML = KαKT ,

β = KT L−1(aχ − Δδ̃)
(59)

with L lower triangular (using the Cholesky decomposition),
α is diagonal and K orthogonal (so that α are the (posi-
tive) eigenvalues of LT ML and thus of MCs). Let us note
that α does depend only on Cs and Ct , whereas the depen-
dence on the true value of χ and δ̃ is only present in β.
The problem is then equivalent to considering a vector Z
distributed according to a multivariate normal distribution
of covariance identity centered around 0, and computing
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P[(Z −β)Tα(Z −β) ≤ t]. This is the CDF of a linear com-
bination of the form

∑
i αi X2

i corresponding to non-central
χ2 distributions.

In the case where α is proportional to identity, the CDF can
be expressed in terms of the generalized Marcum Q-function

Hδ̃ (t) = 1 − Qn/2

(√
λ,

√
t/α

)
, (60)

with the non-centrality parameter λ = ∑
i β

2
i . In the gen-

eral case, the answer can be found in various articles, for
instance in Ref. [39], as a linear combination of infinitely
many (central or non-central) χ2 distribution functions, and
in Ref. [40], where an expansion in terms of Laguerre poly-
nomials is provided for a fast numerical evaluation. We can
thus infer the corresponding p value as

pΩ = max
δ̃∈Ω

[1 − Hδ̃(t)] (61)

where δ̃ has to be varied in a hyperball or a hypercube depend-
ing on the volume chosen, and χq are replaced by their esti-
mated values μχq .

6.5 Pull parameters

In addition to the general indication given by goodness-of-fit
indicators, it is useful to determine the agreement between
individual measurements and the model. One way of quanti-
fying this agreement consists in determining the pull of each
quantity. Indeed, the agreement between the indirect fit pre-
diction and the direct determination of some observable X
is measured by its pull, which can be determined by con-
sidering the difference of minimum values of the test statis-
tic including or not the observables [22]. In the absence of
non-Gaussian effects or correlations, the pulls are random
variables of vanishing mean and unit variance.

The pull of an observable Xm can be conveniently com-
puted by introducing an additional pull parameter pXm in
the test statistic T (X0;χ, pXm )

T = (X0 − x(χ) − Pm)T W̄ (X0 − x(χ) − Pm)

(Pm)i = δmi pXm/

√
W̄mm .

(62)

The pull parameter pXm is a dimensionless fit parameter
for which one can compute confidence intervals, or errors
and uncertainties. Its best-fit value is a random variable that
measures the distance of the indirect prediction (determined
by the global fit) from the direct measurement, in units of σ .
The p value for the null hypothesis pXm = 0 is by definition
the pull for Xi . It can be understood as a comparison of
the best-fit value of the test statistic reached letting pXa free
(corresponding to a global fit without the measurement Xm)

with the case setting pXm = 0 (corresponding to a global fit
including the measurement Xm).

As far as the test statistic is concerned, the pull parameter
can be treated on the same footing as the parameters χ , and
it can be determined in the same way as in the previous sec-
tion, first solving the minimization condition ∂T/∂pXm = 0,
and plugging the result for pXm into T , leading to the same
expression for T as in Eq. (50), but with W̄ replaced by the
matrix

W̄ (m)
i j = W̄i j − W̄imW̄ jm

W̄mm
, (63)

which can be solved as before for χ̂ , leading to the expression
for p̂Xm

p̂Xm =
∑

i

y(m)
i Xi

y(m)
i = 1√

W̄mm

[W̄ − W̄a(aT W̄ (k)a)−1aT W̄ (k)]mi .

(64)

If the statistical method allows one to separate the statisti-
cal and theoretical contributions to the error on pXi , one can
report the values for the errors ΔpXi

and σpXi
in addition to

the pull itself: this gives an indication of how independent
from theoretical uncertainties the underlying tested hypoth-
esis is. One can also extend this notion for N parameters,
introducing N distinct pull parameters and determining the
p value for the null hypothesis where all pull parameters
vanish simultaneously.

As an illustration in a simple case, one can compute the
pulls associated with the average of n measurements, intro-
ducing the modified test statistic compared to Eq. (44):

T (μ, pXm ) = (X − μU − Pm)T W̄ (X − μU − Pm), (65)

corresponding to the case with only one parameter χ = μ,
a = U , b = 0. The minimization with respect to both param-
eters yields an estimator of the pull parameter in this partic-
ular case,

p̂Xm =
∑

i

y(m)
i Xi

y(m)
i =

√
W̄mm

(∑
j W̄mj

) (∑
j W̄ ji

)
− W̄mi

∑
jl W̄ jl

(∑
j W̄mj

)2 − W̄mm
∑

jl W̄ jl

,

(66)

allowing a propagation of errors in a similar way to the aver-
age of several measurements discussed in Sects. 6.2.1 and
6.2.2. Numerical examples are presented in Sect. 7.
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6.6 Conclusions of the multi-dimensional case

We have discussed several situations where a multi-dimen-
sional approach is needed in phenomenology analysis. In
addition to the issues already encountered in one dimen-
sion, a further arbitrary choice must be performed in the
multi-dimensional case for nuisance and external approaches
concerning the shape of the volume in which the biases are
varied: two simple cases are given by the hypercube and
the hyperball, corresponding, respectively, to the well-known
linear and quadratic combination of uncertainties. We have
then discussed how to average two (or several) measure-
ments, emphasizing the case of the nuisance approach. We
have finally illustrated how a fit could be performed in order
to determine confidence regions. Beyond the metrology of
the model, we can also determine the agreement between
model and experiments thanks to the pull parameters associ-
ated with each observable.

The uni-dimensional case (stationarity of the quadratic
test statistic under minimization, coverage properties) has
led us to prefer the adaptive nuisance approach, even though
the fixed nuisance approach could also be considered. In the
multi-dimensional case, the hyperball in conjunction with the
quadratic test statistic allows us to keep associativity when
performing averages, so that it is rigorously equivalent from
the statistical point of view to keep several measurements of
a given observable or to average them in a single value. We
have also been able to discuss theoretical correlations using
the hyperball case at two different stages: including the cor-
relations among observables in the domain of variations of
the biases when computing the errors Δ, and providing a
meaningful definition for the theoretical correlation among
parameters of the fit. We have not found a way to keep these
properties in the case of the hypercube. Moreover, choosing
the hypercube may favor best-fit configurations where all the
biases are at the border of their allowed regions, whereas the
hyperball prevents such ‘fine-tuned’ solutions from occur-
ring.

For comparison, in the following we will focus on two
nuisance approaches: fixed 1-hypercube and adaptive hyper-
ball with a preference for the latter. The other combinations
would yield far too conservative (adaptive hypercube) or too
liberal (fixed 1-hyperball) ranges of variations for the biases.

7 CKM-related examples

We will now consider the differences between the various
approaches considered using several examples from quark
flavor physics. These examples will be only for illustrative
purposes, and we refer the reader to other work [15,16,22,35]
for a more thorough discussion of the physics and the inputs

involved. From the previous discussion, we could consider a
large set of approaches for theoretical uncertainties.

We will restrict to a few cases compared to the previous
sections. First, we will consider educated Rfit (Rfit with spe-
cific treatment of uncertainties for averages), as used by the
CKMfitter analyses and described in Sect. 6.2.4, while the
naive Rfit approach will only be shown for the sake of com-
parison and is not understood as an appropriate model. We
will also consider two nuisance approaches, namely the adap-
tive hyperball and the 1-hypercube cases. Our examples will
be chosen in the context of CKM fits, and correspond approx-
imately to the situation for Summer 2014 conferences. How-
ever, for pedagogical purposes, we have simplified intention-
ally some of the inputs compared to actual phenomenological
analyses performed in flavor physics [35].

7.1 Averaging theory-dominated measurements

We start by illustrating the case of measurements dominated
by theoretical uncertainties, which is the case for the lattice
determinations. We take the case of BK , which is needed
to discuss K K̄ mixing, and has been the subject of impor-
tant debates concerning its agreement (or not) with the rest
of the global fit. We have selected a particular list of lattice
determinations given in Table 6 (top). For each measurement,
we have kept the various theoretical uncertainties separate,
since their combination (linear or quadratic) depends on the
method used. For purposes of illustration, we perform an
average over measurements performed with different lattice
gauge actions, we symmetrize the results having asymmet-
ric uncertainties16 and we neglect all correlations. We stress
that this is done only for purposes of illustration, and that an
extended list of lattice QCD results with asymmetric uncer-
tainties and correlations will be taken into account in forth-
coming phenomenological applications [35].

The results for each method are given in Table 6 (middle).
The first column corresponds to the outcome of the averaging
procedure. In all the approaches considered, we can split
statistical and theoretical uncertainties. In the case of naive
Rfit, one combines the measurements by adding the well
statistic corresponding to each measurement: the resulting
test statistic T is a well with a bottom, the width of which can
be interpreted as a theoretical uncertainty, whereas the width
at Tmin + 1 determines the statistical uncertainty.17 The case
of educated Rfit was described in Sect. 6.2.4. The confidence

16 In this section, we will not deal with asymmetric uncertainties, and
for illustrative purpose, we symmetrize all uncertainties, statistical and
theoretical, following Eq. (C.39).
17 In general, for naive Rfit, the tails of the resulting test statistic T
are neither Gaussian nor symmetric. However, our approximation is
valid to a good accuracy for our illustrative purposes and the examples
discussed in this section.
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Table 6 Top: lattice determinations of the kaon bag parameter
BM̄S
K (2GeV). Middle: averages according to the various methods, and

corresponding confidence intervals for various significances. Bottom:
pulls associated to each measurement for each method. For Rfit meth-

ods, we quote only the significance of the pull, whereas other methods
yield the pull parameter as well as the pull itself under the form p±σ±Δ

(significance of the pull)

References N f Mean Stat Theo

ETMC10 [41] 2 0.532 ±0.019 ±0.003 ± 0.007 ± 0.003 ± 0.008 ± 0.005

LVdW11 [42] 2 + 1 0.5572 ±0.0028 ±0.0045 ± 0.0033 ± 0.0039 ± 0.0006 ± 0.0134

BMW11 [43] 2 + 1 0.5644 ±0.0059 ±0.0022 ± 0.0008 ± 0.0006 ± 0.0006 ± 0.0002 ± 0.0056

RBC-UKQCD12 [44] 2 + 1 0.554 ±0.008 ±0.007 ± 0.003 ± 0.012

SWME14 [45] 2 + 1 0.5388 ±0.0034 ±0.0237 ± 0.0048 ± 0.0005 ± 0.0108 ± 0.0022 ± 0.0016 ± 0.0005

Method Average 1σ CI 2σ CI 3σ CI 5σ CI

nG 0.5577 ± 0.0063 ± 0 0.5577 ± 0.0063 0.5577 ± 0.0126 0.5577 ± 0.0189 0.5577 ± 0.0315

Naive Rfit 0.5562 ± 0.0120 ± 0.0018 0.5562 ± 0.0138 0.5562 ± 0.0258 0.5562 ± 0.0379 0.5562 ± 0.0619

Educ Rfit 0.5562 ± 0.0020 ± 0.0100 0.5562 ± 0.0120 0.5562 ± 0.0139 0.5562 ± 0.0159 0.5562 ± 0.0198

1-hypercube 0.5577 ± 0.0038 ± 0.0176 0.5577 ± 0.0193 0.5577 ± 0.0240 0.5577 ± 0.0281 0.5577 ± 0.0360

Adapt hyperball 0.5577 ± 0.0038 ± 0.0050 0.5577 ± 0.0068 0.5577 ± 0.0165 0.5577 ± 0.0257 0.5577 ± 0.0436

Pull nG (e)Rfit 1-hypercube Adaptive hyperball

ETMC10 −1.22 ± 1.04 ± 0 (1.2σ) (0.0σ) −1.22 ± 0.85 ± 1.88 (0.3σ) −1.22 ± 0.85 ± 0.60 (1.1σ)

LVdW11 −0.04 ± 1.10 ± 0 (0.0σ) (0.0σ) −0.04 ± 0.35 ± 2.71 (0.0σ) −0.04 ± 0.35 ± 1.04 (0.1σ)

BMW11 1.74 ± 1.49 ± 0 (1.2σ) (0.0σ) 1.74 ± 0.86 ± 4.32 (0.0σ) 1.74 ± 0.86 ± 1.21 (1.0σ)

RBC-UKQCD12 −0.27 ± 1.08 ± 0 (0.2σ) (0.0σ) −0.27 ± 0.55 ± 2.38 (0.0σ) −0.27 ± 0.56 ± 0.93 (0.4σ)

SWME14 −0.75 ± 1.03 ± 0 (0.7σ) (0.0σ) −0.75 ± 0.19 ± 2.24 (0.0σ) −0.75 ± 0.19 ± 1.01 (0.7σ)

intervals are obtained from the p value determined from the
“average” column.

We compute the pulls in the same way in both cases, inter-
preting the difference of Tmin with and without the observ-
ables as a random variable distributed according to a χ2 law
with Ndof = 1. The propagation of uncertainties for the
quadratic statistic was detailed in Sects. 6.2.1 and 6.2.2 where
the separate extraction of statistical and theoretical uncertain-
ties was described. The tables are obtained by plugging the
average into the one-dimensional p value associated with
the method, and reading from the p value the corresponding
confidence interval at the chosen significance. The associated
pulls are given in Table 6 (bottom).

We present the same analysis in the case of the Ds-meson
decay constant fDs in Table 7 (with the same caveat concern-
ing the selected inputs, asymmetries and correlations), while
graphical comparisons of the different averages in both cases
can be seen at 1σ in Fig. 7 (a similar plot at 3σ is given in
Fig. 12 in Appendix D).

For both quantities BK and fDs at large confidence level
(3σ and above), the most conservative method is the adaptive
hyperball nuisance approach, whereas the one leading to the
smallest uncertainties is the educated Rfit approach. Below
3σ , the 1-hypercube approach is more conservative than the
adaptive hyperball nuisance approach, and it becomes less
conservative above that threshold. The most important dif-

ferences are observed at large CL/significance. The statistical
uncertainty obtained in the nG approach is by construction
identical to the combination in quadrature of the statistical
and theoretical uncertainties obtained in the adaptive hyper-
ball approach. However, one can notice that the confidence
intervals for high significances in the two approaches are
different, with nG being less conservative. The overall very
good agreement of lattice determinations means vanishing
pulls for Rfit methods (since all the wells have a common
bottom with a vanishing Tmin). For the other methods, the pull
parameter has statistical and theoretical errors of similar size
in the adaptive hyperball case, whereas theoretical errors tend
to dominate in the 1-hypercube method. This yields smaller
pulls in the latter approach.

A last illustration, which does not come solely from lattice
simulations, is provided by the determination the strong cou-
pling constant αS(MZ ). The subject is covered extensively
by recent reviews [34,51], and we stress that we do not claim
to provide an accurate alternative average to these reviews
which requires a careful assessment of the various determina-
tions and their correlations. As a purely illustrative example,
we will focus on the average of determinations from e+e−
annihilation under a set of simplistic hypotheses for the sep-
aration between statistical and theoretical uncertainties. In
order to allow for a closer comparison with Refs. [34,62],
we try to assess correlations this time. We assume that the-
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Table 7 Top: lattice determinations of the Ds -meson decay constant
fDs (in MeV). Middle: averages according to the various methods, and
corresponding confidence intervals for various significances. Bottom:
pull associated to each measurement for each method. For Rfit methods,

we quote only the significance of the pull, whereas other methods yield
the pull parameter as well as the pull itself under the form p ± σ ± Δ

(significance of the pull)

References N f Mean Stat Theo

ETMC09 [46] 2 244 ±3 ±2 ± 7

HPQCD10 [47] 2 + 1 248.0 ±1.4 ±0.4 ± 1.4 ± 1.0 ± 0.8 ± 0.3 ± 0.3 ± 0.3

FNAL-MILC11 [48] 2 + 1 260.1 ±8.9 ±2.2 ± 1.6 ± 1.0 ± 1.4 ± 2.8 ± 2.0 ± 3.4 ± 1.8

FNAL-MILC14 [49] 2 + 1 + 1 248.8 ± 0.3 ±1.2 ± 0.2 ± 0.1 ± 0.4

ETMC14 [50] 2 + 1 + 1 247.2 ±3.9 ±0.7 ± 1.2 ± 0.3

Method Average 1σ CI 2σ CI 3σ CI 5σ CI

nG 248.5 ± 1.1 ± 0 248.5 ± 1.1 248.5 ± 2.2 248.5 ± 3.3 248.5 ± 5.5

Naive Rfit 248.1 ± 0.9 ± 1.3 248.1 ± 2.2 248.1 ± 3.1 248.1 ± 4.1 248.1 ± 5.9

Educ Rfit 248.1 ± 0.3 ± 1.9 248.1 ± 2.2 248.1 ± 2.5 248.1 ± 2.8 248.1 ± 3.4

1-hypercube 248.5 ± 0.5 ± 2.7 248.5 ± 3.0 248.5 ± 3.5 248.5 ± 4.0 248.5 ± 5.0

Adapt hyperball 248.5 ± 0.5 ± 1.0 248.5 ± 1.2 248.5 ± 2.8 248.5 ± 4.3 248.5 ± 7.2

Pull nG (e)Rfit 1-hypercube Adaptive hyperball

ETMC09 −0.59 ± 1.01 ± 0 (0.6σ) (0.0σ) −0.59 ± 0.39 ± 1.47 (0.0σ) −0.59 ± 0.39 ± 0.93 (0.6σ)

HPQCD10 −0.28 ± 1.12 ± 0 (0.3σ) (0.0σ) −0.28 ± 0.60 ± 2.77 (0.0σ) −0.28 ± 0.60 ± 0.95 (0.4σ)

FNAL-MILC11 1.08 ± 1.00 ± 0 (1.1σ) (0.0σ) 1.08 ± 0.82 ± 1.74 (0.3σ) 1.08 ± 0.83 ± 0.57 (1.0σ)

FNAL-MILC14 0.63 ± 1.82 ± 0 (0.3σ) (0.0σ) 0.63 ± 1.05 ± 4.97 (0.0σ) 0.63 ± 1.05 ± 1.48 (0.5σ)

ETMC14 −0.35 ± 1.04 ± 0 (0.3σ) (0.0σ) −0.35 ± 0.94 ± 1.20 (0.2σ) −0.35 ± 0.94 ± 0.43 (0.4σ)

oretical uncertainties for the same set of observables ( j&s,
3 j , T ), but from different experiments, are 100% correlated,
and the statistical uncertainties for determinations from sim-
ilar experimental data are 100% correlated (BS-T, DW-T,
AFHMS-T).18

We perform the average in the different cases considered,
see Table 8 (middle), which are represented graphically in
Fig. 8 (a similar plot at 3σ is given in Fig. 13 in Appendix
D). We notice that the various approaches yield results with
similar central values to the nG case. The pulls for individ-
ual quantities are mostly around 1σ , and they are smaller
in the adaptive hyperball approach compared to the nG one,
showing better consistency. Refs. [34,62] take a different
approach, “range averaging”, which amounts to considering
the spread of the central values for the various determina-

18 In addition, we have made further choices concerning the separa-
tion of statistical and theoretical uncertainties based on the following
considerations. Ref. [60] discusses the sources of uncertainties (scales,
function parameters, b-quark mass) within a fit leading to uncertainties
assumed to be of statistical nature, with a further systematic uncertainty
coming from the difference between the two different schemes. The sys-
tematic uncertainties in Ref. [57] are assumed to be of statistical nature
in the absence of any opposite statement. For the first two classes (j &
s and 3j) hadronization is taken into account by Monte Carlo methods,
while for the last two classes (T and C) analytic analyses are made: in the
former (latter) case, the hadronic uncertainties are treated as statistical
(theoretical).

tions, leading to αS(MZ ) = 0.1174 ± 0.0051 for the deter-
mination from e+e− annihilation data considered here [62].
This approach is motivated in Ref. [34] by the complicated
pattern of correlations and the limited compatibility between
some of the inputs and, more importantly, it does not take into
account that the different determinations have different accu-
racies according to the uncertainties quoted. The approach in
Refs. [34,62] conservatively accounts for the possibility that
some uncertainties are underestimated. On the contrary, our
averages given in Table 8 and Fig. 8 assume that all the inputs
should be taken into account and averaged according to the
uncertainties given in the original articles. The difference
in the underlying hypotheses for the averages explain the
large difference observed between our results and the ones
in Refs. [34,62]. Note, however, that our numerics directly
follow from the use of the different averaging methods, and
lack the necessary critical assessment of the individual deter-
minations of αS(mZ ) performed in Refs. [34,62].

7.2 Averaging incompatible or barely compatible
measurements

Another important issue occurs when one wants to combine
barely compatible measurements. This is for instance the case
for |Vub| and |Vcb| from semileptonic decays, where inclusive
and exclusive determinations are not in very good agreement.
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Fig. 7 Top inputs for BM̄S
K (2GeV) and the averages resulting from the

different models considered here. Bottom same for the lattice determi-
nations of the Ds -meson decay constant (in MeV). The black range
gives the statistical error. For each individual input, the solid red range
indicates the 1σ interval according to the adaptive hyperball approach
(combining theoretical errors in quadratically) and the dashed red range
according to the 1-fixed hypercube approach (combining theoretical
errors linearly). For average according to the different approaches,
the black range corresponds again to the statistical error, whereas the
red range corresponds to the 1σ interval following the corresponding
approach. The comparison between black and red ranges illustrates the
relative importance of statistical and theoretical errors. Finally, for illus-
trative purposes, the vertical purple line gives the arithmetic average of
the inputs (same weight for all central values)

The list of determinations used for illustrative purposes and
the results for each method are given in Tables 9 and 10,
together with the corresponding graphical comparisons in
Fig. 9 (a similar plot at 3σ is given in Fig. 14 in Appendix
D). Our inputs are slightly different from Ref. [36] for several
reasons. The inclusive determination of |Vub| corresponds to
the BLNP approach [64], and we consider the theoretical
uncertainties from shape functions (leading and subleading),
weak annihilation, and heavy-quark expansion uncertainties
on matching and mb. We use only branching fractions mea-
sured for B → π�ν and average the unquenched lattice cal-
culations quoted in Ref. [36]. For |Vcb| exclusive we also
split the various sources of theoretical uncertainties coming
from the determination of the form factors. We assume that
there are no correlations among all these uncertainties.

The lack of compatibility between the two types of deter-
mination means in particular that the naive Rfit combined
likelihood has not flat bottom, and thus no theoretical uncer-
tainty. This behavior was one of the reasons to propose the
educated Rfit approach, where the theoretical uncertainty of
the combination cannot be smaller than any of the individual
measurements.

The same pattern of conservative and aggressive appro-
aches can be observed, with a fairly good agreement at 3σ

level (apart from the naive Rfit approach, already discussed).
At 5σ , the adaptive hyperball proves again rather conserva-
tive, even though the theoretical error of the averages are
smaller than the 1-hypercube nuisance and the educated Rfit
approaches. The analysis of the pulls yields similar conclu-
sions, with discrepancies at the 2σ for |Vub| and between 2
and 3σ for |Vcb|. Once again, theoretical errors for the pull
parameters are larger in the 1-hypercube approach than in the
adaptive hyperball case. Let us also notice that in both cases,
there are only two quantities to combine, so that the two pull
parameters are by construction opposite to each other up to
an irrelevant scaling factor, leading to the same pull for both
quantities.

7.3 Averaging quantities dominated by different types of
uncertainties

In order to illustrate the role played by statistical and theo-
retical uncertainties, we consider the question of averaging
quantities dominated by one or the other. This happens for
instance when one wants to compare a theoretically clean
determination with other determination potentially affected
by large theoretical uncertainties. This situation occurs in fla-
vor physics for instance when one compares the extraction
of sin(2β) from time-dependent asymmetries in b → cc̄s
and b → qq̄s decays (let us recall that, for the CKM global
fit, only charmonium input is used for sin(2β)). The first
have a very small penguin pollution, which we will neglect,
whereas the latter is significantly affected by such a pollution.
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Table 8 Top: determinations ofαS(MZ )using e+e− annihilation, taken
from Ref. [34]. Middle: averages for αS(MZ ) from e+e− annihilation
according to the various methods, and corresponding confidence inter-
vals for various significances. Bottom: pull associated to each measure-

ment for each method. For Rfit methods, we quote only the significance
of the pull, whereas other methods yield the pull parameter as well as
the pull itself under the form p ± σ ± Δ

References Mean Stat (×10−3) Theo (×10−3)

ALEPH-j & s [52] 0.1224 ±0.9 ± 0.9 ±1.2 ±3.5

OPAL-j & s [53] 0.1189 ±0.8 ± 1.6 ±1.0 ±3.6

JADE-j & s [54] 0.1172 ±0.6 ± 2.0 ±3.5 ±3.0

Dissertori-3j [55] 0.1175 ±2.0 ±1.5

JADE-3j [56] 0.1199 ±1.0 ± 2.1 ± 5.4 ±0.7

BS-T [57] 0.1172 ±1.0 ± 0.8 ± 1.2 ±1.2

DW-T [58] 0.1165 ±2.2 ± 1.7

AFHMS-T [59] 0.1135 ±0.2 ± 0.5 ±0.9

GLM-T [60] 0.1134 ± 2.5 ± 0.6

HKMS-C [61] 0.1123 ±0.2 ±0.7 ±1.4

Method Average 1σ CI 2σ CI 3σ CI 5σ CI

nG 0.1143 ± 0.0010 ± 0 0.1143 ± 0.0010 0.1143 ± 0.0020 0.1143 ± 0.0030 0.1143 ± 0.0050

Naive Rfit 0.1145 ± 0.0002 ± 0 0.1145 ± 0.0002 0.1145 ± 0.0004 0.1145 ± 0.0006 0.1145 ± 0.0011

Educ Rfit 0.1145 ± 0.0001 ± 0.0006 0.1145 ± 0.0007 0.1145 ± 0.0009 0.1145 ± 0.0010 0.1145 ± 0.0013

1-hypercube 0.1143 ± 0.0005 ± 0.0018 0.1143 ± 0.0020 0.1143 ± 0.0026 0.1143 ± 0.0031 0.1143 ± 0.0041

Adapt hyperball 0.1143 ± 0.0005 ± 0.0009 0.1143 ± 0.0011 0.1143 ± 0.0026 0.1143 ± 0.0039 0.1143 ± 0.0067

Pull nG (e)Rfit 1-hypercube Adaptive hyperball

ALEPH-j & s 1.30 ± 0.69 ± 0 (1.9σ) (2.5σ ) 1.30 ± 0.26 ± 0.91 (1.8σ) 1.30 ± 0.26 ± 0.63 (1.6σ)

OPAL-j & s 0.93 ± 0.69 ± 0 (1.3σ) (0.4σ ) 0.93 ± 0.29 ± 0.89 (0.7σ) 0.93 ± 0.29 ± 0.63 (1.2σ)

JADE-j & s 0.76 ± 0.79 ± 0 (0.9σ) (0.0σ ) 0.76 ± 0.55 ± 0.84 (0.6σ) 0.76 ± 0.55 ± 0.57 (0.9σ)

Dissertori-3j 1.13 ± 0.77 ± 0 (1.4σ) (0.9σ ) 1.13 ± 0.58 ± 0.95 (0.9σ) 1.13 ± 0.58 ± 0.51 (1.3σ)

JADE-3j 1.10 ± 1.00 ± 0 (1.1σ) (0.8σ ) 1.10 ± 0.98 ± 0.46 (1.0σ) 1.10 ± 0.98 ± 0.22 (1.1σ)

BS-T 0.36 ± 0.92 ± 0 (0.4σ) (0.2σ ) 0.36 ± 0.88 ± 0.41 (0.4σ) 0.36 ± 0.88 ± 0.26 (0.4σ)

DW-T 0.15 ± 0.97 ± 0 (0.2σ) (0.1σ ) 0.15 ± 0.96 ± 0.18 (0.2σ) 0.15 ± 0.96 ± 0.10 (0.2σ)

AFHMS-T −0.24 ± 0.78 ± 0 (0.3σ) (0.0σ ) −0.24 ± 0.57 ± 1.00 (0.1σ) −0.24 ± 0.57 ± 0.53 (0.4σ)

GLM-T −0.29 ± 0.95 ± 0 (0.3σ) (0.2σ ) −0.28 ± 0.88 ± 0.73 (0.2σ) −0.28 ± 0.88 ± 0.36 (0.3σ)

HKMS-C −2.27 ± 1.35 ± 0 (1.7σ) (1.4σ ) −2.27 ± 0.72 ± 2.27 (0.7σ) −2.27 ± 0.72 ± 1.14 (1.4σ)

The corresponding estimates of sin(2β) have large theoreti-
cal uncertainties, and for illustration we use the computation
done in Ref. [63].

The results are collected in Table 11, which were com-
puted neglecting all possible correlations between the dif-
ferent extractions. One can see that the resulting theoreti-
cal uncertainty from the combination of the various inputs
remains small, so that most of the approaches yield a very
similar result for the confidence intervals. The corresponding
pulls show a global consistency concerning the observables
that deviate by 1σ .

7.4 Global fits

In order to illustrate the impact of the treatment of theoret-
ical uncertainties, we consider a global fit including mainly

observables that come with a theoretical uncertainty. The list
of observables is given in Table 12. Their values are moti-
vated by the CKMfitter inputs used in Summer 2014, but
they are used only for purposes of illustration.19 We consider
two fits: Scenario A involves only constraints dominated by
theoretical uncertainties whereas Scenario B includes also
constraints from the angles (statistically dominated).

As far as the CKM matrix elements are concerned the
Standard Model is linear, but it is not linear in all the other

19 In particular, most of the inputs have several sources of theoretical
uncertainties, which should be combined together linearly or in quadra-
ture according to the model of theoretical uncertainties chosen. Since
we just want to illustrate the difference between the various approaches
at the level of the fit, we take as inputs the values obtained in a given
framework (Rfit) without recomputing the averages and uncertainties
for each approach.
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Fig. 8 Determinations of the strong coupling constant at MZ through
e+e− annihilation, and the averages resulting from the different models
considered here. The intervals are given at 1σ . See Fig. 7 for the legend

fundamental parameters of the Standard Model. For the illus-
trative purposes of this note, the first step thus consists in
determining the minimum of the full (non-linear) χ2, and

to linearize the Standard Model formulas for the various
observables around this minimum (we choose the inputs of
Scenario B to determine this point): this define an exactly
linear model, which at this stage should not be used for real-
istic phenomenology but is useful for the comparison of the
methods presented here. One can use the results presented
in the previous section in order to determine the p value as
a function of each of the parameters of interest. In the case
of the nuisance-δ approach, we can describe this p value
using the same parameters as before, namely a central value,
a statistical error and a theoretical error.

We provide the results for the 4 CKM parameters in both
scenarios in Tables 13 and 14 (using the same linearized
theory described above). We also indicate the profiles of the
p values. As before, we observe that the methods give similar
results at the 2–3σ level, although the adaptive hyperball
method tends to be more conservative than the others.

8 Conclusion

A problem often encountered in particle physics consists in
analyzing data within the Standard Model (or some of its
extensions) in order to extract information on the fundamen-
tal parameters of the model. An essential role is played here
by uncertainties, which can be classified in two categories,
statistical and theoretical. If the former can be treated in a rig-
orous manner within a given statistical framework, the latter
must be described through models. The problem is particu-
larly acute in flavor physics, as theoretical uncertainties often
play a central role in the determination of underlying param-

Table 9 Top: determinations of |Vub| · 103 from semileptonic decays.
Middle: averages according to the various methods, and corresponding
confidence intervals for various significances. Bottom: pulls associated
to each determination for each method. For Rfit methods, we quote only

the significance of the pull, whereas other methods yield the pull param-
eter as well as the pull itself under the form p± σ ± Δ (significance of
the pull)

Reference Mean Stat Theo

Exclusive

CKMfitter Summer 14 3.28 ±0.15 ± 0.26

Inclusive

CKMfitter Summer 14 4.359 ±0.180 ±0.013 ± 0.027 ± 0.037 ± 0.161 ± 0.200

Method Average 1σ CI 2σ CI 3σ CI 5σ CI

nG 3.79 ± 0.22 ± 0 3.79 ± 0.22 3.79 ± 0.44 3.79 ± 0.65 3.79 ± 1.1

Naive Rfit 3.70 ± 0.12 ± 0 3.70 ± 0.12 3.70 ± 0.23 3.70 ± 0.35 3.70 ± 0.58

Educ Rfit 3.70 ± 0.11 ± 0.26 3.70 ± 0.38 3.70 ± 0.49 3.70 ± 0.61 3.70 ± 0.84

1-hypercube 3.79 ± 0.12 ± 0.34 3.79 ± 0.40 3.79 ± 0.54 3.79 ± 0.67 3.79 ± 0.91

Adapt hyperball 3.79 ± 0.12 ± 0.18 3.79 ± 0.24 3.79 ± 0.57 3.79 ± 0.88 3.79 ± 1.49

Pull nG (e)Rfit 1-hypercube Adaptive hyperball

Exclusive −3.60 ± 1.46 ± 0 (2.5σ) (1.6σ) −3.60 ± 0.78 ± 2.31 (1.9σ) −3.60 ± 0.78 ± 1.23 (1.9σ)

Inclusive 3.40 ± 1.38 ± 0 (2.5σ) (1.6σ) 3.40 ± 0.74 ± 2.20 (1.9σ) 3.40 ± 0.74 ± 1.16 (1.9σ)
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Table 10 Top: determinations of |Vcb| · 103 from semileptonic decays.
Middle: averages according to the various methods, and corresponding
confidence intervals for various significances. Bottom: pulls associated
to each determination for each method. For Rfit methods, we quote only

the significance of the pull, whereas other methods yield the pull param-
eter as well as the pull itself under the form p± σ ± Δ (significance of
the pull)

Reference Mean Stat Theo

Exclusive

CKMfitter Summer 14 38.99 ±0.49 ±0.04 ± 0.21 ± 0.13 ± 0.39 ± 0.17 ± 0.04 ± 0.19

Inclusive

CKMfitter Summer 14 42.42 ±0.44 ±0.74

Method Average 1σ CI 2σ CI 3σ CI 5σ CI

nG 40.41 ± 0.55 ± 0 40.41 ± 0.55 40.41 ± 1.11 40.41 ± 1.66 40.41 ± 2.77

Naive Rfit 41.00 ± 0.33 ± 0 41.00 ± 0.32 41.00 ± 0.65 41.00 ± 0.98 41.00 ± 1.64

Educ Rfit 41.00 ± 0.33 ± 0.74 41.00 ± 1.07 41.00 ± 1.39 41.00 ± 1.72 41.00 ± 2.38

1-hypercube 40.41 ± 0.34 ± 0.99 40.41 ± 1.15 40.41 ± 1.57 40.41 ± 1.94 40.41 ± 2.65

Adapt hyperball 40.41 ± 0.34 ± 0.44 40.41 ± 0.60 40.41 ± 1.45 40.41 ± 2.26 40.41 ± 3.84

Pull nG (e)Rfit 1-hypercube Adaptive hyperball

Exclusive −4.75 ± 1.56 ± 0 (3.1σ) (2.3σ) −4.75 ± 0.91 ± 2.65 (2.6σ) −4.75 ± 0.91 ± 1.26 (2.3σ)

Inclusive 3.98 ± 1.30 ± 0 (3.1σ) (2.3σ) 3.98 ± 0.77 ± 2.22 (2.6σ) 3.98 ± 0.77 ± 0.74 (2.3σ)

Fig. 9 Top inclusive and exclusive inputs for the CKM matrix element
|Vub| (times 103) and the averages resulting from the different models
considered here. Bottom same for the determinations of |Vcb| (times
103) CKM matrix element. The intervals are given at 1σ . See Fig. 7 for
the legend

eters, such as the four parameters describing the CKM matrix
in the Standard Model.

This article aims at describing and comparing several
approaches that can be implemented in a frequentist frame-
work. After recalling some elements of frequentist analysis,
we have discussed three different approaches for theoreti-
cal uncertainties: the random-δ approach treats theoretical
uncertainties as random variables, the external-δ approach
considers them as external parameters leading to an infin-
ity of p values to be combined through model averaging, the
nuisance-δ describes them through fixed biases which have to
be varied over a reasonable region. These approaches have to
be combined with particular choices for the test statistic used
to compute the p value. We have illustrated these approaches
in the one-dimensional case, recovering the Rfit model used
by CKMfitter as a particular case of the external-δ approach,
and discussing the interesting alternative of a quadratic test
statistic.

In the case of the nuisance-δ approach, one has to decide
over which range the bias parameter should be varied. It is
possible to compute the p value by taking the supremum of
the bias over a fixed range fixed by the size of the theoreti-
cal uncertainty to be modeled (fixed nuisance approach). An
alluring alternative consists in adjusting the size of the range
to the confidence level chosen: the range for a low confi-
dence level can be obtained by varying the bias parameter in
a small range, whereas a range for a high confidence level
could require a more conservative (and thus larger) range for
the bias parameter. We have designed such a scheme, called
adaptive nuisance approach. It provides a unified statistical
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Table 11 Top: symmetrized determinations of sin(2βeff ) from various
penguin b → qq̄s modes and from charmonia modes [36], and estimate
within QCD factorization of the correction from penguin pollution in
the Standard Model (symmetrized range quoted in Table 1 in Ref. [63]).
We neglect any penguin pollution in the case of the charmonium extrac-
tion of sin(2β). Middle: averages according to the various methods, and

corresponding confidence intervals for various significances. Bottom:
pulls associated to each determination for each method. For Rfit meth-
ods, we quote only the significance of the pull, whereas other methods
yield the pull parameter as well as the pull itself under the form p±σ±Δ

(significance of the pull)

sin(2βeff ) ΔS = sin(2βeff ) − sin(2β) sin(2β)

π0KS 0.57 ± 0.17 ± 0 0.085 ± 0 ± 0.065 0.485 ± 0.17 ± 0.065

ρ0KS 0.525 ± 0.195 ± 0 −0.135 ± 0 ± 0.155 0.66 ± 0.195 ± 0.155

η′KS 0.63 ± 0.06 ± 0 0.015 ± 0 ± 0.015 0.615 ± 0.06 ± 0.015

φKS 0.73 ± 0.12 ± 0 0.03 ± 0 ± 0.02 0.7 ± 0.12 ± 0.02

ωKS 0.71 ± 0.21 ± 0 0.11 ± 0 ± 0.10 0.6 ± 0.21 ± 0.10

(cc̄)KS 0.689 ± 0.018 0 0.689 ± 0.018 ± 0

Method Average 1σ CI 2σ CI 3σ CI 5σ CI

nG 0.681 ± 0.017 ± 0 0.681 ± 0.017 0.681 ± 0.034 0.681 ± 0.051 0.681 ± 0.085

Naive Rfit 0.683 ± 0.017 ± 0 0.683 ± 0.017 0.683 ± 0.034 0.683 ± 0.051 0.683 ± 0.085

Educ Rfit 0.683 ± 0.017 ± 0. 0.683 ± 0.017 0.683 ± 0.034 0.683 ± 0.051 0.683 ± 0.084

1-hypercube 0.681 ± 0.017 ± 0.003 0.681 ± 0.017 0.681 ± 0.034 0.681 ± 0.052 0.681 ± 0.086

Adapt hyperball 0.681 ± 0.017 ± 0.002 0.681 ± 0.017 0.681 ± 0.034 0.681 ± 0.052 0.681 ± 0.090

Pull nG (e)Rfit 1-hypercube Adaptive hyperball

π0KS −1.09 ± 1.00 ± 0 (1.1σ) (0.8σ) −1.09 ± 0.94 ± 0.37 (1.1σ) −1.09 ± 0.94 ± 0.36 (1.1σ)

ρ0KS −0.09 ± 1.00 ± 0 (0.1σ) (0.0σ) −0.09 ± 0.79 ± 0.63 (0.1σ) −0.09 ± 0.79 ± 0.62 (0.1σ)

η′KS −1.16 ± 1.04 ± 0 (1.1σ) (0.9σ) −1.16 ± 1.01 ± 0.28 (1.1σ) −1.16 ± 1.01 ± 0.24 (1.1σ)

φKS 0.16 ± 1.01 ± 0 (0.1σ) (0.0σ) 0.16 ± 1.00 ± 0.19 (0.2σ) 0.16 ± 1.00 ± 0.17 (0.2σ)

ωKS −0.35 ± 1.00 ± 0 (0.3σ) (0.0σ) −0.35 ± 0.91 ± 0.44 (0.3σ) −0.35 ± 0.91 ± 0.43 (0.4σ)

(cc̄)KS 3.79 ± 2.97 ± 0 (1.3σ) (1.1σ) 3.79 ± 2.87 ± 1.63 (1.1σ) 3.79 ± 2.87 ± 0.78 (1.2σ)

Table 12 Inputs for the theory-dominated CKM fits, inspired by the
data available in Summer 2014. Scenario A is restricted to the upper
part of the table, whereas Scenario B includes all inputs

Observable Input

|Vud | 0.97425 ± 0 ± 0.00022

|Vub| (3.70 ± 0.12 ± 0.26) × 10−3

|Vcb| (41.00 ± 0.33 ± 0.74) × 10−3

Δmd (0.510 ± 0.003) ps−1

Δms (17.757 ± 0.021) ps−1

Bs/Bd 1.023 ± 0.013 ± 0.014

Bs 1.320 ± 0.017 ± 0.030

fBs / fBd 1.205 ± 0.004 ± 0.007

fBs 225.6 ± 1.1 ± 5.4 MeV

ηB 0.5510 ± 0 ± 0.0022

m̄t 165.95 ± 0.35 ± 0.64 GeV

α (87.8 ± 3.4)◦

sin(2β) 0.682 ± 0.019

γ (72.8 ± 6.7)◦

approach to deal with the metrology of the parameters (for
low CL ranges) and the exclusion of models (for high CL
ranges).

We have determined the p values associated with each
approach for a measurement involving both statistical and
theoretical uncertainties. We have also studied the size of
error bars, the significance of deviations and the coverage
properties. In general, the most conservative approaches cor-
respond to a naive Gaussian treatment (belonging to the
random-δ approach) and the adaptive nuisance approach. The
latter is better defined and more conservative than the former
in the case where statistical and theoretical approaches are
of similar size. Other approaches (fixed nuisance, external)
turn out less conservative at large confidence level.

We have then considered extensions to multi-dimensional
cases, focusing on the linear case where the quantity of inter-
est is a linear combination of observables. Due to the presence
of several bias parameters, one has to make another choice
concerning the shape of the space over which the bias param-
eters are varied. Two simple examples are the hypercube and
the hyperball, leading to a linear or quadratic combination of
theoretical uncertainties, respectively. The hypercube is more
conservative, as it allows for sets of values of the bias param-
eters that cannot be reached within the hyperball. On the
other hand, the hyperball has the great virtue of associativity,
so that one can average different measurements of the same
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Table 13 Numerical results and p values for the CKM parameters in A and λ for Scenarios A and B, depending on the method chosen. For each
quantity, we provide the error budget, whenever possible, and the plots of the p values for Scenarios A (left) and B (right)

Method Fit result 1 σ 2 σ 3 σ

A Scenario A

nG 0.809± 0.011 0.809± 0.011 0.809± 0.023 0.809± 0.034
Rfit 0.807± 0.026 0.807± 0.026 0.807± 0.031 0.807± 0.035

1-hypercube 0.809± 0.004± 0.025 0.809± 0.028 0.809± 0.033 0.809± 0.037
adaptive hyperball 0.809± 0.004± 0.010 0.809± 0.012 0.809± 0.029 0.809± 0.043

A Scenario B

nG 0.812± 0.011 0.812± 0.011 0.812± 0.022 0.812± 0.033
Rfit 0.804+0.029

−0.014 0.804+0.029
−0.014 0.804+0.033

−0.025 0.804+0.038
−0.030

1-hypercube 0.812± 0.004± 0.027 0.812± 0.029 0.812± 0.034 0.812± 0.038
adaptive hyperball 0.812± 0.004± 0.010 0.812± 0.012 0.812± 0.027 0.812± 0.042
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Method Fit result 1 σ 2 σ 3 σ

λ Scenario A

nG 0.2254± 0.0007 0.2254± 0.0007 0.225± 0.0013 0.2254± 0.0020
Rfit 0.2254± 0.0010 0.2254± 0.0010 0.2254± 0.0010 0.2254± 0.0010

1-hypercube 0.2254± 0.0000± 0.0010 0.2254± 0.0010 0.2254± 0.0010 0.2254± 0.0010
adaptive hyperball 0.2254± 0.0000± 0.0007 0.2254± 0.0007 0.2254± 0.0014 0.2254± 0.0020

λ Scenario B

nG 0.2252± 0.0007 0.2252± 0.0007 0.2252± 0.0013 0.2252± 0.0020
Rfit 0.2245+0.0011

−0.0001 0.2245+0.0011
−0.0001 0.2245+0.0020

−0.0001 0.2245+0.0020
−0.0001

1-hypercube 0.2252± 0.0001± 0.0011 0.2252± 0.0011 0.2252± 0.0012 0.2252± 0.0013
adaptive hyperball 0.2252± 0.0001± 0.0007 0.22525± 0.00070 0.2252± 0.0015 0.2252± 0.0022
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Table 14 Numerical results and p values for the CKM parameters in ρ̄ and η̄ for Scenarios A and B, depending on the method chosen. For each
quantity, we provide the error budget, whenever possible, and the plots of the p values for Scenarios A (left) and B (right)

Method Fit result 1 σ 2 σ 3 σ

ρ̄ Scenario A

nG 0.164± 0.012 0.164± 0.012 0.164± 0.025 0.164± 0.037
Rfit 0.164± 0.032 0.164± 0.032 0.164± 0.039 0.164± 0.046

1-hypercube 0.164± 0.007± 0.026 0.164± 0.029 0.164± 0.038 0.164± 0.045
adaptive hyperball 0.164± 0.007± 0.010 0.164± 0.014 0.164± 0.032 0.164± 0.051

ρ̄ Scenario B

nG 0.145± 0.009 0.145± 0.009 0.145± 0.018 0.145± 0.027
Rfit 0.138± 0.007 0.138± 0.007 0.138+0.016

−0.013 0.138+0.028
−0.020

1-hypercube 0.145± 0.007± 0.011 0.145± 0.015 0.145± 0.024 0.145± 0.031
adaptive hyperball 0.145± 0.007± 0.005 0.145± 0.009 0.145± 0.023 0.145± 0.036
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Method Fit result 1 σ 2 σ 3 σ

η̄ Scenario A

nG 0.353± 0.021 0.353± 0.021 0.353± 0.042 0.353± 0.063
Rfit 0.354+0.050

−0.049 0.354+0.050
−0.049 0.354+0.059

−0.058 0.354+0.068
−0.067

1-hypercube 0.353± 0.009± 0.041 0.353± 0.046 0.353± 0.057 0.353± 0.067
adaptive hyperball 0.353± 0.009± 0.019 0.353± 0.023 0.353± 0.054 0.353± 0.083

η̄ Scenario B

nG 0.343± 0.008 0.343± 0.008 0.343± 0.016 0.343± 0.023
Rfit 0.342± 0.008 0.342± 0.008 0.342+0.016

−0.015 0.342+0.024
−0.022

1-hypercube 0.343± 0.007± 0.007 0.343± 0.011 0.343± 0.019 0.343± 0.027
adaptive hyperball 0.343± 0.007± 0.003 0.343± 0.008 0.343± 0.018 0.343± 0.028
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quantity or put all of them in a global fit, without changing its
outcome. It also allows us to include theoretical correlations
easily, both in the range of variation of biases to determine
errors and in the definition of theoretical correlations for the
outcome of a fit. We have discussed the average of several
measurements using the various approaches, including cor-
relations. We considered in detail the case of 100% correla-
tions leading to a non-invertible covariance matrix. We also
discussed global fits and pulls in a linearized context. We
have then provided several comparisons between the differ-
ent approaches using examples from flavor physics: averag-
ing theory-dominated measurements, averaging incompati-
ble measurements linear fits to a subset of flavor inputs.

It is now time to determine which choice seems prefer-
able in our case. Random-δ has no strong statistical basis: its
only advantage consists in its simplicity. External-δ is closer
in spirit to the determination of systematics as performed
by experimentalists, but it starts with an inappropriate null
hypothesis and tries to combine an infinite set of p values in
a single p value. On the contrary, the nuisance-δ approach
starts from the beginning with the correct null hypothesis and
deals with a single p value.

This choice is independent from another choice, i.e., the
range of variation for the parameter δ. Indeed, when sev-
eral bias parameters are involved, one may imagine different
multi-dimensional spaces for their variations, in particular
the hyperball and the hypercube. As said earlier, the hyper-
ball has the interesting property of associativity when per-
forming averages and avoids fine-tuned solutions where all
parameters are pushed in a corner of phase space. The hyper-
cube is closer in spirit to the Rfit model (even though the
latter is not a bias model), but it cannot avoid fine-tuned situ-
ations and it does not seem well suited to deal with theoretical
correlations, since it is designed from the start to avoid such
correlations.

A third choice consists in determining whether one wants
to keep the volume of variation fixed (fixed approach), or to
modify it depending on the desired confidence level (adap-
tive approach). Adaptive hypercube is in principle the most
conservative choice but in practice, it gives too large errors,
whereas fixed hyperball would give very small errors. Fixed
hypercube is more conservative at low confidence levels
(large p values), whereas adaptive hyperball is more con-
servative at large confidence levels (small p values).

This overall discussion leads us to consider the nuisance
approach with adaptive hyperball as a promising approach to
deal with flavor physics problems, which we will investigate
in more phenomenological analyses in forthcoming publica-
tions [35].
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Appendix A: Singular covariance matrices

Appendix A.1: Inversion of the covariance matrix

In Sect. 6.2.2, we perform the average of N measurements
relying on a test statistic involving the inverse of the statistical
covariance and the theoretical correlation matrices. In the
case where at least two observables are fully correlated, these
matrices are singular and they cannot be inverted naively. One
must thus determine a generalized inverse for these matrices.
For definiteness, we consider the case where only statistical
uncertainties are involved. The statistical test reads

T = (X − μU )T · W̄ · (X − μU ) (A.1)

where U is a vector containing N times the unit value,
W̄ = C+

s is a generalized inverse of the covariance matrix
Cs (identical to C−1

s if the matrix Cs is not singular).
Minimizing T yields

μ̂ = UT · W̄ · X
UT · W̄ ·U =

∑

i

wi Xi wi = (W̄ ·U )i

UT · W̄ ·U

σ 2
μ = wT · Cs · w = UT · W̄ · Cs · W̄ ·U

(UT · W̄ ·U )2
. (A.2)

We have to choose a generalized inverse C+
s . We cannot

rely on arguments based on the case where Cs is invertible
(for instance taking a correlation 0 < ρ < 1, followed by the
limit ρ → 1) since this limit is singular. We can start by con-
straining the structure of C+

s due to the particular structure
of Cs . We have

Cs = Σ · Γ · Σ = Σ · R · D · RT · Σ (A.3)

where Σ is a diagonal matrix with uncertainties as entries
{σ1, . . . σn}, Γ the correlation matrix with entries between
−1 and 1 (and diagonal entries equal to 1), R is an orthogonal
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matrix, and D is a diagonal matrix with entries in decreasing
order,

d1 ≥ d2 ≥ · · · ≥ dm > 0 = dm+1 = · · · = dn . (A.4)

The entries of D are positive since Cs is assumed to be pos-
itive, with

N∑

i=1

di = Tr(D) = Tr(Γ ) = n �⇒ d1 ≤ n. (A.5)

A generalized inverse for Cs can be expressed in terms of
a generalized inverse for D, if we define

C+
s = Σ−1 · R · D+ · RT · Σ−1. (A.6)

Indeed a generalized inverse for Cs obeys CsC+
s Cs = Cs ,

which is equivalent to the condition

D · D+ · D = D �⇒ D+ =
[

1/d A
AT B

]
, (A.7)

where d is the m×m diagonal matrix with entries di , A is an
m × (n−m) arbitrary matrix and B is an (n−m)× (n−m)

arbitrary matrix. A and B can only depend on d1, . . . , dm ,
and each choice of A and B corresponds to an admissible
generalized inverse.

Under these conditions, we find for the weights and the
variance

wi = (Σ−1 · R · D+ · RT · Σ−1 ·U )i

UT · C+
s ·U

σ 2
μ = wT · Cs · w = UT · C+

s · Cs · C+
s ·U

(UT · C+
s ·U )2

. (A.8)

Appendix A.2: Choice of a generalized inverse

The most common generalized inverse is the Moore–Penrose
pseudoinverse, obtained by adding three other conditions on
C+
s on top of the definition of a generalized inverse. The

condition C+
s CsC+

s = C+
s (reflexive generalized inverse)

would translate as D+·D ·D+ = D+ leading to the condition
B = AT ·d · A in Eq. (A.7), whereas the two other conditions
for the Moore–Penrose inverse of C+

s do not translate easily
on D+. Unfortunately, we will see in explicit examples that
this pseudoinverse gives more weight to measurements with
a poor accuracy, and is thus not appropriate in our case.

An alluring alternative to obey Eq. (A.7) consists in con-
sidering A = 0 and B = λ × 1(n−m)×(n−m) proportional to
the identity, with λ a real number to be fixed. In this case, the
weights read

wi = 1

UTC+
s U

n∑

j=1

1

σiσ j
(RD+RT )i j . (A.9)

Let us assume that σa becomes much smaller than the other
σi , the weights are dominated by

wi ∼ 1

UTC+
s U

1

σiσa
(RD+RT )ia . (A.10)

Since the first (normalization) factor is the same for all the
inputs, the dominant weight will be wa , under the condition
that

0 �= (RD+RT )aa =
n∑

j=1

(Raj )
2 1

d j
+ λ

N∑

j=n+1

(Raj )
2

= λ +
n∑

j=1

(Raj )
2
(

1

d j
− λ

)
, (A.11)

which is a condition fulfilled for 0 < λ ≤ 1/d1. We see
that the family of generalized inverses thus defined20 has the
following properties:

– they can be computed in a very simple way,
– for 0 < λ ≤ 1/d1, if a determination is much more

precise than the others, it will dominate the average.

For λ = 1/d1, we call C+
s the λ-inverse of Cs . For λ = 0,

we recover the Moore–Penrose pseudoinverse for D, and call
this generalized inverse the 0-inverse of Cs . As said earlier,
one could also consider the possibility of taking the Moore–
Penrose pseudoinverse ofCs directly. We will illustrate these
three possibilities with a few simple examples.

Appendix A.3: Examples

Appendix A.3.1: Two measurements

In the case of two uncorrelated measurements, there is no
problem with inversion, and we get for all methods

C−1
s =

( 1
σ 2

1
0

0 1
σ 2

2

)
w = 1

σ 2
1 + σ 2

2

(
σ 2

2
σ 2

1

)

σ 2
μ = σ 2

1 σ 2
2

σ 2
1 + σ 2

2

.

(A.12)

20 The definition of C+
s can be extended for an arbitrary matrix C in

the following way. Σ is defined as the diagonal matrix with entries
{√|C11|, . . .√|CNN |} (if a diagonal entry is 0, one defines Σ with
1 in the corresponding entry). The matrix Γ = Σ−1.C.Σ−1 can be
written according to a singular value decomposition Γ = R.D.S with
two rotation matrices R and S. Once the generalized inverse D+ is
defined, the corresponding generalized inverse of C is defined as C+ =
Σ−1.ST .D+.RT .Σ−1.
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For partially correlated measurements (|ρ| < 1), the same
inversion can be performed, leading to

C−1
s = 1

1 − ρ2

( 1
σ 2

1
− ρ

σ1σ2

− ρ
σ1σ2

1
σ 2

2

)

w = 1

σ 2
1 − 2σ1σ2ρ + σ 2

2

(
σ2(σ2 − ρσ1)

σ1(σ1 − ρσ2)

)
(A.13)

∼
(

1
−ρσ1/σ2

)

and the expression for the uncertainty

σ 2
μ = σ 2

1 σ 2
2 (1 − ρ2)

σ 2
1 − 2ρσ1σ2 + σ 2

2

∼ σ 2
1 (1 − ρ2). (A.14)

In each case, we indicate the limit where σ1 becomes much
smaller than σ2 with the ∼ symbol, i.e., one measurement is
much more accurate than the other. A comment is in order
with respect to the HFAG approach at this stage. As noticed in
Ref. [36], the maximal uncertainty is min(σ 2

1 , σ 2
2 ) and corre-

sponds to the correlation coefficient ρ = min(σ1/σ2, σ2/σ1)

(it is not ρ = 1).
In the case of two fully correlated measurements, we have

Cs =
(

σ 2
1 σ1σ2

σ1σ2 σ 2
2

)
(A.15)

with d1 = 2, d2 = 0. The λ-inverse for Cs yields

C+
s =

( 1
2σ 2

1
0

0 1
2σ 2

2

)

w = 1

σ 2
1 + σ 2

2

(
σ 2

2
σ 2

1

)
∼

(
1

σ 2
1 /σ 2

2

)

σ 2
μ = σ 2

1 σ 2
2 [σ1 + σ2]2

[σ 2
1 + σ 2

2 ]2
∼ σ 2

1 (A.16)

where we indicated the limit when σ1 → 0. The 0-inverse
yields

C+
s =

( 1
4σ 2

1

1
4σ1σ2

1
4σ1σ2

1
4σ 2

2

)
,

w = 1

σ1 + σ2

(
σ2

σ1

)
∼

(
1

σ1/σ2

)
, (A.17)

σ 2
μ = 4σ 2

1 σ 2
2

[σ1 + σ2]2 ∼ 4σ 2
1 ,

and the Moore–Penrose pseudoinverse yields

C+
s = 1

(σ 2
1 + σ 2

2 )2

(
σ 2

1 σ1σ2

σ1σ2 σ 2
2

)
,

w = 1

(σ1 + σ2)

(
σ1

σ2

)
∼

(
σ1/σ2

1

)
, (A.18)

σ 2
μ = (σ 2

1 + σ 2
2 )2

(σ1 + σ2)2 ∼ σ 2
2 .

Appendix A.3.2: n fully correlated measurements

We have a correlation matrix C̃s with unit entries everywhere.
This yields d1 = n, di>1 = 0. The λ-inverse yields

C+
s =

⎛

⎜⎜⎝

1
nσ 2

1
· · · 0

...
. . .

...

0 · · · 1
nσ 2

n

⎞

⎟⎟⎠

w = 1
∑

i 1/σ 2
i

⎛

⎜⎝
1/σ 2

1
...

1/σ 2
N

⎞

⎟⎠ ∼

⎛

⎜⎜⎜⎝

1
σ 2

1 /σ 2
2

...

σ 2
1 /σ 2

n

⎞

⎟⎟⎟⎠ (A.19)

σ 2
μ = (

∑
1/σi )

2

(
∑

1/σ 2
i )2

∼ σ 2
1 ,

where we indicated the limit when σ1 → 0. The 0-inverse
yields

C+
s =

⎛

⎜⎜⎝

1
n2σ 2

1

1
n2σ1σ2

· · · 1
n2σ1σn

...
...

1
n2σ1σn

1
n2σ2σn

· · · 1
n2σ 2

n

⎞

⎟⎟⎠ ,

w = 1∑
i 1/σi

⎛

⎜⎝
1/σ1

...

1/σn

⎞

⎟⎠ ∼

⎛

⎜⎜⎜⎝

1
σ1/σ2

...

σ1/σn

⎞

⎟⎟⎟⎠ , (A.20)

σ 2
μ = n2

(
∑

i 1/σi )2 ∼ n2σ 2
1 .

The Moore–Penrose pseudoinverse yields

C+
s = 1

(
∑

i σ
2
i )2

⎛

⎜⎝
σ 2

1 · · · σ1σn
...

. . .
...

σ1σn · · · σ 2
n

⎞

⎟⎠ ,

w = 1∑
σi

⎛

⎜⎝
σ1
...

σn

⎞

⎟⎠ ∼ 1∑
i>1 σi

⎛

⎜⎝
σ1
...

σn

⎞

⎟⎠ (A.21)

σ 2
μ = (

∑
i σ

2
i )2

(
∑

σi )2 ∼ (
∑

i>1 σ 2
i )2

(
∑

i>1 σi )2 .

We can actually show that in this situation, the choice of
the λ-inverse is optimal in the family of generalized inverses
defined in Appendix A.2. Indeed, there is only one non-
vanishing eigenvalue d1 = n, leading to

σ 2
μ = (

∑
1/σ)2/n2

[
(
∑

1/σ)2/n2 + λ
[∑

1/σ 2 − (
∑

1/σ)2/n
]]2 ,

(A.22)
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which is minimal for the maximal value λ = 1/d1, corre-
sponding to the λ-inverse.

Appendix A.3.3.: Two fully correlated measurements with an
uncorrelated measurement

Let us consider

Cs =
⎛

⎝
σ 2

1 σ1σ2 0
σ1σ2 σ 2

2 0
0 0 σ 2

3

⎞

⎠ , (A.23)

with d1 = 2, d2 = 1, d3 = 0.
The λ-inverse for Cs yields

C+ =

⎛

⎜⎜⎝

1
2σ 2

1
0 0

0 1
2σ 2

2
0

0 0 1
σ 2

3

⎞

⎟⎟⎠ ,

w = 1

2σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

⎛

⎝
σ 2

2 σ 2
3

σ 2
1 σ 2

3
2σ 2

1 σ 2
2

⎞

⎠ ∼
⎛

⎝
1

σ 2
1 /σ 2

2
2σ 2

1 /σ 2
3

⎞

⎠ ,

σ 2
μ = σ 2

1 σ 2
2 σ 2

3 [2σ1σ2σ
2
3 + 4σ 2

1 σ 2
2 + σ 2

1 σ 2
3 + σ 2

2 σ 2
3 ]

[2σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3 ]2
∼ σ 2

1 .

(A.24)

The 0-inverse for Cs yields

C+
s =

⎛

⎜⎜⎝

1
4σ 2

1

1
4σ1σ2

0
1

4σ1σ2

1
4σ 2

2
0

0 0 1
σ 2

3

⎞

⎟⎟⎠ ,

w = 1

4σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3 + 2σ1σ2σ
2
3

×
⎛

⎝
σ2σ

2
3 (σ1 + σ2)

σ1σ
2
3 (σ1 + σ2)

4σ 2
1 σ 2

2

⎞

⎠ ∼
⎛

⎝
1

σ1/σ2

4σ 2
1 /σ 2

3

⎞

⎠ ,

σ 2
μ = 4σ 2

1 σ 2
2 σ 2

3

4σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3 + 2σ1σ2σ
2
3

∼ 4σ 2
1 .

(A.25)

The Moore–Penrose pseudoinverse yields

C+
s =

⎛

⎜⎜⎜⎝

σ 2
1

(σ 2
1 +σ 2

2 )2
σ1σ2

(σ 2
1 +σ 2

2 )2 0

σ1σ2
(σ 2

1 +σ 2
2 )2

σ 2
2

(σ 2
1 +σ 2

2 )2 0

0 0 1
σ 2

3

⎞

⎟⎟⎟⎠ ,

w = 1

(σ 2
1 + σ 2

2 )2 + (σ1 + σ2)2σ 2
3

⎛

⎝
σ1σ

2
3 (σ1 + σ2)

σ2σ
2
3 (σ1 + σ2)

(σ 2
1 + σ 2

2 )2

⎞

⎠

∼ 1

(σ 2
2 + σ 3

3 )

⎛

⎝
σ1σ

2
3 /σ2

σ 2
3

σ 2
2

⎞

⎠ ,

σ 2
μ = (σ 2

1 + σ 2
2 )2σ 2

3

(σ 2
1 + σ 2

2 )2 + (σ1 + σ2)2σ 2
3

∼ σ 2
2 σ 2

3

σ 2
2 + σ 2

3

. (A.26)

Appendix A.4: Choice of the inverse

In the above examples, the λ-inverse yields interesting results
for the generalized inverse in cases that are likely to be use-
ful. In the limit where one measurement becomes very accu-
rate, it dominates the average. In this situation, other gener-
alized inverses of the same family, like the 0-inverse, yield
results of the same order, but larger, for the combined uncer-
tainty, whereas the Moore–Penrose pseudoinverse yields a
combined uncertainty dominated by the least precise mea-
surements. For 100% correlated uncertainties, the λ-inverse
recovers Schmelling’s proposal [38] used by the Flavor Lat-
tice Averaging Group [37], and it does not run into the danger
of underestimating the resulting uncertainty as discussed by
the Heavy Flavor Averaging Group [36].

For these reasons, we choose the λ-inverse to compute
both the inverse statistical covariance matrix and the inverse
theoretical correlation matrix when these matrices are singu-
lar (the regular case being trivial).

Appendix B: Varying the biases in the presence of
theoretical correlations

Appendix B.1: Range of variations for the biases

Another issue consists in implementing correlations for the
biases describing theoretical uncertainties. Some differences
occur compared to statistical uncertainties, since different
models are used in both cases (random variables versus
biases). As described in Sect. 6.2.2, once the weights wi

are determined, the theoretical uncertainty is given by δμ =∑
i wiΔiαδ̃α , which requires one to determine the range of

variation for the normalized biases δ̃α . We want to describe
their variation starting from variations of uncorrelated vari-
ables. This can be achieved through a linear transformation
by introducing the Cholesky decomposition for the theoreti-
cal correlation matrix Ct = P · PT with P a lower triangular
matrix with diagonal positive entries. We obtain the expres-
sion for the theoretical uncertainty

δμ =
∑

i

wiΔi δ̃i =
∑

i, j

wiΔiαPαβ(P−1δ̃)β, (B.27)

where (P−1δ̃) j are uncorrelated biases varied in a hyperball,
leading to

Δμ =

√√√√√
∑

β

⎛

⎝
∑

i,α

wiΔiαPαβ

⎞

⎠
2

(hyperball). (B.28)
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There is an ambiguity in the definition of P when Ct is
only semi-definite positive (which occurs when Ct is sin-
gular due to 100% correlations, and exhibits not only pos-
itive but also vanishing eigenvalues). We define then P by
computing P(ε) for the shifted matrix Ct + ε × 1m×m and
defining P = limε→0+ P(ε). This limit is not singular, and
it allows one to define the limit of two measurements fully
correlated theoretically as a smooth limit of the general case
with a partial correlation.

One should emphasize that in the case of a singular cor-
relation matrix Ct for theoretical uncertainties, we may have
to treat this singularity at two different stages: first when we
build the test statistic involving W̄ (depending on the struc-
ture of the statistical and theoretical correlation matrices),
second when we consider the domain of variation for the
parameters δ̃. We stress that we used different procedures
in both cases (λ-inverse for W̄ , Cholesky decomposition for
δ̃), which involves some arbitrariness, but reproduces desir-
able properties for the combined uncertainties and domains
of variation of the biases in this singular limit.

In the case of a hypercube, we may want to follow the
same procedure and define

Δμ =
∑

β

∣∣∣∣∣∣

∑

i,α

wiΔiαPαβ

∣∣∣∣∣∣
×(hypercube with correlations?). (B.29)

The question mark indicates that this definition is only ten-
tative, and will not actually be used. Indeed, as discussed
in Sect. 6.2.3 and illustrated in the following sections, this
definition has the rather unpleasant feature that the ranges
of variations depend on the order of the inputs used, and
we have not been able to identify an alternative choice for
the range of variations that would avoid this problem, which
does not occur in the hyperball case. These difficulties could
be somehow expected from the properties of the hypercube
case discussed in Sect. 6.2.1. Indeed, in the case of two mea-
surements, the hypercube corresponds to values of δ1 and δ2

left free to vary without relation among them (contrary to
the hyperball case). It seems therefore difficult to introduce
correlations in this case which was designed to avoid them
initially. Our failure to introduce correlations in this case
might be related to the fact that the hypercube is somehow
designed to avoid such correlations from the start and cannot
accommodate them easily.

We thus propose the alternative definition, ignoring the-
oretical correlations to determine the range of variations for
the biases

Δμ =
∑

α

∣∣∣∣∣
∑

i

wiΔiα

∣∣∣∣∣ (hypercube no correlation). (B.30)

Appendix B.2: Averaging measurements with theoretical
correlations

If we take two measurements X1±σ1±Δ1 and X2 ±σ2 ±Δ2

with σ1 and σ2 uncorrelated, but Δ1 and Δ2 correlated with
a correlation ρ, one gets the Cholesky decomposition

Ct = P · PT P =
(

1 0
ρ

√
1 − ρ2

)
, (B.31)

so that the variations for the two (normalized) biases δ̃1 and
δ̃2 are given by

δ̃1 = d1 δ̃2 = ρd1 +
√

1 − ρ2d2, (B.32)

where d1 and d2 are varied in a hyperball or a hyper-
cube following Eqs. (B.28) and (B.29), respectively. Equa-
tion (B.30) would correspond to neglecting correlations and
setting ρ = 0 in Eq. (B.32).

In the case of a hypercube with correlations, δ̃1, δ̃2 are
varied in a parallelogram with two sides parallel to the δ̃2

axis, whereas they are varied in a tilted ellipse in the hyperball
case, as can be seen in Fig. 10. In both cases, the limiting
case where ρ → ±1 corresponds to δ̃1 and δ̃2 varied along a
diagonal line, meeting our expectations for fully correlated
theoretical uncertainties. We see that this treatment yields a
symmetric domain for δ̃1 and δ̃2 in the hyperball case, but not
in the hypercube case, which means that the two uncertainties
are not treated in a symmetric way.21 As indicated before,
Eq. (B.30) corresponds to the hypercube with ρ = 0, i.e., a
square domain for δ̃1 and δ̃2.

One can easily extend the same procedure to a larger
number of correlated theoretical uncertainties. As indicated
above, the hyperball with correlations yields domains of vari-
ations which are symmetric for any pair (δ̃k, δ̃l) whereas
the hypercube with correlations does not. This means that
the range of variation chosen for the biases will depend on
the order of the inputs: a mere reshuffling of the inputs will
yield different ranges of variations for the biases and (in gen-
eral) different outcomes for averages and fits. In addition,
we should emphasize that a total correlation (Ct )k,l = 0
between two biases does not have the same impact for the
domain of variation in the (δ̃k, δ̃l)plane in both approaches: in
the hyperball case, one obtains an undeformed disk, whereas
the hypercube case yields a complicated convex polytope
depending on the other elements of the correlation matrix
(see Fig. 11 in the case of three biases) (a symmetrization

21 One could try to symmetrize the problem, but one would lose the
connection with the Cholesky decomposition, with the unpleasant fea-
ture that all domains of variation would be identical and thus do not
take into account correlations.
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Fig. 10 Ranges of variation for δ̃1 and δ̃2 for ρ = 0, 0.2, 0.5, 0.9, 1, going from light (yellow) to dark (red). The variation over a hyperball (left)
or a hypercube (right) is considered

Fig. 11 Ranges of variation for δ̃1, δ̃2, δ̃3 with ρ12 = 0.4, ρ13 = 0.7, ρ23 = 0. The variation over a hyperball (top) or a hypercube (bottom) with
correlations is considered. Neglecting correlations would yield discs (top) and squares (bottom)

of the Cholesky decomposition in the form P + PT or a
different choice of linear transformation would yield similar
results).

These features lead us to neglect correlations in the hyper-
cube range of variations, whereas we keep them when con-
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sidering the hyperball case. We thus discard Eq. (B.29) and
consider only Eqs. (B.28) and (B.30) in our analyses.

Appendix C: Definition of the test statistic in ndimensions

Appendix C.1: Ambiguities in the definition of a 100%
theoretical correlation

In Eq. (34), one may be uncertain about the case where
a theoretical uncertainty is fully correlated between two
observables. Let us imagine that we have two quantities
X1 = X10 ±σ1 ±Δ1 and X2 = X20 ±σ2 ±Δ2 with the two
theoretical uncertainties being fully correlated. We can imag-
ine describing the theoretical uncertainties either via m = 2
parameters fully correlated through C̃t :

I : Δ =
[

Δ1 0
0 Δ2

]
, C̃t =

[
1 1
1 1

]
, (C.33)

or as m = 1 parameter intervening in the two quantities via
Δ

II : Δ =
[

Δ1

Δ2

]
C̃t = [1] . (C.34)

We can see in the above discussion that the only relevant
combination of Δ and C̃t is actually ΔP , whether in the
definition of W̄ that involves ΔC̃tΔ

T = (ΔP)(ΔP)T , or in
the discussion of the theoretical uncertainty Δμ. We have

I : P =
[

1 0
1 0

]
ΔP =

[
Δ1 0
Δ2 0

]
,

II : P = [1] ΔP =
[

Δ1

Δ2

]
, (C.35)

leading to the same ΔC̃tΔ
T and showing that only one uncor-

related bias parameter is needed in both cases, even though
we started from a different number of bias parameters. The
discussion can be extended to an arbitrary number of fully
correlated theoretical uncertainties. Obviously, for partial
correlations, only C̃t can be used with an unchanged number
of bias parameters.

Appendix C.2: Reducing the problem to one bias parameter
per observable

We can define a reduced version of the problem Eq. (34), with
only n bias parameters rather than m. We have to determine
an equivalent problem

T ′(x, δ̃′) = [X − x − Δ′δ̃′]T Ws[X − x − Δ′δ̃′] + δ̃T W̄ ′
t δ̃

′,
(C.36)

where W̄ ′
t and Δ′ are n × n matrices, and Δ′ is diagonal.

From what was discussed before, we see that we will obtain
the same result for the weights w(q), the variances and the
correlations, if we ensure that ΔP = Δ′P ′.

This can be achieved by defining Δ′ and the correlation
matrix C̃ ′

t using

ΔC̃tΔ
T = Δ′C̃ ′

tΔ
′. (C.37)

C̃t is positive semi-definite, which means that ΔC̃tΔ
T will

also be. The diagonal elements of a positive semi-definite
matrix are positive, and therefore, one can define Δ′ so that
C̃ ′
t has 1 as a diagonal.
It could occur that ΔC̃tΔ

T has 0 on the diagonal for some
kth entry. But since ΔC̃tΔ

T is positive semi-definite, one
can prove that the corresponding row and column then van-
ish, meaning that the corresponding bias parameter does not
actually occur in the reduced problem. In such a case, one
can define Δ′

k = 0 and C ′
t vanishing on the kth row and col-

umn, and C ′
t,kk = 1 (this is the case for instance if there is

no theoretical uncertainty for some of the observables).
Moreover, one can check that C̃ ′ is indeed a correlation

matrix by defining the scalar product (x, y) = xTΔC̃tΔ
T y.

We can apply the Cauchy–Schwartz inequality to the basis
vectors u(i) defined so that u(i)

j = δi j (i.e., only one non-
vanishing component):

(u(i), u( j))2 ≤ (u(i), u(i))(u( j), u( j))

(Δ′
i )

2(Δ′
j )

2(C̃ ′
t,i j )

2 ≤ (Δ′
i )

2(Δ′
j )

2C̃ ′
t,i i C̃

′
t, j j ,

(C.38)

so that |C̃ ′
t,i j | ≤ 1 and C̃ ′

t,i i = 1, with the appropriate struc-
ture of a correlation matrix.

Finally, the Cholesky decomposition of C̃ ′
t corresponds to

P ′ = (Δ′)−1ΔP . Therefore, the determination of the the-
oretical uncertainties for Δμ remains indeed the same with
the new set of biases.

We have thus reduced the problem of n measurements and
m theoretical biases to the case with n measurements, each of
them having with a single bias parameter, with correlations
among the biases. Without loss of generality we can consider
that Δ is diagonal and m = n.

Appendix D: Asymmetric uncertainties

In this article, statistical uncertainties are assumed to be
strictly Gaussian and hence symmetric. In practice, if asym-
metric uncertainties are quoted, we symmetrize in the fol-
lowing manner:

X = μ
+σ+−σ− → X =

(
μ + σ+ − σ−

2

)
±

(
σ+ + σ−

2

)
.

(C.39)
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Fig. 12 Top inputs for BM̄S
K (2GeV) and the averages resulting from the

different models considered here.Bottom same for the lattice determina-
tions of the Ds -meson decay constant (in MeV). The black range gives
the statistical error. For each individual input, the solid yellow range
indicates the 3σ interval according to the adaptive hyperball approach,
whereas the interval corresponding to the 1-fixed hypercube approach
is given by the vertical lines in the middle of the solid yellow inter-
vals. For average according to the different approaches, the black range
corresponds again to the 3σ statistical error, whereas the yellow range
corresponds to the 3σ interval following the corresponding approach.
The comparison between black and yellow ranges illustrates the relative
importance of statistical and theoretical errors. Finally, for illustrative
purposes, the vertical purple line gives the arithmetic average of the
inputs (same weight for all central values)

This is also the case for the theoretical uncertainties in the
random-δ approach.

In contrast, it is perfectly possible to have asymmet-
ric theoretical uncertainties in the nuisance-δ or external-δ
approaches described above. A theoretical uncertainty that
is modeled by a bias parameter δ may be asymmetric: that is,
the region in which δ is varied may depends on the sign of δ,
e.g. δ ∈ [−Δ−,+Δ+] in one dimension (Δ± ≥ 0).

In the case of a quadratic test statistic, we want to keep the
stationarity property stemming from the symmetric quadratic
shape, by using a test statistic Eq. (22) with (Δ+ +Δ−)/2 or
Max(Δ+,Δ−) in the definition, the second possibility being
more conservative and our preferred choice in the following.
As indicated in Sect. 6.2.2, this is independent of the range
of variation Ω chosen, which will be kept asymmetric, e.g.,
[−Δ−,Δ+] in the fixed nuisance approach.

Fig. 13 Determinations of the strong coupling constant at MZ through
e+e− annihilation, and the averages resulting from the different models
considered. The intervals are given at 3σ . See Fig. 12 for the legend

Fig. 14 Top inclusive and exclusive inputs for the CKM matrix element
|Vub| (times 103) and the averages resulting from the different models
considered here. Bottom same for the determinations of |Vcb| (times
103) CKM matrix element. The intervals are given at 3σ . See Fig. 12
for the legend

In the case of the Rfit approach [15,16], we can use the
fact that the well test statistic has a shape that is independent
of the central value chosen, as long as the position of the flat
bottom remains unchanged. One can thus shift the central
value by an arbitrary quantity if one remains at the bottom of
the well. It is thus completely equivalent to take asymmetric
theoretical ranges or to take symmetric theoretical ranges
following Eq. (C.39) where σ± is replaced by Δ±.

123



214 Page 40 of 41 Eur. Phys. J. C (2017) 77 :214

Appendix D: 3-σ intervals for CKM-related examples

We collect here the intervals at 3σ for the various approaches
applied to the CKM examples discussed in Sect. 7. Fig-
ures 12, 13 and 14 are the 3-σ equivalents of Figs. 7, 8 and 9
showing 1σ intervals. The comparison between the two series
of plot shows how the intervals evolve with the confidence
level. In particular, the adaptive hyperball approach appears
more (less) conservative than the 1-hypercube approach at
high (low) significance. This change of hierarchy explains
why we choose a different convention to plot the 1σ (dashed
horizontal line) and 3σ (vertical lines in the middle of the
solid intervals) intervals for the 1-hypercube approach in
Figs. 7, 8, 9 on one hand and Figs. 12, 13, 14 on the other
hand.
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