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Abstract We study the parameterized post-Newtonian
approximation in teleparallel model of gravity with a scalar
field. The scalar field is non-minimally coupled to the
scalar torsion as well as to the boundary term intro-
duced in Bahamonde and Wright (Phys Rev D 92:084034
arXiv:1508.06580v4 [gr-qc], 2015). We show that, in con-
trast to the case where the scalar field is only coupled to the
scalar torsion, the presence of the new coupling affects the
parameterized post-Newtonian parameters. These parame-
ters for different situations are obtained and discussed.

1 Introduction

In a teleparallel model of gravity, instead of the torsionless
Levi-Civita connections, curvatureless Weitzenböck connec-
tions are used [2–4]. A teleparallel equivalent of general rel-
ativity was first introduced in [5] as an attempt for unification
of electromagnetism and gravity. This theory is considered
as an alternative theory of usual general relativity and has
been recently employed to study the late time acceleration of
the Universe [6–8]. This can be accomplished by considering
modified f (T ) models [9–24], where T is the torsion scalar,
or by introducing exotic field such as quintessence. Assum-
ing a non-minimal coupling between the scalar field and the
torsion opens new windows in studying the cosmological
evolution [25–31], and can be viewed as a promising sce-
nario for late time acceleration and super-acceleration [32].

A non-minimally coupled scalar field, like the scalar–
tensor model, may alter the Newtonian potential. So it is
necessary to check if the model can pass local gravitational
tests such as solar system observations. This can be done in
the context of the parameterized post-Newtonian formalism
[35–40]. In [33,34] it was shown that when the scalar field
is only coupled to the scalar torsion, there is no deviation
from general relativity in the parameterized post-Newtonian
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(PPN) parameters and the theory is consistent with gravita-
tional tests and solar system observations.

Recently a new coupling between the scalar field and a
boundary term B, corresponding to the torsion divergence
B ∝ ∇μTμ, was introduced in [1], where the cosmologi-
cal consequences of such a coupling for some simple power
law scalar field potential and the stability of the model were
discussed. There it was found that the system evolves to an
attractor solution, corresponding to late time acceleration,
without any fine tuning of the parameters. In this framework,
the phantom divide line crossing is also possible. Thermo-
dynamics aspects of this model were studied in [41]. This
model includes two important subclasses, i.e. quintessence
non-minimally coupled to the Ricci scalar and quintessence
non-minimally coupled to the scalar torsion. Another impor-
tant feature of this model is its ability to describe the present
cosmic acceleration in the framework of Z2 symmetry break-
ing by alleviating the coincidence problem [42].

In this paper, we aim to investigate whether this new
boundary coupling may affect the Newtonian potential and
PPN parameters: γ (r) and β(r).

The scheme of the paper is as follows: In the second sec-
tion we introduce the model and obtain the equations of
motion. In the third section, we obtain the weak field expan-
sion of the equations in the PPN formalism and obtain and
discuss their solutions for spherically symmetric metric. We
show that the PPN parameters may show deviation from gen-
eral relativity. We consider different special cases and derive
explicit solutions for the PPN parameters in terms of the
model parameters and confront them with observational data.

We use units with h̄ = c = 1 and choose the signature
(−,+,+,+) for the metric.

2 The model and the field equations

In our study we use vierbeins ea = eaμ∂μ, whose duals,
eaμ, are defined through eaμeaν = δν

μ. The metric ten-
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sor is given by gμν = ηabeaμebν , η = diag(−1, 1, 1, 1).
e = det(eaμ) = det

√−g. Greek indices (indicating coordi-
nate bases) like the first Latin indices (indicating orthonor-
mal bases) a, b, c, ... belong to {0, 1, 2, 3}, while i, j, k, ... ∈
{1, 2, 3}.

Our model is specified by the action [1]

S =
∫ (

T

2k2 + 1

2
(−∂μφ∂μφ + εTφ2 + χBφ2)

−V (φ) + Lm

)
ed4x, (1)

where k2 = 8πGN , and GN is the Newtonian gravitational
constant. The torsion scalar is defined by

T = Sρ
μνTρ

μν = 1

4
T ρ

μνTρ
μν+1

2
T ρ

μνT
νμ

ρ−T ρ
μρT

νμ
ν,

(2)

and the boundary term is [43,44]

B = 2

e
∂μ(eTμ), (3)

where Tμ = T λ
λ
μ

. The Weitzenböck torsion and connection
are given by

T λ
μν = �λ

μν − �λ
νμ = ea

λT a
μν (4)

and

�λ
μν = ea

λ∂μe
a
ν, (5)

respectively. Sρ
μν is defined according to

Sρ
μν = 1

4
(T ρ

μν − Tμν
ρ + Tνμ

ρ)+ 1

2
δρ
μT

σ
νσ − 1

2
δρ
ν T

σ
μσ .

(6)

Note that R = −T +B, where R is the Ricci scalar curvature.
Hence for χ = −ε the model reduces to a quintessence
model coupled non-minimally to the scalar curvature, while
for χ = 0, we recover the quintessence model coupled non-
minimally to the scalar torsion.

By variation of the action (1) with respect to the vierbeins
we obtain(

2

k2 + 2εφ2
)(

e−1eaμ∂λ(eSa
λν) − T ρ

βμSρ
νβ − 1

4
δν
μT

)

−δν
μ

(
−1

2
∂αφ∂αφ − V (φ)

)

−∂νφ∂μφ + 4(χ + ε)φSμ
βν∂βφ

+χ(δν
μ�φ2 − ∇ν∇μφ2) = −τ ν

μ. (7)

τ ν
μ is the energy-momentum tensor of matter.

The trace of (7), multiplied by −δν
μ/2, is

−δν
μ

(
1

k2 + εφ2
)

(e−1eaα∂λ(eSa
λα)) − 1

2
δν
μ∂αφ∂αφ − 2δν

μV (φ)

−2δν
μ(χ + ε)φSα

βα∂βφ − 3

2
χδν

μ�φ2 = 1

2
δν
μτ. (8)

By combining (8) and (7) we obtain(
2

k2 + 2εφ2
) (

e−1eaμ∂λ(eSa
λν) − T ρ

βμSρ
νβ − 1

4
δν
μT

)

−δν
μV (φ) − ∂νφ∂μφ + 4(χ + ε)φSμ

βν∂βφ

−χ∇ν∇μφ2 − 1

2
χδν

μ�φ2

−δν
μ

(
1

k2 + εφ2
)

(e−1eaα∂λeSa
λα)

−2δν
μ(χ + ε)φSα

βα∂βφ

= −τ ν
μ + 1

2
δν
μτ. (9)

Note that the trace of the energy-momentum tensor is τ =
gμντμν .

In the same way, variation of the action with respect the
scalar field gives

−1

e
∂μeg

μν∂νφ − χBφ − εTφ + V ′(φ) = 0. (10)

Equations (9) and (10) are the main equations that we will
work with in the following.

3 Post-Newtonian formalism

To investigate the post-Newtonian approximation [35–40] of
the model, the perturbation is specified by the velocity of
the source matter |�v| such that e.g. O(n) ∼ |�v|n . The matter
source is assumed to be a perfect fluid obeying the post-
Newtonian hydrodynamics:

τμν = (ρ + ρ� + p)uμuν + pgμν, (11)

where ρ is energy density, p is the pressure and � is the
specific internal energy. uμ is the four-vector velocity of the

fluid. The velocity of the source matter is vi = ui

u0 . The orders
of smallness of the energy-momentum tensor ingredients are
[35–40]

ρ ∼ � ∼ p

ρ
∼ U ∼ O(2) (12)

where U is the Newtonian gravitational potential. The com-
ponents of the energy-momentum tensor are given by

τ0
0 = −ρ − ρv2 − ρ� + O(6)
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τ0
i = −ρvi + O(5)

τi
j = ρv jvi + pδ j

i + O(6). (13)

We expand the metric around the Minkowski flat background
as [33,34]

gμν = ημν + h(2)
μν + h(3)

μν + h(4)
μν + O(5). (14)

Note h(1)
μν = 0 [35–40]. Accordingly, the vierbeins may be

expanded as [34]

eaμ = δaμ + B(2)a
μ + B(3)a

μ + B(4)a
μ + O(5). (15)

Note B(1)a
μ = 0. In our analysis we need non-zero compo-

nents of the metric up to order 4, i.e. h(2)
i j , h(2)

00 , h(3)
0i , h(4)

00 .
We also use the notation Bμν = ημσ Bσ

ν and δa
σ Ba

ν =
Bσ

ν . By comparing (14) and (15) we derive (like in [33,34],
B(2)
i j is assumed to be diagonal)

h(2)
i j = 2B(2)

i j

h(2)
00 = 2B(2)

00

h(3)
0i = 2B(3)

0i

h(4)
00 = 2B(4)

00 − (B(2)
00 )2. (16)

We introduce two functions A, and γ (which is one of the
PPN parameters) through [33]

B(2)
00 = A

B(2)
i j = γ Aδi j . (17)

The scalar field is expanded as

φ = φ0 + ψ, (18)

where

ψ = ψ(2) + ψ(4) + O(6), (19)

and φ0 is a constant cosmological background. φ0 is of order
O(0) and may evolve in times of order of the Hubble time,
so in solar system tests we assume that it is static. The time
derivatives, ∂0 = ∂

∂t , of the other fields are weighted with
order O(1) [35–40].

The potential around the background is

V (φ) = V (φ0) + V ′(φ0)ψ + V ′′(φ0)

2
ψ2 + O(6). (20)

Defining V (φ0) = V0,
V (n)(φ0)

n! = Vn we find

V ′ = V1 + 2V2ψ + 3V3ψ
2 + O(6). (21)

After these preliminaries, let us solve Eqs. (9) and (10) order
by order in the PPN formalism. At zeroth order (9) and (10)
imply

V0 = V1 = 0. (22)

The 0-0 component of (9) gives(
2

k2 + 2εφ2
) (

e−1ea0∂λ(eSa
λ0) − T ρ

β0Sρ
0β − 1

4
T

)

−V (φ) − ∂0φ∂0φ

+4(χ + ε)φS0
β0∂βφ − χ∇0∇0φ

2 − 1

2
χ�φ2

−
(

1

k2 + εφ2
)

(e−1eaα∂λeSa
λα)

−2(χ + ε)φSα
jα∂ jφ = −τ 0

0 + 1

2
τ, (23)

which at order 2 reduces to
(

1

k2 + εφ2
0

)
∂ j S0

j0 − V (φ) − 1

2
χ�φ2 −

(
1

k2 + εφ2
)

∂ j Si
ji

= ρ

2
, (24)

resulting in

−
(

1

k2 + εφ2
0

)
∇2A − χφ0∇2ψ(2) = − 1

k2 ∇2U, (25)

where the potential is given by

∇2U = −k2

2
ρ. (26)

To obtain (25), we have used

S(2)0
j0 = −∂ j (γ A), S(2) j

i j = ∂i ((1 − γ )A) ,

S(2)i
0 j = 0

∂μe
(2) = ∂μ ((3γ − 1)A) , T (2)0

i0 = −∂i A,

S(2)0
0i = ∂i (γ A). (27)

By taking the trace of the i-j component of (9), at order 2,
we obtain

−3

(
1

k2 + εφ2
0

)
∂ j S0

j0 −
(

1

k2 + εφ2
0

)
∂ j Si

ji − 5χφ0∇2ψ(2)

= −3

2
ρ, (28)

which reduces to

(
1

k2 + εφ2
0

)
∇2 ((4γ − 1)A) − 5χφ0∇2ψ(2) = 3

k2 ∇2U.

(29)
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At the second order perturbation, the boundary term B,
defined in (3), is derived:

B(2) = 2∇2((1 − 2γ )A). (30)

Hence from (10) the equation of motion of the scalar field
becomes

−∇2ψ(2) + 2V2ψ
(2) = 2χ(1 − 2γ )Aφ0. (31)

Equations (25), (29), and (31) are our three main equations
for determining A, γ , and ψ(2). Using these three equations,
for a given U , A is derived:

A = 2

(1 + εφ2
0k

2)(1 + γ )
U, (32)

and ψ(2) is obtained:

ψ(2) = γ − 1

k2χφ0(γ + 1)
U. (33)

γ is determined by the equation

(
1 − 6k2χ2φ2

0

1 + εk2φ2
0

)
∇2(�U ) − 2V2(�U ) = − k4χ2φ2

0

1 + εk2φ2
0

ρ,

(34)

where � := γ−1
γ+1 . (34) is a nonhomogeneous screened Pois-

son equation whose solution is

�U = k4χ2φ2
0

1 + εk2φ2
0 − 6k2χ2φ2

0

∫ exp
(
−λ

∣∣∣�r − �r ′
∣∣∣
)

4π

∣∣∣�r − �r ′
∣∣∣

ρ(x ′, t)d3x ′,

(35)

where

λ =
√

2V2(1 + k2εφ2
0)

1 + k2εφ2
0 − 6k2χ2φ2

0

. (36)

Equation (32) allows us to take

G = 2

(1 + k2εφ2
0)(γ + 1)

, (37)

where G is defined through

h(2)
00 = 2A = 2GU. (38)

So one can define an effective Geff. through

Geff = GGN . (39)

The 0-i component of (7) at the third order gives

(
2

k2 + 2εφ2
0

)
∂μS0

μi = −τ (3)
0
i = ρvi , (40)

which, by using

T (3)0
i j = ∂i B

(3)0
j − ∂ j B

(3)0
i

T (3)i
j0 = ∂ j B

(3)i
0 − δij∂0(γ A)

T (3)i
i0 = −3∂0(γ A) + 3∂i B

(3)i
0, (41)

reduces to(
2

k2 + 2εφ2
0

) (
∂0∂i (γ A) − 1

2
∇2B(3)0

i + 1

2
∂ j∂i B

(3)0
j

)

= ρvi . (42)

To simplify computations one may employ the gauge con-
dition

−∂ j B(2)i
j + 1

2
∂ i B(2)μ

μ = χk2φ0

k2 + εφ2
0

∂ iψ(2)

−∂ j B
(3) j

0 + 1

2
∂0B

(2) j
j = χk2φ0

k2 + εφ2
0

∂0ψ
(2), (43)

which determines B(3)
0
j

in terms of second order parame-
ters. This gauge is compatible with Eqs. (25) and (29).

Using

S(4)i
j i = γ A∂ j (γ A) + A∂ j A − ∂ j B

(4)0
0 + ∂0B

(3)0
j

S(4)0
j0 = γ A∂ j (γ A)

S(3)
i0
i = −3

2
∂0(γ A), (44)

one can find that (23) at the fourth order gives
(

1

k2 + εφ2
0

) (
∇2B(4)0

0 + ∇2(γ A)2

−3∇(γ A) · ∇A − A∇2A
)

−4εφ0ψ
(2)∇2A − 2(χ + ε)φ0∇ψ(2)

·∇A − χ

2
∇2(ψ(2))2 − V2(ψ

(2))2

−χφ0∇2ψ(4) + 3χφ0∇((γ − 1)A) · ∇ψ(2) +
(
∂0ψ

(2)
)2

+3χφ0∂
2
0 ψ(2) +

(
1

k2 + εφ2
0

)
∂0

(
3∂0(γ A) − ∂i B

(3)i
0

)

−
(

1

k2 + εφ2
0

)
∂ j∂0B

(3)0
j = 1

2
τ (4) − τ (4)0

0. (45)

Also, the scalar field equation at the fourth order is

−∇2ψ(4) + 2V2ψ
(4) + ∂2

0 ψ(2) = χφ0B
(4)

+ψ(2)B(2) + εφ0T
(4) − 3V3(ψ

(2))2. (46)
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By using

B(4) = −8∇2(γ 2A2) + 14∇ · (γ A∇A) + 2(1 − 5γ )A∇2A

+12γ A∇2(γ A) − ∇2B(4)0
0 + 6∂2

0 (γ A)

−2∂i∂0B
(3)i

0 (47)

and

T (4) = 2∇(γ A) · ∇((2 − γ )A), (48)

(46) becomes

−∇2ψ(4) + 2V2ψ
(4) + ∂2

0 ψ(2)

= 6χφ0∂
2
0 (γ A) − 2χφ0∂i∂0B

(3)i
0

2χφ0

(
−4γ 2A2 + 7∇.(γ A∇A)

+ (1 − 5γ )A∇2A + 6γ A∇2(γ A)
)

+2ψ(2)∇2((1 − 2γ )A)

+2εφ0∇(γ A) · ∇((2 − γ )A) − 3V3(ψ
(2))2

−2χφ0∇2B(4)0
0 + 3∇(1 − γ )A · ∇ψ(2). (49)

Equations (45) and (49) are our main results in the fourth
order. These equations together with (42) and (43) in the third
order, and (32)–(34), in the second order must be solved to
give the post-Newtonian parameters.

To solve these complicated equations, we consider solu-
tions specified by U = U (r), which results in

A = A(r), γ = γ (r), ψ(2) = ψ(2)(r). (50)

The gauge (43) implies ∂ j B(3)0
j = 0. Therefore (42)

reduces to

−
(

1

k2 + εφ2
0

) (
∇2B(3)0

i

)
= ρvi . (51)

For vi = 0, (51) gives B(3)0
i = 0 (by the assumption that

perturbation terms vanish at large distance). In this situation
Eqs. (45) and (49) become(

1

k2 + εφ2
0

)(
∇2B(4)0

0 + ∇2(γ A)2

−3∇(γ A) · ∇A − A∇2A
)

−4εφ0ψ
(2)∇2A − 2(χ + ε)

×φ0∇ψ(2) · ∇A − χ

2
∇2(ψ(2))2 − V2(ψ

(2))2

−χφ0∇2ψ(4) + 3χφ0∇((γ − 1)A) · ∇ψ(2)

= 1

2
τ (4) − τ (4)0

0 (52)

and

−∇2ψ(4) + 2V2ψ
(4)

= 2χφ0

(
− 4γ 2A2 + 7∇.(γ A∇A)

+(1 − 5γ )A∇2A + 6γ A∇2(γ A)
)

+2ψ(2)∇2((1 − 2γ )A) + 2εφ0∇(γ A)

·∇((2 − γ )A) − 3V3(ψ
(2))2

−2χφ0∇2B(4)0
0 + 3∇(1 − γ )A · ∇ψ(2), (53)

respectively. To obtain the post-Newtonian parameters we
must obtain A, ψ(2), and γ (r). By inserting them in (52) and

(53), we obtain solutions for B(4)0
0. To do so we consider a

spherically symmetric metric with a point source.

3.1 Spherically symmetric metric

The source is assumed to be

ρ = Mδ(�r), � = 0, p = 0, vi = 0, (54)

and the metric is given by

g00 = −1 + 2GeffU − 2G2
effβU

2 + Sel f + O(6)

gi j = O(5)

gi j = (1 + 2GeffγU ) δi j + O(4), (55)

where “Self” denotes self-energy terms of order 4, and β is
the PPN parameter. The Newtonian potential is

U = k2M

8πr
. (56)

To determine γ , from (32), (33), and (35), we obtain

ψ(2) = 2χφ0

1 + εk2φ2
0 − 6χ2k2φ2

0

exp(−λr) (57)

and

A = k2M

4π(1 + εk2φ2
0)(1 + γ )r

, (58)

where

γ = 1 + α exp(−λr)

1 − α exp(−λr)
, (59)

in which

α = 2k2χ2φ2
0

1 + k2εφ2
0 − 6k2χ2φ2

0

, (60)

and λ is given by (36). From h(2)
00 = 2A = 2GU , we obtain

G as (37).
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To obtain B(4)0
0, one must insert (57)–(59) in (52) and

(53), and solve them together. From B(4)0
0 we determine the

other PPN parameter, β, as

2B(4)0
0 + A2 = 2G2β(r)U 2(r). (61)

To determine the PPN parameters γ and β, we will con-
sider different situations.

3.1.1 χ = 0

For χ = 0, from (59) and (60), we find γ = 1, hence

A = k2M

8π(1 + εk2φ2
0)r

, G = 1

1 + k2εφ2
0

. (62)

Equation (57) gives ψ(2) = 0. So we write (52) as

∇2B(4)0
0 − 1

2
∇2(A)2 + 2A∇2A = 0, (63)

where ∇A · ∇A = 1
2∇2A2 − A∇2A has been used. Putting

(62) in (63), and ignoring the gravitational self-energy, we
obtain

B(4)0
0 = − A2

2
+ k4M2

64π2(1 + εk2φ2
0)2r2

. (64)

Therefore (61) yields β(r) = 1. So for χ = 0 we find

β(χ = 0) = γ (χ = 0) = 1. (65)

Therefore there is no deviation from general relativity for the
PPN parameters. This is in complete agreement with [33,34].

3.2 φ0 = 0

For χ 	= 0, we may have also a situation with no deviation
in the PPN parameters from general relativity, this occurs for
φ0 = 0. For example for the potentials

V (φ) = −1

2
μ2φ2 + �

4
φ4, � > 0, (66)

and

V (φ) = �φn, � > 0, n > 1, (67)

V0 = V1 = 0 (see (22)) leads to φ0 = 0, which by using
(59–61) results in γ = 1, G = 1, and β = 1. Therefore in
this case too, there is no deviation from general relativity for
the PPN parameters.

3.2.1 V (φ) = 0

If we ignore the scalar field potential, we obtain λ = 0 (see
(36)), and γ becomes a constant

γ = 1 − (4χ2 − ε)k2φ2
0

1 − (8χ2 − ε)k2φ2
0

. (68)

By solving the system of Eqs. (52) and (53) for B(4)0
0 and

by considering Eqs. (57)–(61), after some computations we
find

β = P

(1 + (2χ2 + ε)k2φ2
0)(1 − (8χ2 − ε)k2φ2

0)2
, (69)

where

P = 1 + 160

(
χ6 + 3

10
εχ5 + 3

40
εχ4 − 3

16
ε2χ3

− 1

10
ε2χ2 + 3

160
ε3χ + 1

160
ε3

)
k6φ6

0

+2

(
χ3 − 8χ2 + 3

2
χε + 3

2
ε

)
k2φ2

0

+12

(
χ4 − 7

3
εχ3 − 8

3
εχ2 + 1

2
χε2 + 1

4
ε2

)
k4φ4

0 . (70)

Let us consider some limiting values: for small χ , χ 
 1 we
have

β = 1 + 3εk2φ2
0

1 + εk2φ2
0

χ − 2k2φ2
0

1 + εk2φ2
0

χ2 + O(χ3)

γ = 1 + 4k2φ2
0

1 + εk2φ2
0

χ2 + O(χ4), (71)

and for small kφ0, kφ0 
 1 we have

β = 1 + χ(2χ2 − 2χ + 3ε)k2φ2
0 + O(k4φ4

0)

γ = 1 + 4χ2k2φ2
0 + O(k4φ4

0). (72)

3.2.2 λr � 1

In this limit from (57) and (59) we have ψ(2) = 0 and γ = 1,
respectively. The solution of (52) is obtained, thus:

B(4)0
0 = 1

2
A2 + � + 1

2χφ0
ψ(4), (73)

where � = −1 + 2χ2k2φ2
0

1+εk2φ2
0

. The equation of motion of the

scalar field (53) becomes

�∇2ψ(4)+2V2ψ
(4) = (ε−2χ)φ0∇2A2+(8χ−ε)φ0A∇2A,

(74)
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whose solution, in the limit
∣∣∣ V2r

�

∣∣∣ � 1, is

ψ(4) =
(

k4M2φ0(ε − 2χ)

64π2(1 + εk2φ2
0)(2χ2k2φ2

0 − εk2φ2
0 − 1)

)
1

r2 .

(75)

From (75), (73), and (61), we find

β = ε(χ − 1)k2φ2
0 − 1

(2χ2 − ε)k2φ2
0 − 1

. (76)

For small k2φ2
0 , k2φ2

0 
 1 this gives

β = 1 + (2χ2 − χε)k2φ2
0 + O(k4φ4

0), (77)

and for small χ , χ 
 1 gives

β = 1 − εk2φ2
0

1 + εk2φ2
0

χ + 2
k2φ2

0

1 + εk2φ2
0

χ2 + O(χ3). (78)

Finally, let us note that, for small λr , λr 
 1, we take
exp(−λr) � 1. In this case γ and β take the same form as
(68) and (69), respectively.

3.3 Range of parameters

The most precise value for γ experimentally has been
obtained from Cassini [45]. The bound on this parameter
is [46]

|γ − 1| � 2.3 × 10−5. (79)

In this experiment the gravitational interaction, in terms of
Astronomical Units takes place at r � 7.44×10−3AU [47].

The parameter β is determined by lunar laser ranging
experiments via the Nordtvedt effect [48]. This test indicates
the bound [46]

|β − 1| � 2.3 × 10−4, (80)

at a gravitational interaction distance r = 1AU [47]. Equa-
tions (79) and (80) restrict the parameters of our model.

For V (φ) = 0, (79)and (68) give

∣∣∣∣∣
4k2χ2φ2

0

1 − (8χ2 − ε)k2φ2
0

∣∣∣∣∣ � 2.3 × 10−5. (81)

In the limiting cases (71) and (72) we find∣∣∣∣∣
4k2φ2

0

1 + εk2φ2
0

χ2

∣∣∣∣∣ � 2.3 × 10−5

∣∣∣∣∣
3εk2φ2

0

1 + εk2φ2
0

χ2

∣∣∣∣∣ � 2.3 × 10−4 (82)

and

4χ2k2φ2
0 � 2.3 × 10−5∣∣∣χ(2χ2 − 2χ + 3ε)k2φ2

0

∣∣∣ � 2.3 × 10−4, (83)

respectively.
For λr � 1, we have

√
2V2(1 + k2εφ2

0)

1 + k2εφ2
0 − 6k2χ2φ2

0

� (1AU )−1, (84)

and (80) restricts our parameters:

∣∣∣∣∣
χ(2χ − ε)k2φ2

0

(2χ2 − ε)k2φ2
0 − 1

∣∣∣∣∣ � 2.3 × 10−4. (85)

4 Conclusion

The teleparallel model of gravity with quintessence (non-
minimally) coupled to the torsion and also to a boundary
term (proportional to the torsion divergence) was consid-
ered (see (1)). Although the model shows some interesting
aspects in cosmology and in describing the late time accel-
eration of the Universe, it must also pass local gravitational
and solar system tests. So we studied the parameterized post-
Newtonian (PPN) approximation of the model. We obtained
the equations of motion (see the Sect. 2), and solve them order
by order to obtain PPN parameters (see Sect. 3). Explicit
expressions for the PPN parameters in a spherically sym-
metric metric were obtained and different possible situations
were discussed. Our results show that the PPN parameters,
except for some special cases, i.e. in the absence of boundary
terms and also with zero scalar field background, differ from
general relativity. So we conclude that coupling of the scalar
field to the boundary term generally makes the model deviate
from general relativity in the PPN limit.

Since T and B are not invariant under local Lorentz trans-
formations, the teleparallel model with boundary term is
not invariant under Lorentz transformations unless one takes
χ = −ε. Despite this, in spacetimes with spherical symme-
try like Schwarzschild spacetime and so on, it is possible to
choose good or preferred tetrads to solve this issue [49]. In
scalar-tetrad theories of gravity the effect of the preferred
tetrads cannot be detected via measuring the metric compo-
nents [50,51]. Similarly, in our model, the PPN parameters
in the standard post-Newtonian formalism do not identify
the effect of the preferred tetrads. To include these effects
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one must generalize the post-Newtonian approach, as was
pointed out in [33].
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Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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