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Abstract The collapse scenario of a scalar field along with
a perfect fluid distribution was investigated for a conformally
flat spacetime. The theorem for the integrability of an anhar-
monic oscillator has been utilized. For a pure power-law
potential of the form φn+1, it was found that a central singu-
larity is formed which is covered by an apparent horizon for
n > 0 and n < −3. Some numerical results have also been
presented for a combination of two different powers of φ in
the potential.

1 Introduction

The final outcome of a continuous gravitational collapse has
been of great interest in general relativity. During the final
stages of a stellar evolution, one is left only with gravitational
interaction, for which, it being attractive, a collapse is always
on the cards. The natural question to ask concerns the end
product of this collapse. The first systematic analysis of an
unhindered gravitational collapse in general relativity was
given by Oppenheimer and Snyder [1]. The general belief
is that the ultimate spacetime singularity, which might be hit
by the collapsing matter, is actually shielded from an exterior
observer by the formation of an event horizon. However, this
idea suffers a jolt by the explicit examples of collapsing mod-
els, with perfectly reasonable matter distribution, which show
the absence of an event horizon, leading to what is known as
a naked singularity. For a comprehensive systematic descrip-
tion of gravitational collapse, we refer to the monograph by
Joshi [2]. More recent work and various aspects of collapse
have been systematically summarized in a recent work by
Joshi in [3].

Scalar fields, albeit more often than not having no pressing
motivation from particle physics theory, have been of great
interest in theories of gravity for various reasons. A scalar
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field with a variety of potentials can mimic the evolution of
many a kind of matter distribution. For instance, Goncalves
and Moss [4] showed that the collapse of a spherically sym-
metric scalar field can be formally treated as a collapsing dust
ball. A scalar field fits in superbly for cosmological require-
ments such as the driver of the past or even the present accel-
eration of the universe. Various massive scalar fields have
gained a lot of interest during the past two decades for their
role as the driver of the recent accelerated expansion of the
universe. The collapse scenarios of such fields have also been
studied recently [4–10].

A zero mass scalar field collapse was discussed by
Christodoulou [11]. Christodoulou also showed the possibil-
ity of the formation of a naked singularity as an end product
of a scalar field collapse [12]. With the help of a numeri-
cal analysis, Goldwirth and Piran, however, showed that a
scalar collapse leads to a singularity which is cut off from
the exterior observer by an event horizon [13]. Some exten-
sive investigations can already be found in the literature in
connection with a scalar field collapse, particularly in a spher-
ically symmetric spacetime. These investigations indicate a
very rich store of possibilities. For example, some numeri-
cal calculations, by Choptuik [14], Brady [15] and Gundlach
[16] indicate that a scalar field collapse may lead to some
critical phenomena close to the threshold of the black hole
horizon. For a comprehensive review of the critical phenom-
ena associated with a scalar field collapse, we refer to the
work of Gundlach [17]. Scalar field collapse has been ana-
lytically studied by Goswami and Joshi [18], and by Giambo
[5], quite recently.

The aim of the present work is to look at the collapse
of a massive scalar field along with a distribution of perfect
fluid. The potential is taken to be a power law (V ∼ φn+1)
where n can take a wide range of values. Indeed the system
of equations is notoriously nonlinear and thus discussions on
such fields, particularly analytical studies, are limited to very
special cases. We start with a conformally flat spacetime.
Recently Sharma et al. [19] used such a spacetime for the
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study of collapse of a fluid with a heat flux. We investigate
the scalar field analogue of their work without a heat flux.

Even with an apparently simple metric, it is extremely
difficult to handle the system of equations analytically. We
adopt a completely different strategy. The integrability con-
ditions for an anharmonic oscillator, developed by Euler [20]
and utilized by Harko et al. [21] for a power-law potential is
invoked. This leads to an integrable second order equation
for the scale factor. Thus some general comments regard-
ing the possibility and nature of a wide range of power-law
potentials can be made.

Most of the investigations regarding collapse with a scalar
field deal with situations where there is no contribution from
any fluid in the matter sector. The present work deals with
the scalar field collapse along with a fluid distribution. No
equation of state for the fluid is assumed at the outset. The rel-
evance of such investigations stems from the present impor-
tance of a scalar field as the dark energy [22–24], the agent
responsible for the late time acceleration of the universe. It
also deserves mention that the distribution of the dark energy
vis-à-vis the fluid is not known. It is generally believed that
the dark energy does not cluster at any scale below the Hubble
scale. The study of the collapse of scalar fields, particularly
in the presence of a fluid, may in some way enlighten us
regarding the possible clustering of dark energy.

The paper is organized as follows. In the second section
we write down the relevant equations for a scalar field model
along with a perfect fluid distribution in a conformally flat
spherically symmetric spacetime. The third section includes
a very brief review of the integrability of anharmonic oscil-
lator equation following the work of Euler [20] and Harko
et al. [21]. In the fourth section, we investigate the collapse
of a scalar field with a power-law potential in detail. The
discussion of a combination of a quadratic and an arbitrary
power-law potential is given in Sect. 5. Section 6 includes a
summary of the results obtained.

2 Conformally flat metric and a scalar field collapse

We write the metric for a spherically symmetric spacetime
as

ds2 = 1

A(r, t)2

[
dt2 − dr2

1 − kr2 − r2d�2
]
. (1)

The time evolution is governed solely by the function
A(r, t). The Weyl tensor for the spacetime metric vanishes,
thus this metric admits conformal flatness.

The energy-momentum tensor for a perfect fluid is given
by

Tm
μν = (ρ + p)uμuν − pgμν, (2)

where ρ is the energy density, p is the isotropic fluid pressure,
and uμ is the 4-velocity of the fluid.

When a scalar field φ is minimally coupled to gravity, the
relevant action is given by

A =
∫ √−gd4x

[
R + 1

2
∂μφ∂νφ − V (φ) + Lm

]
, (3)

where V (φ) is the self-interaction potential of the scalar field
and Lm is the Lagrangian density for the fluid distribution.
From this action, the contribution to the energy-momentum
tensor from the scalar field φ can be written (in units of
8πG = 1) as

T φ
μν = ∂μφ∂νφ − gμν

[
1

2
gαβ∂αφ∂βφ − V (φ)

]
. (4)

Einstein field equations Gμν = −8πGTμν can thus be
written as

3k A2 + 3 Ȧ2 − 3(1 − kr2)A′2 + 2(1 − kr2)AA′′

+2(2 − 3kr2)

r
AA′

= ρ + 1

2
A2φ̇2 − 1

2
A2(1 − kr2)φ′2 + V (φ), (5)

−k A2 + 2 ÄA − 3 Ȧ2 + 3(1 − kr2)A′2 − 4

r
(1 − kr2)AA′

= p + 1

2
φ′2A2(1 − kr2) + 1

2
A2φ̇2 − V (φ), (6)

−k A2 + 2 ÄA − 3 Ȧ2 + 3(1 − kr2)A′2 − 2

r
(1 − 2kr2)

×AA′ − 2(1 − kr2)AA′′

= p − 1

2
φ′2A2(1 − kr2) + 1

2
A2φ̇2 − V (φ), (7)

2 Ȧ′

A
= φ̇φ′. (8)

The wave equation for the scalar field is given by

�φ + dV

dφ
= 0. (9)

For the sake of simplicity, we assume that φ(r, t) is a
function of time t alone. Consequently, from Eq. (8), one
can see that A(r, t) can also be written as a function of time
alone, and this is consistent with the rest of the equations of
the system. With this, Eqs. (6) and (7) become identical. So
effectively we shall be considering a collapse of a perfect fluid
and scalar field with a spatial homogeneity, analogous to the
Oppenheimer–Snyder collapse of a spatially homogeneous
fluid [1].

123



Eur. Phys. J. C (2017) 77 :166 Page 3 of 9 166

With A = A(t) and φ = φ(t), the field equations simplify
as

3k A2 + 3 Ȧ2 = ρ + 1

2
A2φ̇2 + V (φ), (10)

−k A2 + 2 ÄA − 3 Ȧ2 = p + 1

2
A2φ̇2 − V (φ), (11)

and the wave equation looks like

φ̈ − 2
Ȧ

A
φ̇ + 1

A2

dV

dφ
= 0. (12)

Now we have the three Eqs. (10)–(12) to solve for four
unknowns, namely A, φ, ρ and p. V of course is given as a
function of φ. Instead of choosing an equation of state given
as p = p(ρ) in order to close the system, we shall utilize the
condition for integrability of Eq. (12) to get the solution for
the scale factor.

3 A note on the integrability of anharmonic oscillator
equation

A nonlinear anharmonic oscillator with variable coefficients
and a power-law potential can be written in a general form
as

φ̈ + f1(t)φ̇ + f2(t)φ + f3(t)φ
n = 0, (13)

where the fi are functions of t , and n ∈ Q is a constant. An
overhead dot represents a differentiation with respect to time
t . Using Euler’s theorem on the integrability of the general
anharmonic oscillator equation [20] and recent results given
by Harko et al. [21], this equation can be integrated under
certain conditions. The essence can be written in the form of
a theorem as discussed in [20,21].
Theorem An equation of the form of Eq. (13) can be trans-
formed into integrable form:

d2


dT 2 + 
n (T ) = 0, (14)

by introducing the pair of new variables 
 and T given by


(T ) = Cφ (t) f
1

n+3
3 (t) e

2
n+3

∫ t f1(x)dx , (15)

T (φ, t) = C
1−n

2

∫ t

f
2

n+3
3 (ξ) e

(
1−n
n+3

) ∫ ξ f1(x)dxdξ, (16)

if and only if n /∈ {−3,−1, 0, 1}, and the coefficients of Eq.
(13) satisfy the differential condition

1

n + 3

1

f3(t)

d2 f3
dt2 − n + 4

(n + 3)2

[
1

f3(t)

d f3
dt

]2

+ n − 1

(n + 3)2

[
1

f3(t)

d f3
dt

]
f1 (t) + 2

n + 3

d f1
dt

+ 2 (n + 1)

(n + 3)2 f 2
1 (t) = f2(t), (17)

where C is a constant.
In the following, we shall use this integrability condition

in order to extract as much information as we can from the
scalar field Eq. (12) for some given forms of the potential
V = V (φ).

4 Power-law potential

In the first example we assume that the potential is a power

function of φ, V (φ) = V0φ(n+1)

n+1 , such that

dV

dφ
= V0φ

n, (18)

where n ∈ Q and V0 is a constant. While the potential comes
with a positive power of φ, where d2V

dφ2 evaluated at φ =
0 gives the mass of the field, and is quite well addressed,
potentials with inverse powers of φ are also quite useful in a
cosmological context, particularly as tracking quintessence
fields. Ratra and Peebles [25] used a potential of the form
V = M4+α

φα , where M is the Planck mass. A similar potential
has later been used as a tracker field by Steinhardt et al. [26]
where M loses the significance as the Planck mass and is
rather used as a parameter to be fixed by observation.

4.1 Integrability of the scalar field equation and the
solution for the metric

With this power-law potential, the scalar field equation (12)
becomes

φ̈ − 2
Ȧ

A
φ̇ + V0

A2 φn = 0, (19)

which can be written in the more general form of second order
ordinary differential equation with variable coefficients

φ̈ + f1(t)φ̇ + f3(t)φ
n = 0, (20)

where the fi (t) are functions of time, determined by A(t)
and its derivatives. Equation (20) is easily identified to be
a special case of Eq. (13) with f1(t) = −2 Ȧ

A , f2 = 0 and

f3(t) = V0
A2 . Hence, the integrability condition as in Eq. (17)

yields a second order differential equation of A(t) of the form

− 6

(n + 3)

Ä

A
+ 18(n + 1)

(n + 3)2

Ȧ2

A2 = 0. (21)
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This can be integrated to yield an exact time evolution of
A(t) as

A(t) =
[

2n
√

λ

(n + 3)
(t0 − t)

]−( n+3
2n )

, (22)

where λ is a constant of integration coming from the first
integral and is a positive real number. It is interesting to note
that the conformal factor is independent of the choice of V0.

As the theorem is valid for n /∈ {−3,−1, 0, 1}, we exclude
these values of n in the subsequent discussion. The radius of
the two-sphere is given by rY (t) where

Y (t) = 1

A(t)
=

[
2n

√
λ

(n + 3)
(t0 − t)

]( n+3
2n )

. (23)

From (22) and (23), the time evolution of the collapsing
fluid can be discussed for different choices of the potential.

• For n > 0 as well as for n < −3, one has ( n+3
2n ) > 0. Let

us write ( n+3
2n ) = n0

2. Then from Eq. (23) one can write
the radius of the two-sphere as

rY (t) = r

[√
λ

n0
2 (t0 − t)

]n0
2

. (24)

It is straightforward to note that rY (t) goes to zero when
t → t0. Thus, for all n > 0 and for n < −3, the collaps-
ing sphere reaches a singularity of zero proper volume
at a finite time defined by t0. We must exclude the case
for n = 1 since this does not fall in the domain of the
validity of the theorem.

• However, for 0 > n > −3, one has ( n+3
2n ) < 0 and it can

be written as ( n+3
2n ) = −m0

2. For this domain of n, the
scale factor Y can be written as

rY (t) = r

[ √
λ

m0
2 (t − t0)

]−m0
2

. (25)

Clearly, we have a collapsing solution as it is easy to
check that Ẏ (t) < 0. However, the collapsing fluid
reaches the zero proper volume only when t → ∞.
This indicates the system is collapsing forever rather than
crushing to a zero proper volume singularity at a finite
time. The case n = −1 falls outside the domain of valid-
ity of the integrability condition. In this case, the proper

time τ is defined as dτ
dt =

[√
λ

m2
0
(t − t0)

]m2
0

2
which is posi-

tive. Therefore τ is a monotonically increasing function
of t . Thus the conclusion is in fact true as regards the
proper time as well.

• From (24) and (25), one can check that dY (t)
dt < 0 for

all relevant cases, provided
√

λ > 0. On the other hand,
a negative

√
λ turns collapsing solutions into expanding

solutions.

Using the transformation Eqs. (15) and (16), one can write
the general solution for the scalar field φ as

φ (t) = φ0

[
C

1−n
2

∫ t

f
2

n+3
3 (ξ) e

(
1−n
n+3

) ∫ ξ f1(x)dxdξ−T0

] 2
1−n

× f
− 1

n+3
3 (t) e− 2

n+3

∫ t f1(x)dx , (26)

where φ0 and T0 are constants of integration and C comes
from the definition of the point transformations (15) and (16).
Both φ0 and C must be non-zero. Since the integrability cri-
terion produces the exact time evolution of A(t) as given in
(22), Eq. (26) can be simplified in the present case to

φ (t) = φ0V0
− 1

(n+3)

(
2n

√
λ

n + 3

)− 1
n

(t0 − t)−
3
n

×
[
C

1−n
2 V0

2
(n+3)

n

3

(
2n

√
λ

n + 3

) 2
n
(

(t0 − t)
3
n + δ

)
− T0

] 2
(1−n)

,

(27)

where δ is a constant of integration. One can clearly see that
at t = t0, when the volume element goes to zero, the scalar
field diverges for n > 0 and n < −3. A simple example
for the evolution of the scalar field can be obtained where
the integration constants δ and T0 are put to zero. The time

evolution then can be written as φ(t) ∼ (t0 − t)
3(1+n)
n(1−n) , which

is consistent with the solution for scalar field one obtains
from Eq. (19).

From the field equations, one can write the expressions
for the density and the pressure in terms of A(t) and φ(t) as

ρ = 3k A2 + 3 Ȧ2 − 1

2
A2φ̇2 − V0φ

n+1

n + 1
, (28)

p = −k A2 + 2 ÄA − 3 Ȧ2 − 1

2
A2φ̇2 + V0φ

n+1

n + 1
. (29)

Both pressure and density diverge as t goes to t0 for
n > 0 and n < −3. The expression for the density indi-
cates that if the scalar field part goes to infinity faster than
the rest, the fluid density may go to negative infinity close
to the singularity. For a simple case, where n = 3, i.e.,

the potential is defined as V (φ) = V0φ
4

4 , one can write

φ = φ0C1λ
− 1

2 (t0 − t)−2, for the arbitrary integration con-
stants T0 = δ = 0 (C1 is a constant depending on the val-
ues of C and V0). In this case, the scalar field part, con-
tributing negatively, blows up much quicker (∼(t0 − t)−8) as
t → t0 than the rest, which go to infinity as ∼(t0 − t)−2

and ∼(t0 − t)−4. However, the strong energy condition,
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(ρ + 3p) > 0, can still be satisfied. From (28) and (29),
one can write

(ρ + 3p) = 6 ÄA − 6 Ȧ2 − 2A2φ̇2 + 2V0φ
(n+1)

(n + 1)
, (30)

which can indeed remain positive. For the particular example
of n = 3, this can be simplified to

(ρ+3p) ∼ 6

λ(t0 − t)4 + φ0
2C1

2

2λ2(t0 − t)8 (V0φ0
2C1

2−16). (31)

Here, λ is always positive as discussed earlier and so is
φ0

2C1
2. Near the singularity, as t → t0, the second term on

the RHS becomes dominating over the first term. In order to
satisfy the energy condition for all t , including the regime
t → t0, the condition V0φ0

2C1
2 > 16 must be satisfied so

that (ρ + 3p) remains positive definite. For V0φ0
2C1

2 < 16,
(ρ + 3p) becomes negative when t is close to the singular
epoch t0. It is interesting to note that in the Hawking radiation
process, the stress-energy tensor is known to behave in such a
peculiar manner, such as the breakdown of the weak energy
condition Tμνuμuν > 0 in the classical sense, meaning a
negative energy density [27]. It should also be noted that it is
quite possible to ensure a positive ρ by fixing the constants
at the apparent horizon, which covers the singularity in all
cases.

The Kretschmann scalar can be calculated for the metric
(1) as

K = Rαβγ δR
αβγ δ = 6 Ȧ4 + 6

(
Ä

A
− Ȧ2

A2

)2

A4, (32)

which, in view of the solution (23), yields

K ∼ (t0 − t)−4(n2
0+1)

for n > 0 and n < −3. Since the Kretschmann scalar clearly
diverges as t → t0, one indeed has a curvature singularity as
a result of the collapse.

The standard analysis shows that the present singularity
is a shell-focusing one (for which gθθ = 0) and not a shell-
crossing one (for which dgθθ

dr = 0, gθθ �= 0 and r > 0)
[28,29].

4.2 Visibility and nature of the singularity

Whether the curvature singularity is visible to an exterior
observer or not depends on the formation of an apparent hori-
zon. The condition for such a surface is given by

gμνR,μ R,ν = 0, (33)

where R is the proper radius of the two-sphere, given by
r

A(t) = rY (t) in the present case. The relevant cases in the

present work are certainly the ones for n > 0 and n < −3.
Using the explicit time evolution of A from Eqs. (22), (33)
yields a simple differential equation,

r2Ẏ 2 − (1 − kr2)Y 2 = 0, (34)

which, in view of Eqs. (23) and (24), yields the algebraic
equation at t = tapp

Ẏ

Y
= n2

0

tapp − t0
. (35)

Since the present interest is in a collapsing solution, the
scale factor must be a monotonically decreasing function of
time. So Ẏ is negative and Y , being the scale factor, must
always be positive. Thus from Eq. (35), the condition is con-
sistent if and only if tapp < t0. This clearly indicates that the
apparent horizon forms before the formation of the singular-
ity, for all relevant cases. Thus, the curvature singularity is
always covered from an exterior observer by the formation
of an apparent horizon. At the singularity in the present case,
one has Y = 0 and Ẏ �= 0. Equation (34) indicates that this is
consistent only with r = 0 at the singularity. Thus the singu-
larity is strictly a central singularity which could have been a
naked singularity as well, as discussed by Christodolou [30].
It deserves mention that, had the singularity been indepen-
dent of the radial coordinate r , it would have been certainly
covered by a horizon, as discussed by Joshi et al. [31].

4.3 Matching with an exterior Vaidya spacetime

Generally, in collapsing models, a spherically symmetric
interior is matched with a suitable exterior solution, a Vaidya
metric or a Schwarzschild metric, depending on the prevail-
ing conditions [32]. This requires the continuity of both the
metric and the extrinsic curvature on the boundary hypersur-
face. We choose the radiating Vaidya solution as a relevant
exterior to be matched with the collapsing interior, defined
as

ds2 = 1

A(t)2

[
dt2 − dr2 − r2d�2

]
. (36)

The Vaidya metric is given by

ds2 =
[

1 − 2m(v)

R

]
dv2 + 2dvdR − R2d�2. (37)

The quantity m(v) represents the Newtonian mass of the
gravitating body as measured by an observer at infinity. The
metric (37) is the unique spherically symmetric solution of
the Einstein field equations for radiation in the form of a
null fluid. The necessary conditions for the smooth matching
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of the interior spacetime to the exterior spacetime were pre-
sented by Santos [33] and also discussed in detail by Chan
[34], Maharaj and Govender [35] in the context of a radiat-
ing gravitational collapse. Following their work, the relevant
equations matching (36) with (37) can be written as

[ r

A(t)

]
�

= R, (38)

[
r(r B ′)

]
�

=
[
RA

(
1 − 2m(v)

R

)
v̇ + RAṘ

]
, (39)

m(v)� = r3

2A3

(
Ȧ2 − A′2 + A′A

r

)
, (40)

and

pr =
[

q

A(t)

]
�

= 0, (41)

where � is the boundary of the collapsing fluid and q denotes
any radial heat flux defined in the interior of the collapsing
scalar field.
Equation (41) yields a nonlinear differential condition
between the conformal factor and the scalar field to be satis-
fied on the boundary hypersurface � as

[
2
Ä

A
− 2

Ȧ2

A2 − 1

2
φ̇2 + V0

A2

φ(m+1)

(m + 1)

]
�

= 0. (42)

Using the time evolution of the conformal factor and the
scalar field, i.e. Eqs. (22) and (27), one can simplify this
expression and establish some restrictions connecting the
parameters such as V0, n, λ, φ0, δ and T0. Therefore, the
validity of the present models is established along with cer-
tain constraints.

An interesting feature is observed if the interior solution
is matched with a Schwarzschild exterior. On the boundary
hypersurface �, the matching of the extrinsic curvature gives

[
2n0

2 − n0
4

(t − t0)2

]
�

= 0, (43)

which means n0
2 = 2 and it is easy to note that the resulting

metric corresponds to the Oppenheimer–Snyder model for
the marginally bound case.

However, it must be noted that ( n+3
2n ) = n2

0 = 2 implies
that n = 1, which does not fall in the domain of validity of
the theorem employed in this work.

5 Potential as a combination of the form
V (φ) = 1

2φ
2 + φn+1

n+1

For a very simple combination of two powers of φ,

V (φ) = 1

2
φ2 + φn+1

n + 1
, (44)

the method of integrability of anharmonic oscillators can lead
to some interesting information as regards the behaviour of
the collapse. With Eq. (44), one can write

dV

dφ
= φ + φn . (45)

The scalar field Eq. (9), with the same metric (1), becomes

φ̈ − 2
Ȧ

A
φ̇ + φ

A2 + φn

A2 = 0, (46)

which can be written in the general form

φ̈ + f1(t)φ̇ + f2(t)φ + f3(t)φ
n = 0, (47)

in a similar way to the case of a simple power-law potential.
It is easy to recognize the fi as f1 = −2 Ȧ

A , f2 = f3 = 1
A2 .

Equation (17) now reduces to

Ä

A
− 3

(n + 1)

(n + 3)

Ȧ2

A2 + (n + 3)

6A2 = 0. (48)

This differential equation yields a straightforward first
integral given by

Ȧ2 − λA
6(n+1)
(n+3) − (n + 3)2

18(n + 1)
= 0, (49)

where λ is a constant of integration. This can be written in a
simpler form,

Ȧ =
(
λAp + q

) 1
2
, (50)

where p = 6(n+1)
(n+3)

and q = (n+3)2

18(n+1)
.

The general solution of Eq. (50) can in fact be given in the
form of Gauss’ hypergeometric function,

A√
q

2F1

[
1

2
,

1

p
; (1 + 1

p
);−λAp

q

]
= t − t0, (51)

where t0 is a constant of integration.
It is very difficult to invert Eq. (51) and write A(t) as a

function of t explicitly. However, since we are interested in
a regime of spacetime, where the volume is very small, an
approximate analysis of this equation can be given, assuming
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A(t) → ∞, meaning the proper radius (∼ 1
A ) is very small.

From the series expansion of the hypergeometric function,
one can write

2F1(a, b; c; x) = �(b − a)�(c)

�(b)�(c − a)
(−x)−a

×
[

1 + O

(
1

x

)]
+ �(a − b)�(c)

�(a)�(c − b)
(−x)−b

[
1 + O

(
1

x

)]

(52)

for |x | → ∞, a �= b.
Using (52), the expression for A can be written from Eq.

(51) as

A1−p/2

λ1/2

�(1/p − 1/2)�(1 + 1/p)

�(1/p)�(1/p + 1/2)

[
1 + O

(
− q

λAp

)]

+ q1/p−1/2

λ1/p

�(1/2 − 1/p)�(1 + 1/p)

�(1/2)�(1)

×
[

1 + O

(
− q

λAp

)]
= t − t0. (53)

A careful study of Eq. (53) reveals that, for all (1− p
2 ) < 0,

A(t) → ∞, which implies that the scale factor 1
A(t) → 0, for

a negative (1 − p
2 ), at the time

t = t0 +
[
q1/p−1/2

λ1/p

][
�(1/2 − 1/p)�(1 + 1/p)

�(1/2)�(1)

]
. (54)

It should be noted that as this would require (1− p
2 ) to have

a negative value, n is either positive or n < −3. The latter,
however, will lead to imaginary solutions for the scale factor
and will not be considered in the subsequent discussion.

For the sake of completeness, we should mention that the
general solution for the scalar field equation can be written
as

T = T0 + ε

C0



√
C0 (n + 1) − 
n+1

2 (n + 1)

×2F1

[
1,

n + 3

2 (n + 1)
; n + 2

n + 1
; 
n+1

C0(n + 1)

]
, n �= −1,

(55)

where T0 and C0 are arbitrary constants of integration and 


and T are defined by Eqs. (15) and (16), respectively.
We shall discuss a few examples with some values of the

constants n, λ and t0 with the help of numerical plots. Figure
1 shows that, for n = 10 and a positive λ, A increases very
fast to an indefinitely large value at a finite value of time t ,
indicating that the proper radius ( 1

A ) and hence the proper
volume indeed crushes to a singularity. Figure 2 shows that
for a small negative value of n, namely n = − 1

100 , one has
a collapsing situation, but the rate of collapse dies down and
the singularity is not reached at a finite time. This is quite
consistent with the inference drawn from Eq. (53) that, for

0 2000 4000 6000 8000 10000 12000

104.478

104.478

104.478

A t

t

Fig. 1 Plot of t vs. A(t) for n = 10 and a positive λ

n= -1/100
t0= 100

= 1/180

0 2.0 106 4.0 106 6.0 106 8.0 106 1.0 107 1.2 107

260

270

280

290

300

310

A t

t

Fig. 2 Plot of t vs. A(t) for n = − 1
100 and a positive λ

 n= -1/100
 t0= 100

= -1/180

0 2 4 6 8 10 12
100

105

110

115

120

A t

t

Fig. 3 Plot of t vs. A(t) for negative λ

a collapsing sphere to reach a singular state at a finite time,
one would require a positive value of n. The behaviour is
also sensitive to the initial conditions. For example, for a
negative λ, the same small negative value of n would lead
to a situation where the distribution will not collapse beyond
a certain constant finite volume at a finite time, as shown in
Fig. 3.
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6 Discussion

A spherically symmetric scalar field collapse is investigated
in the present work. Only a limited amount of work on a mas-
sive scalar field collapse can be found in the literature and that
too in a very restricted scenario. In the present work we dis-
cuss a massive scalar field collapse with a power-law poten-
tial (V ∼ φn+1) in a very general situation, which includes
a very wide range of the values of n.

In order to study the problem analytically, we adopt a
strategy of dealing with the integrability condition for the
scalar field equation. The recently developed technique of
solving the anharmonic oscillator problem by Euler [20] (see
also [21]) has been utilized.

It is interesting to note that the conclusions drawn from
these calculations are independent of the choice of any equa-
tion of state for the fluid distribution. This is because the
scale factor is calculated straightaway from the integrabil-
ity condition. The field equations can be utilized in the
determination of the fluid density and pressure as func-
tions of A and φ and hence as a function of t (Eqs. (28)
and (29)).

The general result is that it is indeed possible to have
a collapsing situation which crushes to the singularity of
zero proper volume and infinite curvature. This situation is
observed for potentials of the form V (φ) ∼ φn+1 where
n < −3 or n > 0. However, for 0 > n > −3, the distri-
bution collapses for ever, reaching the singularity only at an
infinite future.

We find that, for a continuous gravitational collapse of
a massive scalar field with potential of the form V (φ) ∼
φ(n+1), whenever one has a singularity at a finite future, it
is necessarily covered by a horizon. This is completely con-
sistent with the theorem proved by Hamid, Goswami and
Maharaj, saying that, for a continuous gravitational collapse
in a conformally flat spacetime, the end product is necessarily
a black hole [36].

A quadratic potential is of a primary interest in scalar field
theories. But this form of the potential is out of the domain
of validity of the theorem used (the method does not work
for n = 1, which corresponds to a quadratic potential). In
Sect. 5, we include a discussion of a potential containing two
terms, one of which is a quadratic in φ. Although an elaborate
discussion like a simple power law has not been possible,
quite a few interesting results from the asymptotic behaviour
of the solution have been noted with the help of numerical
plots. Depending on the initial conditions, there are many
interesting possibilities, where the singularity is reached only
at infinite time, and even a situation where the collapsing
object settles down to a finite size rather than crushing into
a singular state. The last scenario, illustrated in Fig. 3, looks
like a white dwarf or a neutron star where the collapsing star
equilibrates as a finite object when the degenerate fermion

pressure is able to halt the gravitational collapse. Apparently
a scalar field with a potential which is a power law of the
field φ with a small negative exponent along with a φ2 term
can also do the trick.

The present work adds to the existing literature in two
ways. First, it fills in for the paucity of information in connec-
tion with massive scalar field collapse. Second, it shows the
usefulness of Euler’s theorem on the integrability of anhar-
monic oscillator equation in mining information from appar-
ently hopeless situations in the context of scalar field col-
lapse.
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