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Abstract We apply a mixing framework to the light-meson
systems and examine tetraquark possibility in the scalar chan-
nel. In the diquark–antidiquark model, a scalar diquark is a
compact object when its color and flavor structures are in (3̄c,
3̄ f ). Assuming that all the quarks are in an S-wave, the spin-
0 tetraquark formed out of this scalar diquark has only one
spin configuration, |J, J12, J34〉 = |000〉, where J is the spin
of the tetraquark, J12 the diquark spin, J34 the antidiquark
spin. In this construction of the scalar tetraquark, we notice
that another compact diquark with spin-1 in (6c, 3̄ f ) can
be used although it is less compact than the scalar diquark.
The spin-0 tetraquark constructed from this vector diquark
leads to the spin configuration |J, J12, J34〉 = |011〉. The two
configurations, |000〉 and |011〉, are found to mix strongly
through the color–spin interaction. The physical states can
be identified with certain mixtures of the two configurations
which diagonalize the hyperfine masses of the color–spin
interaction. Matching these states to two scalar resonances
a0(980), a0(1450) or to K ∗

0 (800), K ∗
0 (1430) depending on

the isospin channel, we find that their mass splittings are
qualitatively consistent with the hyperfine mass splittings,
which can support their tetraquark structure. To test our mix-
ing scheme further, we also construct the tetraquarks for
J = 1, J = 2 with the spin configurations |111〉 and |211〉,
and we discuss possible candidates in the physical spectrum.

1 Introduction

Recently, there has been a lot of progress in the study of
the multiquark states which normally refer to hadrons con-
taining four or higher number of quarks. Among multi-
quarks, tetraquarks are quite interesting as there have been
several studies suggesting plausible evidence for their exis-
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tence especially for hadrons containing heavy quarks. The
hidden-charmed resonance, X (3872), measured in the B-
meson decays [1–4] as well as the other resonances with
similar masses, X (3823) [5], X (3900) [6], X (3940) [7], may
be tetraquarks with the flavor structure cqc̄q̄ (q = u, d) [8–
11]. Very recently, the LHCb collaboration [12,13] reported
X (4140), X (4274), X (4500), X (4700) measured in J/ψφ

structures from the decays B+ → J/ψφK+. Among vari-
ous interpretations for them, tetraquarks belong to the most
promising scenarios to explain their nature.

The tetraquark possibility was also investigated in the D or
B-meson excited states. In Ref. [14], we discussed how most
of the D or B-meson excited states currently listed in particle
data group (PDG) [15], especially as regards their mass spec-
trum, can be understood if they are viewed as tetraquarks with
the diquark–antidiquark form, cqq̄q̄, (q = u, d, s). Using
the color–spin interaction, we reproduced the mass splittings
of the resonances in the excited states of D and B mesons
quite successfully. Also our model provides interesting phe-
nomenology related to decays of spin-1 mesons, which seems
to fit nicely with experimental observation. Based on its phe-
nomenological success, we made some predictions for the D
and B mesons to be found in future.

If the existence of the tetraquarks in heavy quark sector is
confirmed, then it is likely that they can exist also in the light
meson system composed of u, d, s quarks. This is because
the binding among quarks in hadrons is governed by the color
force which, in principle, does not discriminate against the
quark flavors. Indeed, Jaffe proposed back in the 1970s that,
based on the diquark–antidiquark picture, a0(980), f0(980),
σ(600), and K ∗

0 (800) may be tetraquarks forming a nonet in
flavor space [16–19]. The main feature of this model starts
from the fact that the spin-0 diquark belonging to a color
and flavor antitriplet, (3̄c, 3̄ f ), is the most compact object
among all the possible diquarks. The spin-0 tetraquarks can
be constructed by combining the spin-0 diquarks with the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4736-6&domain=pdf
mailto:hungchong@kau.ac.kr


173 Page 2 of 9 Eur. Phys. J. C (2017) 77 :173

corresponding antidiquarks. This type of the four-quark pic-
ture is further supported by the other calculations [20,21]
even though it is still confronted with a two-quark picture
involving a P-wave excitation [22].

What we want to emphasize in this work is that the
above diquark with (J = 0, 3̄c, 3̄ f ) is not a unique choice
even though it is an optimal starting point in constructing
tetraquarks in the diquark–antidiquark approach. An alterna-
tive way is to construct scalar tetraquarks by facilitating the
spin-1 diquark with the color and flavor structures (6c, 3̄ f ).
This spin-1 diquark is a less compact object than the spin-0
diquark but it is still the second most compact object among
all the possible diquarks [19]. If we take this possibility into
account, we then have two ways to construct tetraquarks with
spin-0. These two tetraquarks are expected to mix, which may
lead to interesting phenomena in the meson spectroscopy.
Therefore, we explore possible consequences of the mixing
between the two states in the spin-0 tetraquarks.

To make our investigation succinct, we focus on the
isovector (I = 1) and isodoublet (I = 1/2) channels first of
all. If the two states ought to mix, the physical states must be
generated by the diagonalization among them, which should
appear as doublets in the actual spectrum. The ones with
lower masses can be identified by a0(980) in the isovector
channel, and by K ∗

0 (800)1 in the isodoublet channel. Then
the others with higher masses must be found in the meson
spectrum. Indeed, there are a0(1450) in the isovector chan-
nel and K ∗

0 (1430) in the isodoublet channel, which can be
identified as the candidates for this mixing scenario. As we
will discuss below, the mixing is important to generate the
huge mass splittings, about 500 and 740 MeV, from a0(980)

and K ∗
0 (800), respectively.

In fact, this type of the mixing was also discussed in
Refs. [18,23]. There, this mixing is used in a way to explain
why the lowest lying states in 0+ channel have quite small
masses below 1 GeV without investigating the other states
with higher masses. Also Black et al. [24] discussed a dif-
ferent mixing scenario to explain a0(1450) and K ∗

0 (1430).
Their mixing is between a P-wave qq̄ and qqq̄q̄ . This is
different from our approach where the mixing is introduced
between the four-quark states with different color and spin
configurations.

In addition, there are other approaches that can be found in
the literature. Reference [25] proposed a model that a0(980)

and a0(1450) can be dynamically generated from a single
q̄q state. A kind of hybrid model was also proposed where
a0(1450) and K ∗

0 (1430) are viewed as the tetraquarks mixed
with a glueball state [26].

Our approach based on spin-1 diquark should accompany
two more spin states for the tetraquarks, namely J = 1, 2.

1 K ∗
0 (800) is usually referred as κ . Here we follow the nomenclature

used in PDG.

Finding corresponding resonances in PDG can provide fur-
ther supports of our model. Using the color–spin interactions,
we also estimate the mass splittings of these members from
the spin-0 tetraquarks and look for the candidates in PDG
which can fit to our scheme.

This paper is organized as follows. In Sect. 2, we present
tetraquark wave functions that could be relevant for the light-
meson systems. The wave functions for flavor, color and spin
spaces will be constructed using either the scalar or the vector
diquark. In Sect. 3, we introduce the color–spin interaction
as well as the color–electric interaction and provide formulas
for the hyperfine masses and the color–electric masses. In
Sect. 4, we present our results and discuss their implication
in the light-meson spectroscopy. We summarize in Sect. 5.

2 Tetraquark wave functions

In this section, we construct the four-quark wave functions
which might be relevant for the light mesons composed by
u, d, s quarks. Our construction is based on the diquark–
antidiquark picture with an assumption that all the quarks
are in an S-wave state. This assumption constrains that the
corresponding tetraquark candidates must be sought in the
resonances with the positive parity to begin with. As possi-
ble candidates for them, we collect isovector and isodoublet
resonances with J P = 0+, 1+, 2+ in Table 1 from PDG.
In this work, we do not discuss the isoscalar resonances for
simplicity.

In constructing tetraquarks, the well-known approach, as
advocated by Jaffe, is to facilitate the compact diquark, which
is in J = 0 with the color antitriplet 3̄c and the flavor
antitriplet 3̄ f . It may be worth mentioning that, due to Pauli
principle, the diquark must be in the spin state J = 0 when

Table 1 Here we collect all the isovector (a0, a1, a2) and isodoublet
(K ∗

0 , K1, K ∗
2 ) resonances with the positive parity from PDG and arrange

them according to their spins J = 0, 1, 2. We omit the other resonances
like f0, f1, f2 etc. as they are not our concern in the present work

JP Meson I Mass (MeV) Γ (MeV)
a0(980) 1 980 50-100

0+ a0(1450) 1 1474 265
K∗

0 (800) 1/2 682 547
K∗

0 (1430) 1/2 1425 270
K∗

0 (1950) 1/2 1945 201
a1(1260) 1 1230 250-600

1+ a1(1640) 1 1647 254
K1(1270) 1/2 1272 90
K1(1400) 1/2 1403 172
K1(1650) 1/2 1650 150
a2(1320) 1 1318.3 105

2+ a2(1700) 1 1732 194
K∗

2 (1430) 1/2 1425 98.5
K∗

2 (1980) 1/2 1973 373

123



Eur. Phys. J. C (2017) 77 :173 Page 3 of 9 173

its color and flavor structures are fixed to 3̄c and 3̄ f . The
fact that this diquark is the most compact object among all
the possible diquarks can be demonstrated straightforwardly
by calculating the hyperfine mass of the color–spin interac-
tion [19]. Likewise, the tight antidiquarks should be in J = 0
with 3c, 3 f .

Combining the diquarks with the antidiquarks leads to the
tetraquarks forming a nonet in flavor, 3̄ f ⊗ 3 f = 8 f ⊕ 1 f .
The flavor structure of the tetraquarks, by adopting the tensor
notation for multiplets, can be expressed as

[8 f ]ij = Tj T̄
i − 1

3
δij Tm T̄

m, (1)

1 f = 1√
3
TmT̄

m . (2)

Here the diquark (Ti ) and the antidiquark (T̄ i ) are represented
by the quark flavors as

Ti = 1√
2
εi jkq jqk ≡ [q jqk],

T̄ i = 1√
2
εi jk q̄ j q̄k ≡ [q̄ j q̄k]. (3)

To avoid further complications coming from the mixing
between the flavor octet and singlet among the isoscalar
members, our discussion in this work focuses on the isovec-
tor and isodoublet members which can couple to a0 and K ∗

0 .
To be more precise, the charged octet members, a+

0 and K ∗+
0 ,

will be considered as they are located at the boundary of the
weight diagram where the multiplicity is just one. The flavor
wave functions that can couple to a+

0 and K ∗+
0 , respectively,

are

[8 f ]1
2 = [su][d̄ s̄]; [8 f ]1

3 = [ud][d̄ s̄]. (4)

With this four-quark approach, a0 has the hidden strange
component, ss̄, while K ∗

0 contains one strange quark. The
experimental mass ordering, M(a0) ≥ M(K ∗

0 ), can be under-
stood more easily from this tetraquark picture than from the
two-quark picture.

As for the color part of the wave function, the diquark is
in 3̄c, the antidiquark is in 3c, and the four-quark state in total
must be colorless. It means that, for each flavor combination
involved in Eq. (4), if we call the first two quarksq1q2, and the
third and fourth antiquarks q̄3q̄4, the four-quark system has
the following color structure with the color normalization:

1√
12

εabd εae f
(
qb1q

d
2

)(
q̄3
e q̄

4
f

)
. (5)

Here the Roman indices, a, b, d, e, f , denote the colors.
Since the diquark spin J12 and the antidiquark spin J34 are
zero, the total spin J must be zero. Then the spin structure
for the tetraquarks of this type is restricted to

|J, J12, J34〉 = |000〉3̄c,3c . (6)

Here the subscripts denote the color structures for the diquark
and antidiquark.

Alternatively, other types of diquark are also possible
in constructing the tetraquarks. Considering only symme-
try properties associated with the spin, color, flavor of the
two-fermion system, it is possible to have other diquarks
which have the structures (J = 1, 6c, 3̄ f ), (J = 1, 3̄c, 6 f ),
(J = 0, 6c, 6 f ). One can demonstrate through the color–
spin interaction that the first one with (J = 1, 6c, 3̄ f ) is
the most attractive configuration among these three [19]. In
fact, other diquarks with the structures, (J = 1, 3̄c, 6 f ),
(J = 0, 6c, 6 f ), are not compact because the color–spin
interaction for them are repulsive. Using the first one, one can
construct another tetraquarks by combining the diquark with
(J = 1, 6c, 3̄ f ) and the antidiquark with (J = 1, 6̄c, 3 f ).

The resulting tetraquarks form a nonet again in flavor. The
octet members that can couple to a+

0 , K ∗+
0 , have the same

flavor wave function as Eq. (4). But now the diquark is in 6c
and the antidiquark is in 6̄c so that they can be combined into
a color singlet. Again, for each flavor combination involved
in Eq. (4), calling the first two quarks as q1q2 and the rest two
antiquarks as q̄3q̄4, the four-quark system has the following
color structure:

1√
96

(
qa1q

b
2 + qb1q

a
2

)(
q̄3
a q̄

4
b + q̄3

b q̄
4
a

)
. (7)

Here again the Roman indices, a, b, denote the colors.
However, with this spin-1 diquark scenario, there are three

possible spin states for tetraquarks. Namely, tetraquarks have
the spins J = 0, 1, 2 with the following configurations:

|011〉6c,6̄c ; |111〉6c,6̄c ; |211〉6c,6̄c . (8)

What is interesting is that the tetraquarks in the scalar chan-
nel, |011〉6c,6̄c , can mix with Eq. (6) through the color–spin
interaction. The hyperfine masses, which are expectation
values of the color–spin interaction, form a 2 × 2 matrix
in the basis, |000〉, |011〉. A diagonalization is necessary in
order to identify the physical states in this scalar channel.
Therefore, if this framework is realized in the real world,
there should be two resonances in the scalar mesons for each
member in the octet, Eq. (4). Indeed, as shown in Table 1,
there are two isovector resonances, a0(980) and a0(1450).
Also, in the isodoublet channel, there are three resonances,
K ∗

0 (800), K ∗
0 (1430), K ∗

0 (1950), and two of them might be
candidates fitting our framework. In this sense, the situation
is quite promising and it is worth pursuing the consequences
of this scenario further.

If our expectation works, additional resonances can be
anticipated in the spin configurations, |111〉6c,6̄c , |211〉6c,6̄c .
Alternatively, they can be hidden in the continuum of two-
meson decays. Anyway, as one can see in Table 1, there are
various resonances in J = 1, 2 and some of them might
be possible candidates of this scenario. Therefore, it is also
interesting to study which of them fits to this scheme.
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3 Mass formulas

Normally a hadron mass can be calculated by adding con-
stituent quark masses and the expectation value of the poten-
tial, V , generated by summing over all the pairs of quark–
quark interaction. In this sense, the formula for a hadron mass
(MH ) can be written schematically as

MH =
∑
i

mi + 〈V 〉, (9)

where mi the constituent mass of the i th quark. The quark–
quark interaction can have two different sources, one-gluon
exchange potential [27–30] and the instanton-induced inter-
action [31,32]. A common feature of the two sources is
the color–spin interaction (VCS) which usually generates the
mass splittings among hadrons with different spins but with
the same flavor content. In particular, this interaction can
explain the mass differences between the octet and decu-
plet baryons as well as between the spin-1 and spin-0 meson
octets [10,14,33,34]. The instanton-induced interaction fur-
ther provides the color–electric term (VCE) and the constant
shift [31,32]. Taking the two sources into account, the poten-
tial can be effectively parameterized as

V = v0

∑
i< j

λi · λ j
Ji · J j
mim j

+ v1

∑
i< j

λi · λ j

mim j
+ v2. (10)

Here λi denotes the Gell-Mann matrix for the color SU(3),
Ji the spin. The first and second terms are called color–spin
and color–electric interactions and we denote them as

VCS = v0

∑
i< j

λi · λ j
Ji · J j
mim j

, (11)

VCE = v1

∑
i< j

λi · λ j

mim j
. (12)

The parameters v0, v1 represent the strength of the color–
spin and color–electric interactions which, in principle, need
to be fitted from the hadron masses. The constant shift v2

could be flavor-dependent in general.
The hadron masses of our concern can be formally calcu-

lated by Eq. (9) using the four states that we have introduced
in Eqs. (6) and (8). As we have discussed in Ref. [10], fitting
all the parameters v0, v1, v2 with only the hadron masses of
concern here may be questionable as to whether the same
parameters can be used in other set of hadrons in general. To
reduce the ambiguity coming from the parameters, we focus
on the mass splittings among hadrons of concern.

Then one can approximate that the mass splittings are
generated by the interactions, VCS and VCE, through


MH ≈ 
〈VCS〉 + 
〈VCE〉, (13)

if the differences are taken for the hadrons with the same
flavor content. Here the expectation values are taken with
respect to the states introduced in Eqs. (6), (8), and their
differences constitute the right-hand side. It turns out that
the right-hand side is dominated by the color–spin interac-
tion, VCS. The color–electric interaction, VCE, although it
contributes differently to the masses of |000〉3̄c,3c and to the
masses of the other category, |011〉6c,6̄c , |111〉6c,6̄c , |011〉6c,6̄c ,
its contribution to the mass splitting, 
MH , is almost neg-
ligible as we will demonstrate below. In addition, since VCE

is independent of the spins, the mixing term between the
two states in the scalar channel, 〈000|VCE|011〉, is zero by
the orthogonality of the spin states.2 The constant shift v2

cancels in the differences.
The expectation values, 〈VCS〉 and 〈VCE〉, which we call

hyperfine mass and color–electric mass respectively, can be
calculated straightforwardly. We suggest the reader to refer
Ref. [14] for the technical details. In Table 2, we present all
the formulas for hyperfine and color–electric masses for the
various spin configurations with one specific flavor combina-
tion, q1q2q̄3q̄4. We also present the mixing term appearing
in the scalar channel.

Note that the parameter v0 has a negative value based on
the analysis of the baryon spectroscopy [10,14]. So from the
formulas provided in the scalar channel, one can see that
the color–spin interaction, VCS, provides a fair amount of
binding. Of course, the actual binding from VCS must take
into account the mixing between the two states |000〉 and
|011〉. In the spin-1 and spin-2 channel, one can also see
that |111〉 is more bound than |211〉 as far as the color–spin
interaction is concern. This makes the |211〉 state heavier than
the |111〉 state which is consistent with the general hierarchy
observed in the mass spectrum in hadrons. The contribution
from the color–electric interaction is small due to the small
strength v1 as we will see below.

The final expressions for the hyperfine mass, 〈VCS〉, and
the color–electric mass, 〈VCE〉, can be obtained by including
various flavor combinations involved in Eq. (4). In particular,
for the isovector channel which can couple to a+

0 , a+
1 or

a+
2 depending on its spin, the hyperfine mass can be written

schematically as

〈VCS〉 = 1

4

[
〈VCS〉sud̄s̄ + 〈VCS〉sus̄d̄

+ 〈VCS〉usd̄s̄ + 〈VCS〉uss̄d̄
]
, (14)

where the specified flavor combination in the subscripts and
the normalization in front follow from Eq. (4). Since the
flavor structures are the same for all the spin states, J =
0, 1, 2, we have this type of flavor formula in common for the

2 For simplicity, we suppress the subscripts indicating the color struc-
tures from now on.
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Table 2 Formulas for the expectation values of VCS and VCE are pre-
sented for a specific flavor combination, q1q2q̄3q̄4, with respect to the
states indicated in the first column. Note that the diquark and antidi-

quark are in the color states, 3̄c, 3c, for the spin configuration, |000〉,
and they are in 6c, 6̄c for |011〉, |111〉, |211〉

J, J12, J34|V |J, J12, J34 Corresponding formulas for one specific flavor combination, q1q2q̄3q̄4

000|VCS |000 2v0
1

m1m2
+

1
m3m4

011|VCS |011
v0
3

1
m1m2

+
1

m3m4
+

5
m1m3

+
5

m1m4
+

5
m2m3

+
5

m2m4

mixing, 000|VCS |011
3
2
v0

1
m1m3

+
1

m1m4
+

1
m2m3

+
1

m2m4

111|VCS |111
v0
6

2
m1m2

+
2

m3m4
+

5
m1m3

+
5

m1m4
+

5
m2m3

+
5

m2m4

211|VCS |211
v0
6

2
m1m2

+
2

m3m4
− 5

m1m3
− 5

m1m4
− 5

m2m3
− 5

m2m4

000|VCE |000 −8
3
v1

1
m1m2

+
1

m3m4
+

1
2m1m3

+
1

2m1m4
+

1
2m2m3

+
1

2m2m4

011|VCE |011
2
3
v1

2
m1m2

+
2

m3m4
− 5

m1m3
− 5

m1m4
− 5

m2m3
− 5

m2m4

111|VCE |111 = 011|VCE |011
211|VCE |211 = 011|VCE |011

three spin states. The corresponding formula for the color–
electric mass, 〈VCE〉, can be obtained simply by replacing the
subscript CS → CE.

For the isodoublet channel which can couple to K ∗+
0 , K+

1
or K ∗+

2 depending on its spin, we have a similar formula, but
with different flavors,

〈VCS〉 = 1

4

[
〈VCS〉udd̄s̄ + 〈VCS〉uds̄d̄

+ 〈VCS〉dud̄s̄ + 〈VCS〉dus̄d̄
]
. (15)

Again, the corresponding formula for the color–electric mass,
〈VCE〉, can be obtained by replacing the subscript CS → CE
in this equation.

4 Results and discussion

Now we present and discuss the results for the mass split-
tings obtained from the expectation value of the color–spin
and color–electric formulas provided in Table 2. For our
numerical calculations, first we need to determine the input
parameters appearing in Table 2. We take the standard val-
ues for the constituent quark masses mu = md = 330 MeV,
ms = 500 MeV as in our previous work [10,14]. For the
strength v0 of the color–spin interaction, we test two possible
choices. One choice is to use the value determined from the
D meson excited states studied within the tetraquark frame-
work where v0 is fixed from the mass spliting of D∗

0(2318)–
D∗

2(2463) [14]. This gives v0 ∼ (−192.9)3 MeV3. The

other choice is to use the value determined from 
–N
mass difference, which gives a slightly different value:
v0 ∼ (−199.6)3 MeV3 [10,14]. Since our results turn out
to depend strongly on this parameter, we present the two
results obtained by using the two values of this parameter.
We call the first one as “Theory I” and the second one as
“Theory II”. But for illustration purposes, we use mainly the
results from “Theory I” but, in the final results, we will show
both calculations.

For the color–electric interaction, the strength v1 can-
not be determined for example from the mass splittings of
the baryon octet and decuplet as the two multiplets have
the same color structure. For this purpose, we take the
value determined by N ,
,� masses as inputs [10]. It gives
v1 ∼ (71.2)3 MeV3. This value should be regarded as a
qualitative estimate as it may depend on how it is extracted.
Nevertheless, the contribution from the color–electric terms
to our results are very small so that our results are not sensi-
tive to this particular choice.

Having set all the parameters involved, we now discuss
the numerical values for the hyperfine masses and color–
electric masses. Table 3 presents those masses calculated
with respect to the specified spin configurations using v0 =
(−192.9)3 MeV3 (“Theory I”). There are several interesting
features to discuss as regards this result.

First, the hyperfine mass for |011〉 is more negative than
the one for |000〉. It is quite different from the usual expecta-
tion that the tetraquarks involving the spin-0 diquark is more
bound than the tetraquarks containing the spin-1 diquark.
This interesting aspect can be understood if we examine
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Table 3 The numerical values for 〈VCS〉 and 〈VCE〉 are presented here
for the specified spin configurations. The I = 1 channel can couple to
a0, a1, a2 and the I = 1/2 isodoublet channel can couple to K ∗

0 , K1,
K ∗

2 . Here we present the results with “Theory I” which uses the color–
spin interaction parameter as v0 = (−192.9)3 MeV3. All the numbers
are given in MeV unit

VCS , VCE I = 1 channel I = 1/2 channel
000|VCS |000 -173.88 -218.67
000|VCE |000 -23.8 -29.29
011|VCS |011 -331.48 -400.9
011|VCE |011 -24.57 -29.29

mixing, 000|VCS |011 -222.29 -267.82
111|VCS |111 -180.23 -218.67
111|VCE |111 -24.57 -29.29
211|VCS |211 122.27 145.78
211|VCE |211 -24.57 -29.29

carefully the formulas for 〈000|VCS|000〉 and 〈011|VCS|011〉
given in Table 2. The color–spin interaction in principle acts
on all the pairs of quarks. For the |000〉 case, the calculated
hyperfine mass is proportional to ∼ 1/m1m2 + 1/m3m4

which means that the color–spin interaction is nonzero only
for two quarks in the diquark or for two antiquarks in the
antidiquark. There are no terms like 1/m1m3, 1/m2m4, indi-
cating that the color–spin interaction acting on any quark–
antiquark pair is zero for the |000〉 state. But for the |011〉
case, as one can see from the formula for 〈011|VCS|011〉 in
Table 2, there are nonzero contributions coming from the
quark–antiquark pairs in addition to those from two quarks
in the diquark and two antiquarks in the antidiquark. This
precisely makes the hyperfine mass of the |011〉 state more
negative.

Secondly, we notice that the mixing term between the two
states, |000〉 and |011〉, is quite large. The mixing term in
the isovector channel for example is about 〈000|VCS|011〉 ∼
−222 MeV. Therefore, the two states, |000〉 and |011〉, must
mix strongly in making the physical states.

An additional thing that can be seen from Table 3 is that the
color–electric masses are quite small. Moreover, their magni-
tudes are essentially the same for all the spin configurations.
The only exception is the element, 〈000|VCE|000〉, in the
isovector channel but its value is different only slightly from
other color–electric masses. Therefore, the color–electric
masses almost cancel in the mass differences and our results
below, based on the mass splittings, are almost independent
of the color–electric interaction. That is, as long as our anal-
ysis focuses on the mass splittings, we can safely use the
approximation


MH ≈ 
〈VCS〉. (16)

4.1 Results on isovector channel

Let us begin with a discussion on the isovector channel (I =
1) which can couple to a0, a1, a2. Because of the mixing
between the two states in spin-0, we have a 2 × 2 matrix for
the hyperfine masses 〈VCS〉 with respect to the states |000〉
and |011〉. This matrix needs to be diagonalized in order to get
the physical hyperfine masses. For the isovector channel with
spin-0, the hyperfine mass matrix whose elements collected
from Table 3, and the matrix after the diagonalization are

|000〉 |011〉
|000〉 −173.9 −222.3
|011〉 −222.3 −331.5

→
|0a0

A 〉 |0a0
B 〉

|0a0
A 〉 −16.8 0.0

|0a0
B 〉 0.0 −488.5

.

Here we denote the eigenstates as |0a0
A 〉 and |0a0

B 〉 with the
superscript a0 indicating the resonance that they can cou-
ple to. Note, the difference between the diagonal members,
which is the key ingredient of our prediction, is amplified
from 157.6 to 472 MeV. This shows that the mass splitting
between the physical states |0a0

A 〉, |0a0
B 〉 is strongly driven by

the mixing in the spin-0 channel. Note that the color–electric
term 〈VCE〉 only shifts the diagonal masses by almost the
same amount. Its contribution to the mass splittings there-
fore cancels and the gap, 472 MeV, is practically unchanged
even with 〈VCE〉.

The eigenstates |0a0
A 〉, |0a0

B 〉 are related to the original spin
configurations through

|0a0
A 〉 = −0.817 | 000〉 + 0.577 | 011〉,

|0a0
B 〉 = 0.577 | 000〉 + 0.817 | 011〉. (17)

This result is to some measure consistent with Black et al.
[23] where this mixing is used in a different context. Anyway,
this indicates that the eigenstate |0a0

A 〉 is in the state |000〉
with the probability of 67% and in the |011〉 state of 33%. It
is interesting to see that the eigenstate with lower hyperfine
mass, |0a0

B 〉, are in the |011〉 state with higher probability of
67%.

It may be worth mentioning that our tetraquarks have
a meson–meson component which is either suppressed or
enhanced, depending on the states given in Eq. (17). Our
tetraquarks, schematically expressed by q1q2q̄3q̄4, can have
a component where q1q̄3 and q2q̄4 are separately combined
into a color singlet as well as the other component where
those two pairs are separately combined into a color octet.
The first component corresponds to the meson–meson com-
ponent. One can work out this type of recombination from
|000〉, |011〉 and demonstrate that the meson–meson compo-
nent is suppressed for |0a0

A 〉 and enhanced for |0a0
B 〉. We expect

that this aspect can provide an interesting phenomenology
relating to the “fall-apart” decays of |0a0

A 〉 and |0a0
B 〉 [35].

According to Eq. (16), the mass difference between |0a0
A 〉

and |0a0
B 〉 can be written in terms of the hyperfine mass
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difference. By calling the masses of |0a0
A 〉 and |0a0

B 〉 M0A

and M0B respectively, the calculated mass difference, which
constitutes the result from “Theory I”, is M0A − M0B =
−16.8 − (−488.5) = 471.7 MeV,3 meaning that |0a0

B 〉 has
a lower mass than |0a0

A 〉 by 472 MeV. This is indeed a huge
separation in masses between the two states in spin-0. This
observation clearly leads us to identify the states |0a0

A 〉 and
|0a0

B 〉 with the physical resonances

|0a0
A 〉 = a0(1450); |0a0

B 〉 = a0(980), (18)

because the experimental mass difference of these two states,
1474 − 980 = 494 MeV,4 is quite close to our result, only
20 MeV higher. Our calculation with the different parameter,
v0 = (−199.6)3 MeV3, namely the “Theory II” result, gives
M0A − M0B = 522.8 MeV, which is about 29 MeV higher
than the experimental mass splitting. Therefore, for a0(1450)

and a0(980), our tetraquark formalism seems to work quite
well.

To test our approach further, we look for a possible can-
didate which can fit to the J = 1 resonance with the con-
figuration, |111〉. As one can see in Table 1, there are two
candidates in PDG with spin-1, a1(1260) and a1(1640). Or
another possibility is that the |111〉 state might be hidden in
the continuum of two-meson decays which is then too broad
to be observed. The hyperfine mass of |111〉 is −180.23 MeV
as shown in Table 3, which is higher than the hyperfine
mass of |0a0

B 〉, −488.5 MeV, but lower than that of |0a0
A 〉,

−16.8 MeV. Applying this hierarchy to the mass spectrum,
we may identify the state |111〉 with a1(1260). The other res-
onance, a1(1640), certainly does not fit into this hierarchy.

Denoting the mass of the state |111〉 as M1, its mass split-
tings from the spin-0 members, |0a0

A 〉, |0a0
B 〉, are obtained from

the hyperfine mass splittings,

M1 − M0B = −180.2 − (−488.5) = 308.3 MeV,

M1 − M0A = −180.2 − (−16.8) = −163.4 MeV.

These values should be compared with the experimental
mass splittings, 250 MeV between a1(1260) and a0(980),
and −244 MeV between a1(1260) and a0(1450). The hyper-
fine mass splittings are off by 50 ∼ 80 MeV from the experi-
mental splittings. Although the agreement is not precise, the
errors are within an acceptable range if one takes into account
the broad decay width of a1(1260), � = 250 − 600 MeV. Of
course, this identification needs to be further examined in the
future from other properties such as its decay modes and so
on.

3 If we include the color–electric masses, this value is changed to
471.9 MeV, which means that the contribution from VCE to the mass
splitting is almost negligible.
4 Note that the experimental mass of a0(1450) is 1474 MeV, which is
different from the number in the nomenclature of a0(1450).

Table 4 The hyperfine mass splittings among the spin states are com-
pared with the corresponding resonances in a0, a1, a2 channel. Here,
we identify |0a0

B 〉 = a0(980), |0a0
A 〉 = a0(1450), |111〉 = a1(1260),

|211〉 = a2(1700). The column under the name “Theory I” [“The-
ory II”] is obtained with the strength v0 = (−192.9)3 MeV3 [v0 =
(−199.6)3 MeV3]. See the text for the choice of this parameter

a0, a1, a2 channel
Participating Expt. Δ VCS (MeV)
spin states ΔMH (MeV) Theory I Theory II
|0a0

B − |0a0
A 494 471.7 522.8

|111 − |0a0
B 250 308.3 341.7

|111 − |0a0
A -244 -163.4 -181.1

|211 − |0a0
B 752 610.8 677.0

|211 − |0a0
A 258 138.1 154.2

|211 − |111 502 302.5 335.3

For the spin-2 case, there are two candidates in Table 1,
a2(1320) and a2(1700), and one of them can be identi-
fied with |211〉. The hyperfine mass of |211〉 in Table 3
is 122.27 MeV, which is higher than any of the hyperfine
masses for the states |0a0

A 〉, |0a0
B 〉, |111〉. Thus, the corre-

sponding resonance to |211〉 must be heavier than those in
spin-0 and spin-1. The resonance, a2(1700), fits into this
criterion and it can be identified with |211〉. Denoting the
mass for |211〉 by M2, its mass splittings from the spin-0
and spin-1 states estimated from the hyperfine mass split-
tings are M2 − M0B = 611 MeV, M2 − M0A = 138 MeV,
M2 − M1 = 303 MeV. The corresponding mass splittings
based on their experimental masses in Table 1 are 752 MeV,
258 MeV, 502 MeV, respectively. The mismatch is less than
two hundred MeV or so. Again, although the agreement is
not precise, the trend in mass differences seems to match
more or less. Also taking into account the broad widths
associated with the resonances involved, we can claim that
the mismatch is not enough to rule out our four-quark
scheme.

Our results for a0, a1, a2 are summarized in Table 4.
There, we present our results for “Theory I” and “Theory II”
in comparison with the experimental mass splittings based
on the identifications |0a0

B 〉 = a0(980), |0a0
A 〉 = a0(1450),

|111〉 = a1(1260), |211〉 = a2(1700). Both results qualita-
tively agree with the experimental splittings. Based on these
results, we may conclude that the spin-1 diquark seems to
play an important role in the formation of the tetraquarks in
light mesons.

4.2 Results on isodoublet channel

We now move to a discussion for the isodoublet (I = 1/2)
channels which can couple to K ∗

0 , K1, K ∗
2 resonances. Again

in the spin-0 case, because of the mixing, we have a 2 × 2
matrix for the hyperfine masses 〈VCS〉 with respect to the spin
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configurations |000〉 and |011〉. The diagonalization leads to

|000〉 |011〉
|000〉 −218.7 −267.8
|011〉 −267.8 −400.9

→
|0K0

A 〉 |0K0
B 〉

|0K0
A 〉 −26.9 0.0

|0K0
B 〉 0.0 −592.7

.

Here we have introduced the superscript K0 in the eigenstates
to indicate that the states can couple to K ∗

0 . The eigenstates

|0K0
A 〉, |0K0

B 〉 are related to the original spin configurations
through

|0K0
A 〉 = −0.813 | 000〉 + 0.582 | 011〉,

|0K0
B 〉 = 0.582 | 000〉 + 0.813 | 011〉. (19)

The mixing parameters are not so different from the isovector
case, Eq. (17).

We observe again that the mixing drives a huge separa-
tion of the diagonal hyperfine masses, about 565.8 MeV. The
eigenstates |0K0

A 〉 and |0K0
B 〉 need to be identified with the

physical resonances. Among three possible candidates with
spin-0 in Table 1, K ∗

0 (800), K ∗
0 (1430), K ∗

0 (1950), it may be
appropriate to take the two states with lower masses, i.e.,

|0K0
A 〉 = K ∗

0 (1430); |0K0
B 〉 = K ∗

0 (800). (20)

Using the experimental masses in PDG for K ∗
0 (1430) and

K ∗
0 (800), their mass difference is 
MH = 1425 − 682 =

743 MeV, which is higher than the hyperfine mass splitting
of 565.8 MeV. Considering the fact that the decay widths,
respectively, of K ∗

0 (800) and K ∗
0 (1430) are 547, 270 MeV

we may claim that our mixing scheme qualitatively works
for this spin-0 isodoublet channel.

In the spin-1 case, there are three possible candidates in
Table 1, K1(1270), K1(1400), K1(1650) and one of them
can be matched with our spin state |111〉. We choose one
resonance by looking at the mass hierarchy generated from
the hyperfine masses. The hyperfine mass for the state |111〉
is −218.7 MeV as can be seen in Table 3. Comparing this
with the hyperfine masses for |0K0

A 〉, |0K0
B 〉, one can establish

the mass hierarchy as |0K0
A 〉 > |111〉 > |0K0

B 〉. The resonance
K1(1270) fits to this hierarchy relatively well. The other can-
didate is K1(1400), although it barely fits to the hierarchy;
its mass gap from K ∗

0 (1430) seems too narrow. With this
identification, its mass splittings from the spin-0 resonances
agree at least qualitatively with the hyperfine mass splittings
as one can see in the second and third line from the top in
Table 5.

A somewhat puzzling situation occurs for the spin-2 case.
In Table 1, there are two candidates, K ∗

2 (1430), K ∗
2 (1980),

that can be matched with the spin state, |211〉. According to
Table 3, the hyperfine mass for |211〉 is 145.8 MeV, which
is 502 MeV higher than the hyperfine mass of |111〉. With
the identification with |111〉 = K1(1270), we need to have
a spin-2 resonance with a mass around 1770 MeV. But the

Table 5 The hyperfine mass splittings among the spin states are com-
pared with the corresponding resonances in K ∗

0 , K1, K ∗
2 channel. Here,

we identify |0K0
B 〉 = K ∗

0 (800), |0K0
A 〉 = K ∗

0 (1439), |111〉 = K1(1270),
|211〉 = K ∗

2 (1430). The spin-2 resonance seems not to fit our tetraquark
framework. For the other explanations for this table, see the caption of
Table 4

K∗
0 ,K1,K

∗
2 channel

Participating Expt. Δ VCS (MeV)
spin states ΔMH (MeV) Theory I Theory II
|0K0

B − |0K0
A 743 565.8 627.1

|111 − |0K0
B 590 374.0 414.5

|111 − |0K0
A -153 -191.8 -212.6

|211 − |0K0
B 743 738.5 818.5

|211 − |0K0
A 0 172.7 191.4

|211 − |111 153 364.5 403.9

mass of K ∗
2 (1430) is too small and the mass of K ∗

2 (1980) is
too large. We would rather hesitate to identify either of the
resonances as |211〉 even if we take into account the broad
width associated with the resonances. Nevertheless, by iden-
tifying |211〉 = K ∗

2 (1430), we obtain the experimental mass
splittings, M2 − M0B = 743 MeV, M2 − M0A = 0 MeV,
M2 − M1 = 153 MeV. The first number is consistent with
our calculation but the second and third ones seems a little too
far to fit our results given under “Theory I” and “Theory II” in
Table 5. If we identify |211〉 = K ∗

2 (1980) instead, the exper-
imental mass splittings associated with the spin-2 resonance
become M2 − M0B = 1291 MeV, M2 − M0A = 548 MeV,
M2 − M1 = 701 MeV, which do not fit our calculation also.

There could be various reasons for the disagreement in
the spin-2 case. It is possible that the corresponding candi-
date may be hidden in two-meson continuum or has not be
observed yet. Alternatively, there might be some other mech-
anisms, such as configuration mixing with different mul-
tiplets, to change the mass of the spin-2 resonance in the
isodoublet. Anyway, it would be interesting to investigate
this problem further in the future.

5 Summary

In this work, we have proposed two possible ways to con-
struct tetraquarks in the light-meson system. The standard
way is to facilitate the spin-0 diquark and spin-0 antidiquark
to form a flavor nonet. In this approach, the color and flavor
structures for the diquark are (3̄c, 3̄ f ) and for the antidi-
quark, they are (3c, 3 f ). The tetraquarks formed in this way
have one spin configuration only, |J, J12, J34〉 = |000〉. The
other way to construct tetraquarks is to facilitate the spin-1
diquark and antidiquark where the diquark is in (6c, 3̄ f ) and
the antidiquark is in (6̄c, 3 f ). This construction is motivated
by the fact that the spin-1 diquark with (6c, 3̄ f ) is the second
most attractive among all the possible diquarks. With this
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approach, the tetraquarks can have three spin states with the
configurations, |011〉, |111〉, |211〉.

Therefore, for spin-0 tetraquarks, there are two spin
configurations, |000〉 and |011〉, and they are found to
mix strongly through the color–spin interaction. We have
found that the physical states obtained from the diagonaliza-
tion of the hyperfine mass matrix match qualitatively well
[a0(980), a0(1450)] in the hidden strangeness channel and
[K ∗

0 (800), K ∗
0 (1430)] in the open strangeness channel.

To solidify our tetraquark framework, we have also looked
for physical resonances that can be matched to the additional
states |111〉 and |211〉. Our analysis from the mass split-
tings suggests that a1(1260) and K1(1270) may be the can-
didates for |111〉 and a2(1700) could be a candidate for |211〉.
But there is one resonance seemingly missing in spin-2 with
the open strangeness channel as neither of the existing res-
onances K ∗

2 (1430) and K ∗
2 (1980) in that channel seems to

fit our framework. Nevertheless, based on qualitative agree-
ment in most spin channels, we believe that our tetraquark
formalism may be realized in the light-meson system. Further
studies such as their decay pattern and so on are necessary in
order to establish this model.
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