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Abstract This work reports on models described by two
real scalar fields coupled with gravity in the five-dimensional
spacetime, with a warped geometry involving one infi-
nite extra dimension. Through a mechanism that smoothly
changes a thick brane into a hybrid brane, one investigates
the appearance of hybrid branes hosting internal structure,
characterized by the splitting on the energy density and the
volcano potential, induced by the parameter which controls
interactions between the two scalar fields. In particular, we
investigate distinct symmetric and asymmetric hybrid brane
scenarios.

1 Introduction

In the last decades, a huge amount of efforts have been made
to understand problems involving the cosmological constant
and hierarchy [1–12]. In this sense, the study of branes in
higher dimensional theories became important because it
provides a procedure for resolving such questions [1,7,9].
Ever since, interest in exploring the physics of extra dimen-
sions has been growing and growing. In Ref. [8], one intro-
duced a thin braneworld concept which deals with a warped
geometry and engenders an infinity extra dimension. Later,
this scenario was modified to support thick branes, through
the inclusion of background scalar fields coupled to five-
dimensional gravity, as investigated in [10–12], for instance.
In the absence of gravity, the scalar source field supports kink-
like structures which are responsible for the appearance of
the thick brane.

However, thick branes can also have internal structure [13]
and can be generated by two-kink solutions [14,16], possess-
ing the advantage of making room for the presence of non-
trivial structures inside the brane. It provides a richer treat-
ment for the system under consideration, since it allows the
manifestation of branes hosting internal structure. In special,
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in Ref. [14] the authors suggested a brane scenario described
by two real scalar fields coupled with gravity, the second field
contributing to propitiate internal arrangement, implement-
ing therefore the so-called Bloch brane model. This frame-
work was then explored by several authors in different sit-
uations, such as in the study of criticality and degeneracy,
fermion localization, gauge field localization, graviton reso-
nances, and so forth [15–26].

Recently, a new context of braneworld characterized by a
hybrid behavior was suggested [27–29], which occurs when
the scalar source supports localized structure with compact-
like profile. In this scenario, there is manifest thin brane
behavior when the extra dimension is outside a compact
domain, while a thick brane is revealed inside the compact
region. In particular, Ref. [27] proposed a route to smoothly
go from kinks to compactons, leading to a braneworld for-
mulation generated by compact-like defects; it occasioned
a hybrid brane symmetric configuration. Phenomenological
implications of this scenario are discussed in [28], and in Ref.
[29] these ideas are extended to the consideration of models
that support asymmetric compact-like structures, in a way
that leads to an asymmetric hybrid brane profile.

In the current study we deal with the case of a flat brane,
that is, with a brane with Minkowski internal geometry, but
the subject is related to several other issues, in particular with
investigations of bent branes, engendering an anti de Sit-
ter or de Sitter internal geometry [30–32], with the domain-
wall/brane-cosmology correspondence [33–35] and with the
new concept of holographic cosmology [36,37] which is
motivated by the AdS/CFT correspondence.

Inspired by these premises, in this work we are interested
to investigate models described by potentials that support
hybrid brane solutions developing internal structures, and
this is what we call the hybrid Bloch brane. To implement
this possibility, in Sect. 2 we include necessary conditions to
obtain Bloch branes in warped geometry. In Sect. 3 we pro-
pose a route to get a hybrid Bloch brane from a thick Bloch
brane. Firstly, we contemplate the case of a symmetric con-
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figuration, which gives us analytical results in the compact
limit. We then move on and treat numerically an asymmetric
case.

The models studied in Sect. 3 offer explicit possibilities to
implement the hybrid Bloch brane scenario, and the results
open up new issues, such as the ones investigated before in
the case of the Bloch brane, namely the study of degeneracy
and criticality, fermion localization, gauge field localization,
and graviton resonances [15–23,25,26]. We end our work in
Sect. 4, with conclusions and discussions.

2 Bloch brane formulation

We now incorporate scalar fields into a warped geometry with
one single extra dimension described by the line element

ds2 = gabdxadxb = e2Aημνdxμdxν − dy2, (1)

where a, b = 0, 1, 2, 3, 4; y is the extra dimension, A =
A(y) is the warp function, and ημν describes the four-
dimensional Minkowski spacetime (μ, ν = 0, 1, 2, 3). In
this case, the action is written as

I =
∫

d4xdy
√|g|

(
−1

4
R + Ls

)
, (2)

where Ls is used to describe the source scalar fields, that is,

Ls = 1

2
∂aφ∂aφ + 1

2
∂aχ∂aχ − V (φ, χ). (3)

As usual, we assume that the scalar fields only depend on the
extra dimension y. Under this circumstance, the equations of
motion are expressed as

φ′′ + 4A′φ′ = ∂V

∂φ
, (4a)

χ ′′ + 4A′χ ′ = ∂V

∂χ
, (4b)

A′′ = −2

3
(φ′2 + χ ′2), (4c)

A′2 = −1

6
(φ′2 + χ ′2) − 1

3
V, (4d)

where a prime denotes differentiation with respect to the
coordinate y. If we focus on the first-order framework, in
order to obtain first-order differential equations, we write the
potential in terms of a superpotential W = W (φ, χ), such
that

V (φ, χ) = 1

2
W 2

φ + 1

2
W 2

χ − 4

3
W 2, (5)

with Wφ = ∂W/∂φ, and Wχ = ∂W/∂χ . In this case, the
equations of motion are reduced to the following first-order
equations:

φ′ = Wφ, χ ′ = Wχ , and A′ = −2

3
W. (6)

Moreover, the energy can be written in terms of the energy
density in the form

E =
∫ ∞

−∞
ρ(y) dy, (7)

where

ρ(y) = e2A
(
W 2

φ + W 2
χ − 4

3
W 2

)
. (8)

One notes that, for field configurations that solve the first-
order equations, it is possible to write the energy density as

ρ(y) = d

dy
(e2AW ), (9)

and so the total energy vanishes, because asymptotically the
warp factor e2A suppresses the superpotential W (φ, χ), for
the physically acceptable solutions of the first-order equa-
tions.

2.1 Linear stability

In the braneworld context, the general treatment to study sta-
bility of the gravity sector is done through small perturbations
of the metric and the scalar fields. The perturbed metric is

ds2 = e2A(ημν + εhμν)dx
μdxν − dy2, (10)

and the scalars fluctuations are φ → φ + εφ̃ and χ →
χ + εχ̃ . Here hμν = hμν(xμ, y), φ̃ = φ̃(xμ, y), and χ̃ =
χ̃(xμ, y).

Choosing the fluctuations of the metric as transverse and
traceless [10], hμν → h̄μν , the equation of motion for the
fluctuations decouple from the source fields and satisfies a
much simpler form

(∂2
y + 4A′∂y − e−2A�)h̄μν = 0, (11)

where � = ημν∂μ∂ν . Equation (11) can be recast in a
Schrödinger-like form through the change of coordinates
dz = e−A(y)dy and making h̄μν(x, y)=eikxe−3A(z)/2Hμν(z).
Using these arguments, the expression for the metric fluctu-
ations simplifies to

(
− d2

dz2 +U (z)

)
Hμν(z) = k2Hμν(z), (12)

where we introduced the potential

U (z) = 3

2
Ä(z) + 9

4
Ȧ2(z) = 3

4
e2A(2A′′ + 5A′2). (13)

123



Eur. Phys. J. C (2017) 77 :127 Page 3 of 8 127

Here the dot is used to represent derivative with respect to
the coordinate z. With this one writes

− d2

dz2 + 3

2
Ä + 9

4
Ȧ2 =

(
− d

dz
− 3

2
Ȧ

) (
d

dz
− 3

2
Ȧ

)
, (14)

and this shows that Eq. (12) cannot support negative bound
states; thus, k2 ≥ 0 and k is real, rendering the braneworld
scenario stable against fluctuations in the metric.

3 From thick Bloch brane to hybrid Bloch brane

Let us now focus on the hybrid Bloch brane scenario. We first
recall that the Bloch brane scenario suggested in Ref. [14] is
described under the first-order framework, with the choice

W (φ, χ) = φ − 1

3
φ3 − rφχ2 (15)

where r is a real parameter that can vary in the interval
r ∈ (0, 1). In the investigations that follow we introduce
two distinct possibilities that modify the Bloch brane model,
leading to two distinct scenarios that follow the hybrid profile
suggested before in [27,29].

3.1 Model 1

We start with the symmetric model described by the follow-
ing function W :

W (φ, χ) = φ − φ2n+1

2n + 1
− rφχ2, (16)

with n being a positive integer; for n = 1, we get back to
the model [38–40] which reproduces the thick Bloch brane
model [14]. According to Eq. (5), the brane potential presents
the following profiles:

V (φ, 0) = 1

2
(1 − φ2n)2 − 4

3
φ2

(
1 − φ2n

2n + 1

)2

, (17)

V (0, χ) = 1

2
(1 − rχ2)2. (18)

In this case, we see that both V (φ, 0) and V (0, χ) present
spontaneous symmetry breaking, as displayed in Fig. 1, and
this is consistent with appearance of internal structure inside
defects in the above system. Additionally, the vertical cross
section of the potential at χ = 0 possesses a behavior that
induces the presence of compact structures, with V (±1, 0) =
−16n2/3(2n+1)2, which becomes −4/3 for large values of
n.

The solutions of the first-order Eqs. (6) together with their
respective energy densities are shown in Figs. 2 and 3, for

Fig. 1 In the left panel, we display the potential (17) versus φ, for n =
1, 2, 4, 60 depicted with dotted (black), dot-dashed (green), dashed
(red), and solid (blue) lines, respectively. In the right panel we show
the potential (18) versus χ , for r = 0.3

Fig. 2 In the top panel, we display the fields solutions φ(y) (left) and
χ(y) (right). In the bottom panel we show the warp factor exp[2A(y)]
(left) and energy density ρ(y) (right). We consider the same values of
n used in Fig. 1, and we take r = 0.3

various values of n, keeping fixed the parameter r , which
controls interactions between the two scalar fields. These fig-
ures show kink-like solutions for the field φ(x) and lump-like
solutions for χ(x), at the top left and right panels, respec-
tively. They also show the warp factor and the energy den-
sity at the bottom left and right panels, respectively. In the
limit where n is very large, the kink-like solution tends to
become compacted to a finite region of space, into a com-
pact interval, while the lump-like solution remains decaying
asymptotically. When the extra dimension is outside the com-
pact interval, there arises a thin brane behavior, identified by
the non-trivial behavior of the energy density, while a thick
brane is displayed inside the compact space [27–29]. This
is the reason to suggest that the compact-like behavior leads
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Fig. 3 The same solutions, warp factor and energy density of Fig. 2,
displayed for the same values of n, but now with r = 0.99

to the hybrid brane, as was originally suggested in [27] in
the case of a single field. Here, however, one is changing the
Bloch brane [14] into a hybrid Bloch brane.

In particular, we can see in Fig. 3 that, for r very close
to unit, for small values of n one is led to the emergence of
the 2-kink profile for the φ field, and this enlarges the thick-
ness of χ and of the warp factor, splitting the energy density.
These are interesting features, which appear in systems sup-
porting thick branes solutions that develop internal structure
[13,14,16,41], as well as in systems which deal with criti-
cal phenomena of thick branes generated at high temperature
[42,43]. Furthermore, as n increases to larger and larger val-
ues, the 2-kink profile gives rise to new structures, of the form
of two half-compact solutions, as first identified in Ref. [29].
We recall that a half-compact solution behaves as a compact
solution at one side, and as a standard solution at the other
side.

In order to better understand the hybrid Bloch brane pro-
file, we take the limit n → ∞. It gives

W (φ, χ) = φ − rφχ2. (19)

Considering first the case |y| ≤ ȳ, where we designate ȳ as
the point where φ reaches the value 1, the first-order equa-
tions (6) take the form

φ′ = 1 − rχ2, χ ′ =−2rφχ, and A′ = −2

3
φ(1 − rχ2).

(20)

Eliminating y from the two first equations above we have

dφ

dχ
= −1 − rχ2

2rφχ
. (21)

The solution of this equation provides a trajectory on (φ, χ)

plane,

φ2 = c + 1

2
χ2 − 1

r
ln(χ), (22)

where c is an integration constant to be determined. We know
that the component χ is maximum when φ goes toward zero,
because of that we impose φ(y = 0) = 0 and χ(y = 0) =√
r . Then we find

φ2 = 1

2r
ln

(
r

χ2

)
− 1

2
(r − χ2). (23)

Since we are taking 0 < r < 1, we can ensure to have
real fields along the whole trajectory. Having in mind these
premises, we get

φ′ = 1 + W0(−r2e−2rφ2−r2
) (24a)

χ =
√

−1

r
W0(−r2e−2rφ2−r2

), (24b)

A = −1

3
φ2, (24c)

where W0 is the principal branch of the Lambert function
and −r2e−2rφ2−r2 ∈ (−1/e, 0). The solution of φ may be
expressed as a transcendental function,

φ +
√

2π

4

∞∑
k=1

kk−1/2

k! r2k−1/2e−kr2
erf(

√
2krφ) = y. (25)

It implies that

ȳ = 1 +
√

2π

4

∞∑
k=1

kk−1/2

k! r2k−1/2e−kr2
erf(

√
2kr). (26)

Now, we will analyze the situation |y| > ȳ. The first-order
equations are

φ′ = 0, χ ′ = −2r
φ

|φ|χ, and A′ = −2

3

φ

|φ| (1 − rχ2).

Using appropriate boundary conditions, the solutions for
these equations are

φ(y) = y

|y| , (27a)

χ(y) =
√

−1

r
W0(−r2e−2r−r2

)e−2r(|y|−ȳ) (27b)
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Fig. 4 The hybrid Bloch brane for r = 0.3, 0.6, 0.9, 0.99, depicted
with dotted (black), dot-dashed (green), dashed (red), and solid (blue)
lines, respectively. In the top panel, the field solutions φ(y) and χ(y),
and in the bottom panel, the warp factor exp[2A(y)] and energy density
ρ(y)

A(y) = −2

3
(|y| − ȳ) − 1

3
+ 1

6r
W0(−r2e−2r−r2

)

×[e−4r(|y|−ȳ) − 1]. (27c)

In fact, from the last above expression we see the warp factor
decaying as a thin brane when the extra dimension is outside
the compact space [−ȳ, ȳ].

In Fig. 4 we depict the analytical results obtained above,
for some values of r . These results shown an internal struc-
ture being exhibited in the hybrid brane. There is observed
an increase of the brane thickness as r goes to unity. More-
over, as r increases, the compact kink behaves as two half-
compact structures; at the same time there occurs a change of
energy density behavior where a splitting of its maximum into
two new maxima appears, identifying two interfaces induced
by the appearance of internal structure, due to the two half-
compact behavior.

The energy density of the hybrid Bloch brane has a dis-
continuity at |y| = ȳ, given by

ρ(ȳ−) − ρ(ȳ+) = e−2/3[1 + W0(−r2e−2r−r2
)]2, (28)

where ȳ− and ȳ+ symbolize the limits when y tends to ȳ from
left and right sides, respectively. However, it is integrable and
develops zero total energy, once the energy density can be
expressed as in Eq. (9).

3.2 Model 2

Now, we introduce a second type of model which supports
an asymmetric hybrid brane behavior with internal structure.
The model has the following superpotential:

W (φ, χ) = φ − φ2

2
+ φ p+1

p + 1
− φ p+2

p + 2
− rφχ2, (29)

where p is an odd integer, p = 1, 3, 5 · · · . It reproduces the
Bloch brane model [14], for p = 1. The potential for the
brane has the profiles

V (φ, 0) = 1

2
(1 − φ)2(1 + φ p)2

−4

3
φ2

(
1 − φ

2
+ φ p

p + 1
− φ p+1

p + 2

)2

; (30)

V (0, χ) = 1

2
(1 − rχ2)2. (31)

This model is represented in Fig. 5. It satisfies first-order
equations and admits interesting kink-like and lump-like
solutions, depending on the value of the parameter p, as we
now investigate. The study is more complicated in this case,
so we have developed numerical calculations which we show
in Figs. 6, 7, and 8. These figures have a similar meaning to
Figs. 2, 3, and 4, which appeared before for the model 1,
already explained in the previous subsection.

The results show that, for large p, the brane is asym-
metric and hybrid, since it behaves as a thin or thick brane,
depending on the location of the extra dimension y. In par-
ticular, in Fig. 7 one shows that as p increases to larger and
larger values, the 2-kink solution becomes an asymmetric
half-compact structure, differently from the previous model.
Furthermore, the warp factor engenders an asymmetric pro-
file and the energy density has an asymmetric and exotic
behavior, although it also results in the null total energy case.

In Fig. 8 we indicate how internal structure appears in
this hybrid brane scenario. The brane thickness increases as

Fig. 5 In the left panel, we display the potential (30) versus φ for p =
1, 3, 5, 45, depicted with dotted (black), dot-dashed (green), dashed
(red), and solid (blue) lines, respectively. In the right panel, we show
the potential (31) versus χ , with r = 0.3
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Fig. 6 In the top panel, field solutions φ(y) and χ(y). In the bottom
panel, warp factor exp[2A(y)] and energy density ρ(y). For the same
values of p presented in Fig. 5, and r = 0.3

Fig. 7 In the top panel, we display the field solutions φ(y) and χ(y).
In the bottom panel, we show the warp factor exp[2A(y)] and energy
density ρ(y). We consider the same values of p used in Fig. 5, and we
take r = 0.99

r goes to unity. Furthermore, the increase in r leads to the
appearance of an exotic asymmetric structure that behaves as
a half-compact and a standard structure, which contributes
to change the behavior of energy density, with the appear-
ance of two asymmetric maxima (see Fig. 8, bottom panel,

Fig. 8 In the top panel, we display the field solutions φ(y) and χ(y).
In the bottom panel, we show the warp factor exp[2A(y)] and energy
density ρ(y). We consider p = 45, and take r = 0.3, 0.6, 0.9, 0.99,
depicted with dotted (black), dot-dashed (green), dashed (red), and
solid (blue) lines, respectively

right), one related to the half-compact structure and the other
to the standard solution. Although this behavior is obtained
numerically, one can show the hybrid profile of the solution
analytically. To make this point clear, we note from Fig. 8
(top panel, left) that when φ reaches the value −1, which
appears for negative values of y, the field χ and the warp
function behave as

χ(y) = c1(r)e
−2r |y|, (32)

A(y) = −|y| − c1(r)2

6
e−4r |y| + c2(r), (33)

where c1(r) and c2(r) are integration constants, so the warp
factor e2A clearly engenders the thin wall behavior. To see
how this behavior appears, one firstly notes that for φ → −1
and p 	 1 (see Fig. 8, top panel, left) the function in Eq. (29)
becomes W = −3/2 + rχ2; thus, the first-order equation
for χ becomes χ ′ = 2rχ and we can write χ(y) as in the
form shown in Eq. (32). A similar investigation follows for
the warp factor, with the first-order equation given in Eq. (6);
here we have A′ = 1−(2/3)rχ2, which leads to the behavior
shown in Eq. (33).

3.3 Linear stability

We have analyzed the linear stability of the gravity sector of
the two new scenarios, for the two models under consider-
ation. In particular, the two stability potentials that appear
from the two models are displayed in Fig. 9. They support
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Fig. 9 Stability potential of the hybrid Bloch branes for r =
0.3, 0.6, 0.9, 0.99, depicted with dotted (black), dot-dashed (green),
dashed (red), and solid (blue) lines, respectively. In left panel, we
present the stability potential for the model 1, while for the model 2
it is shown in right panel

the zero mode and no other bound state, and they inform us
that the two scenarios are stable under small fluctuations of
the metric.

4 Comments and conclusions

In this work we explored the presence of internal structure in
hybrid braneworld scenarios. We proposed models described
by two real scalar fields coupled to gravity in (4, 1) dimen-
sions with warped geometry, which generate the so-called
Bloch brane. The structure inside the brane is controlled by a
coupling constant that determines the strength of interaction
between the two fields. With this information at hand, we
suggested a mechanism that transforms thick Bloch branes
into hybrid Bloch branes, through the introduction of a new
parameter. Solutions for the source fields, warp factor, energy
density, and stability potential are presented. Moreover, we
addressed one symmetric situation, which develops a split-
ting of the energy density of the brane, and another one,
asymmetric, which provides a similar but now asymmetric
behavior.

The results open new possibilities, for investigations
involving degeneracy and criticality on the symmetric hybrid
Bloch brane, taking into account variations in the orbit (22)
to test the existence of new field solutions, in a way similar
to the studies implemented in Refs. [15,16,20]. Other issues
of interest require further investigations, in particular on how
fermions may be localized on these branes, using different
types of coupling between spinors and scalar fields, follow-
ing the lines of Refs. [17–21,25]. An interesting issue here
concerns fermion localization in the second model, since it
leads to an asymmetric brane, and this may avoid fermion
localization under standard coupling, but this may be solved
with the recent new possibility [44]. Also, one can study the
presence of resonances in both the symmetric and the asym-

metric cases [17,22,26]. It is also of interest to study how
the hybrid Bloch brane scenario changes as one modifies
the internal geometry of the brane [30–32], considering bent
branes of the de Sitter or anti de Sitter type. Another study
of interest concerns modifications of the Newton law, that is,
the investigation of how the parameters n and p, which are
used to build the hybrid Bloch brane scenarios, may modify
gravity in the nonrelativistic limit.

The possibility that our universe is described by a
braneworld has also led to the study of braneworld cosmol-
ogy and the domain-wall/brane-cosmology correspondence,
so it is also of interest to study how the hybrid brane concept
investigated in [27] and in the current work can be embed-
ded into the braneworld cosmology scenario, as it appears,
for instance, in Refs. [33–35].

Inspired by the AdS/CFT correspondence, in recent years
the new concept of holographic cosmology has also being
explored, relying on the study of a class of (3, 1) time-
dependent metrics induced on slices of the (4, 1) dimen-
sional asymptotic AdS5 bulk; for more on this see, e.g.,
Refs. [36,37] and the references therein. An issue of inter-
est appears to be the extension of the hybrid brane concept
to such string-inspired holographic studies. The challenge to
embed the hybrid brane into a bent brane [30–32] is also
of current interest in connection with the construction of
curved brane with regular support, as recently investigated in
Ref. [45]. These and other related issues are now under inves-
tigation, and we hope to report on them in the near future.
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