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Abstract In this paper, we deal with the null geodesics
extending from the near-horizon region out to a distant
observatory in an extremal Kerr–Newman black hole back-
ground. In particular, using the matched asymptotic expan-
sion method, we analytically solve the null geodesics near
the superradiant bound in the form of algebraic equations.
For the case that the photon trajectories are limited in the
equatorial plane, the shifts in the azimuthal angle and time
are obtained.

1 Introduction

The geodesic motion of test particles in a black hole back-
ground is one of the most interesting subjects in general rel-
ativity. Many astronomical phenomena are related with the
geodesic, such as light deflection, perihelion shift of planets,
Shapiro effect, Lense–Thirring effect, black hole shadow, and
so on. In the near future, the LIGO [1], the Event Horizon
Telescope [2], and other experiments [3–5] may have a qual-
itatively new level of precision to explore phenomena near
the black hole horizon.

The Kerr–Newman (KN) black hole solution describes the
gravitational field of a charged and rotating stationary black
hole. Although it is not very likely that the astrophysical
black hole candidates carry a net charge [6,7], such charged
black holes can be formed through a charged stellar collapse
[8,9], brane-world-inspired charge-leaking mechanism [10],
and accretion scenarios [11,12]. The geodesic motion in this
black hole background has been extensively investigated.
For example, the timelike equatorial and spherical orbits of
uncharged particles and the last stable orbit of charged parti-
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cles were studied in Refs. [13,14], respectively. The effects
of back-reaction and observer-independence of the speed of
light for the fast spinning particle was considered in [15].
The motion of charged particles was also investigated in Ref.
[16], while the off-equatorial circular orbits were given in
Ref. [17]. A comprehensive analysis of the photon orbit and
charged particle motion in a KN black hole were presented
in Refs. [18,19]. With the help of the multivariable hyperge-
ometric functions of Appell-Lauricella and the Weierstrass
elliptic functions, the null geodesics of the KN black hole
are solved in a closed form [20]. However, expressing the
geodesics with simple functions is still an interesting issue.

Another theoretical interest as regards the KN black hole
is the KN/CFT (Conformal Field Theory) dualities [21–27],
which are a simple extension of the Kerr/CFT duality [28–
30]. It was also shown that the near-horizon geometry of a
near extremal KN black hole has a warped AdS3 = AdS2 ×
S1 structure, and analytical results for the pair production
were also obtained in Ref. [31].

Very recently, Porfyriadis, Shi, and Strominger [32] con-
sidered the photon emission near extremal Kerr black holes.
They first solved the near-superradiant geodesics analyti-
cally. One hopes to apply such results to a variety of prob-
lems related to the observations of electromagnetic radia-
tion. In this paper, we would like to generalize the result
to the extremal KN black hole spacetime. First, we analyze
the effective potential of the radial motion. We find a criti-
cal point, beyond which the photon emitted near the black
hole horizon can escape the black hole and can be observed
by distant observatories. Then, near this critical point, we
perform the geodesic integrals for both near and far regions.
Finally, matching the solutions in the two regions, we obtain
the analytic result for the extremal KN black hole. Using the
result, observations in a KN spacetime might be analytically
researched.

Our paper is organized as follows. In the next section, we
would like to give a brief review of the geodesic equations
in the KN black hole background and analyze the effective
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potential. In Sect. 3 the null geodesic motion in the r−θ plane
is analytically solved. In Sect. 4, we deal with the motions
in the r − φ and r − t planes. Finally, the paper ends with a
brief summary.

2 Geodesic equations and effective potential

In this section, we would like to consider the geodesic equa-
tions in the background of a KN black hole.

The line element of a KN black hole in Boyer–Lindquist
coordinates (t̂, r̂ , θ, φ̂) is

ds2 = − �

ρ2

(
dt̂ − a sin2 θdφ̂

)2 + ρ2

�
dr̂2 + ρ2dθ2

+ sin2 θ

ρ2

(
adt̂ − (r̂2 + a2)dφ̂

)2
, (1)

where the metric functions are

� = r̂2 − 2Mr̂ + a2 + ê2, ρ2 = r̂2 + a2 cos2 θ. (2)

The vector potential is given by

Aa = êr̂

ρ2 (dt̂ − a sin2 θdφ̂). (3)

The parameter a, ê, and M are the angular momentum,
charge, and mass of the black hole. This black hole solu-
tion originates from the four-dimensional Einstein–Maxwell
action

S = 1

16π

∫
d4x

√−g(R − F2). (4)

The horizons are given by solving the equation � = 0, i.e.,

r̂± = M ±
√
M2 − a2 − ê2. (5)

The extremal black hole is obtained when the two horizons
coincide. The motion of an electrically neutral particle mov-
ing in the KN black hole background is described by the
Lagrangian

L = −1

2
gμν ẋ

μ ẋν, (6)

where a dot over a symbol represents the ordinary differ-
entiation with respect to an affine parameter λ. The affine
parameter is related to the proper time by τ = μλ, which is
equivalent to the normalization condition gμν ẋμ ẋν = −μ2.
The equation of motion is

d2xσ

dτ 2 + �σ
μν

dxμ

dτ

dxν

dτ
= 0, (7)

where �σ
μν is for the Christoffel symbols for the KN black

hole. Solving it, the equation of motion will be [33]
∫ r̂ dr̂ ′

√
R̂

=
∫ θ dθ ′

√
�̂

, (8)

φ̂ =
∫ r̂ a Êr̂ ′2 + (L̂ − aÊ)(� − a2)

�
√
R̂

dr̂ ′

+
∫ θ L̂ cot2 θ ′

√
�̂

dθ ′, (9)

t̂ =
∫ r̂ Ê r̂ ′2(r̂ ′2 + a2) + a(L̂ − aÊ)(� − r̂ ′2 − a2)

�
√
R̂

dr̂ ′

+
∫ θ a2 Ê cos2 θ ′

√
�̂

dθ ′, (10)

with

R̂ =
(
Ê(r̂2 + a2) − L̂a

)2

−�(μ2r̂2 + (L̂ − aÊ)2 + Q), (11)

�̂ = Q − cos2 θ
(
a2(μ2 − Ê2) + L̂2/ sin2 θ

)
, (12)

where Ê , L̂ , and Q are the energy, angular momentum, and
Carter constant, respectively. When the black hole charge
ê = 0, the result for the Kerr black hole will be recovered.
Next, we will consider the null geodesics in an extremal KN
black hole background, i.e.,

μ2 = 0, a2 = M2(1 − e2). (13)

Here e = ê/M is the dimensionless black hole charge, and
we require 0 ≤ e ≤ 1. The motion of a particle in the radial
direction can be expressed in a classical form [13]
(

ρ2 dr̂

dτ

)2

+ Veff = 0, (14)

with the effective potential Veff = −R̂. For a classical
motion, we require Veff ≤ 0 or R̂ ≥ 0. The turning point
occurs at Veff = 0 or R̂ = 0, at which the test particle has
a zero radial velocity. We plot the effective potential Veff

against r̂ in Fig. 1 by taking e = 0.2, L̂/MÊ = 4 and
Q/M2 Ê2 = 3 as an example. For this case, the effective
potential has two zero points at r̂1 = 1.34M and r̂2 = 3.32M .
The peak of the potential is at r̂ p = 2.58M . Note that the
horizon is located at r̂h = M . For the photons coming from
far region, they will stop at the point r̂2 and be reflected to
infinity. And the photons emitted near the black hole horizon
will be reflected at the point r̂1, and be absorbed by the black
hole. However, the region r̂ ∈ (r̂1, r̂2) is forbidden for such
photons with such L̂ and Q. There exists a special bound that
the peak of the potential is shifted to the horizon, which will
remove the region (r̂h, r̂ p). Beyond this bound, the photons
emitted near the horizon will freely travel to infinity without
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Fig. 1 Effective potential Veff as a function of r with e = 0.2,
L̂/MÊ = 4 and Q/M2 Ê2 = 3

any turning point. Therefore, the photons will not have the
chance to return back and take more energy from the black
hole. This case is similar to the superradiant case used for an
amplitude enhancement effect from the interaction between
black holes and waves. In this paper, we will consider these
trajectories near such a bound in a KN black hole background.
Moreover, such a special bound can be obtained by solving
R̂ = ∂r̂ R̂ = 0.

We define as did in Ref. [32] a small dimensionless param-
eter

λ = 1 −
√

1 − e2

1 − e2/2
· L̂

2MÊ
� 1. (15)

This result will recover the superradiant bound for the Kerr
black hole with e = 0. For λ < 0, the photons emitted
near the black hole horizon will be reflected back by the
potential, and could not approach infinity. Meanwhile when
λ > 0, these photons can escape the black hole. Thus λ = 0
is a critical case. Here we expect to study the null geodesics
with small λ. More interestingly, as did for the Kerr black
hole [32], the geodesics (8)–(10) for the photons with small
λ emitted from the near-horizon region are analytically solv-
able to leading order in λ.

Let us introduce the dimensionless Bardeen–Horowitz
coordinates,

t = t̂

2M
, φ = φ̂ − t̂

2M
, r = r̂ − M

M
. (16)

After this coordinate transformation, the extremal black hole
horizon is shifted to r = 0. On the other hand, the energy
Ê can be scaled out of the null geodesic with the shifted
dimensionless Carter constant,

q2 = 3 − 4e2

1 − e2 − Q

M2 Ê2

<
4(1 − λ + λ2)

1 − e2 + λ2e4 − 2e2(2 − λ + 2λ2)

1 − e2 , (17)

where we have expressed the positivity of the kinetic energy
in a local frame in the last inequality. In the equatorial plane,

the photon trajectories have q = (3−4e2)

(1−e2)
. Here we are inter-

ested in the photon trajectories starting at (tn, rn, θn, φn)

near the horizon and ending at (t f , r f , θ f , φ f ), where a dis-
tant telescope locates. Then the geodesic equation can be
expressed in terms of the new coordinates (16) as

∫ r f

rn

dr√
R

=
∫ θ f

θn

dθ√
�

, (18)

φ f −φn = −1

2

∫ r f

rn

�dr

r2
√
R

+1

2

∫ θ f

θn

2(2−e2)(1−λ)−(1−e2)3/2 sin2 θ√
1 − e2

√
� tan2 θ

dθ,

(19)

t f −tn = 1

2

∫ r f

rn

T dr

r2
√
R

+ 1

2

∫ θ f

θn

(1−e2) cos2 θ√
�

dθ, (20)

where

R = r4 + 4r3 + (1 − e2)q2 + λ(2 − e2)2(2 − λ)

1 − e2 r2

+4(2 − e2)λr + (2 − e2)2λ2,

� =
(

(3 − q2) + e2(q2 − 4) + (1 − e2)2 cos2 θ

−(2 − e2)2(1 − λ)2 cot2 θ

)
/(1 − e2),

� = r4+4r3+ 7
√

1−e2+4λ−4−e2(2λ+√
1−e2−2)√

1 − e2
r2

+
(

4
(

1−
√

1−e2
)
+4λ − 2e2(1+λ)

)
r

+(2−e2)
[
2(1−

√
1−e2)−e2

]
λ,

T = r4+4r3+(7−e2)r2+2(1+λ)(2−e2)r+(2−e2)2λ.

The integrals of (18)–(20) can be expressed with elliptic func-
tions and are treated numerically (for details see Ref. [20]).
However, in this paper, we will follow the technique of Ref.
[32] to analytically perform the integrals to the leading order
in the small parameter λ with the matched asymptotic expan-
sions (MAE) method. The spacetime is divided into different
regions [32]:

Near region: r � 1, (21)

Far region: r � √
λ, (22)

Overlap region:
√

λ � r � 1. (23)

Next, we will first solve these equations in the near and far
regions, respectively, and then match them in the overlap
region.
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3 The r–θ motion

In this section, we deal with the radial integral

I =
∫ r f

rn

dr√
R(r)

. (24)

This integral is also equal to that along the θ motion, I =∫ θ f
θn

dθ√
�

. Taking the MAE approximation, we have

R(r) ≈ r4 + 4r3 + q2r2+4λ(2 − e2)r + (2 − e2)2λ2.

(25)

In the near and far regions, one has

Rn(r) = q2r2 + 4λ(2 − e2)r + (2 − e2)2λ2, (26)

R f (r) = r2(r2 + 4r + q2). (27)

In the far region, the turning points in the radial motion occur
at

r f ± = −2 ±
√

4 − q2. (28)

This result is the same as that of the extremal Kerr black hole.
We require that the photon can penetrate the near region from
the far one, there must be no turning point, and thus we take

q2 > 0. (29)

In the near region, the turning points are at

rn± = (2 − e2)λ

q2

(
−2 ±

√
4 − q2

)
. (30)

If 0 < q2 < 4, there will be two turning points if and only if
λ is negative. These geodesics originating from the horizon
will turn back before they arrive at the far region, which is
because the superradiant bound is exceeded. However, if the
geodesic starts outside the turning points, then it can reach
the far region. On the other hand, when q2 ≥ 4, there will
be no turning point outside the horizon for both negative
or positive λ, and these photons can reach the far region.
Therefore, when the condition (29) is satisfied, the geodesics
with positive λ can approach the horizon from a far region,
while these with negative λ will not get all the way to the
black hole horizon.

Now we can perform the radial integrals both in the near
and far regions,

In(r)=
∫ r dr ′

√
Rn(r ′)

= 1

q
ln

(
q
√
Rn(r) + q2r + 2λ(2 − e2)

)
+ Cn, (31)

I f (r)=
∫ r dr ′

√
R f (r ′)

=− 1

q
ln

1

r2

(
q
√
R f (r) + q2r + 2r2

)
+ C f , (32)

with Cn and C f the integration constants. In the overlap
region, the radial integrals are

In(r) = 1

q

(
ln r + ln 2q2 + qCn + 2λ(2 − e2)

q2r
+ · · ·

)
,

(33)

I f (r) = 1

q

(
ln r − ln 2q2 + qC f − 2r

q2 + · · ·
)

. (34)

Taking the match in the overlap region, i.e., In = I f , we have

C f = Cn + 2

q
ln 2q2. (35)

This condition is the same as that of the Kerr black hole given
in Ref. [32]. Using it, we are allowed to calculate the integral
(24) for the photon starting from the near region to the far
one, which is given by

I = I f (r f ) − In(rn)

= − 1

q
ln

(qD f +q2 + 2r f )(qDn + q2rn + 2λ(2 − e2))

4q4r f
,

(36)

where

Dn = √
Rn(rn)

=
√
q2r2

n + 4λ(2 − e2)rn + (2 − e2)2λ2, (37)

D f = 1

r f

√
R f (r f ) =

√
r2
f + 4r f + q2. (38)

4 The r–φ and r–t motions

To leading order in λ via MAE, we have

�=r4+4r3+
(

7− 4√
1−e2

+e2
( 2√

1−e2
−1

))
r2

+
(

4
(

1 −
√

1 − e2
)

+ 4λ − 2e2(1 + λ)
)
r

+λ(2 − e2)
(

2(1 −
√

1 − e2) − e2
)

, (39)

T =r4+4r3+(7−e2)r2+2(2−e2)r+λ(2−e2)2. (40)

One can proceed to solve the radial integrals for the motion

Iφ =
∫ r f

rn

�

r2
√
R(r)

, I t =
∫ r f

rn

T

r2
√
R(r)

. (41)

In the near region, one has

�n =
(

7 − 4√
1 − e2

+ e2
(

2√
1 − e2

− 1

))
r2

+
(

4
(

1 −
√

1 − e2
)

+ 4λ − 2e2(1 + λ)
)
r

+λ(2 − e2)
(

2
(

1 −
√

1 − e2
)

− e2
)

, (42)

Tn = 2(2 − e2)r + (2 − e2)2λ. (43)
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In the far region, it gives

� f =r4+4r3+
(

7− 4√
1−e2

+e2
(

2√
1−e2

−1

))
r2,

T f = r4+4r3+(7−e2)r2+2(2−e2)r.

Now, all integrals can be performed,

Iφ
n (r) =

∫ r �n(r ′)
r ′2√Rn(r ′)

dr ′

= −4 + 7
√

1 − e2 + e2(2 − √
1 − e2)

q
√

1 − e2

× ln

(
q
√
Rn(r) + q2r + 2(2 − e2)λ

)

−2 ln
1

r

(√
Rn(r) + 2r + 2λ − e2λ

)

− (2 − e2 − 2
√

1 − e2)
√
Rn(r)

(2 − e2)rλ
+ Cφ

n , (44)

Iφf (r) =
∫ r �n(r ′)

r ′2
√
R f (r ′)

dr ′

= −−4 + 7
√

1 − e2 + e2(2 −
√

1 − e2)

q
√

1 − e2

× ln
1

r2

(
q
√
R f (r) + q2r + 2r2

)

+2 ln
1

r

(√
R f (r) + r2 + 2r

)

+1

r

√
R f (r) − 2(2 − e2 − 2

√
1 − e2)

×q
√
R f (r)+2r2(2 ln r−ln(q

√
R f (r)+q2r+2r2))

q3r2

+Cφ
f , (45)

I tn(r) =
∫ r Tn(r ′)

r ′2√Rn(r ′)
dr ′ = − 1

λr

√
Rn(r) + Ct

n, (46)

I tf (r) =
∫ r T f (r ′)

r ′2√R f (r ′)
dr ′

= −7q2 − 8 + e2(4 − q2)

q3

× ln
1

r2

(
q
√
R f (r) + q2r + 2r2

)

+2 ln
1

r

(√
R f (r) + r2 + 2r

)

+q2r − 2(2 − e2)

q2r2

√
R f (r) + Ct

f , (47)

where Cφ,t
n and Cφ,t

f denote the integration constants. In the
overlap region, we have

Iφ
n (r) = 1

q

[
7
√

1−e2−4+e2(2−√
1 − e2)√

1 − e2
(ln r + ln 2q2)

+q(Cφ
n − 2 ln(q + 2))

+2λ(2−e2)((7−q2)
√

1−e2+e2(2−√
1−e2)−4)

q2r
√

1 − e2

−2 − e2 − 2
√

1 − e2

2(2 − e2)

×
(

4(2−e2)

r
+ 2q2

λ
− (2−e2)2(4−q2)λ

q2r2

)
+· · ·

]
,

(48)

Iφ
f (r) = 1

q

[
7
√

1 − e2 − 4 + e2(2 − √
1 − e2)√

1 − e2
(ln r − ln 2q2)

+q(Cφ
f + 2 ln(q + 2)) + q2

+24(
√

1 − e2 − 1) + 10q2

q4
√

1 − e2
r

− (4 − q2)(4q2
√

1 − e2 − 3e2(2 − √
1 − e2))

q4
√

1 − e2
r

−2(2−e2−2
√

1−e2)
q2+2r+2r ln( r

2q2 )

q2r
+· · ·

]
, (49)

I tn(r) =−1

q

[
q2

λ
−qCt

n+ 4 − 2e2

r
+ λ(2−e2)2(q2−4)

2q2r2 +· · ·
]

,

(50)

I tf (r) = − 1

q

[
2(2 − e2)

r
− 7q2 − 8 + e2(4 − q2)

q2 ln r

+ (7q2 − 8 + e2(4 − q2)) ln 2q2 − q4 + 8 − 4e2

q2

−q(Ct
f + 2 ln(q + 2))

−4(q4 − 4q2 + 6) − 3e2(4 − q2)

q4 r + · · ·
]
. (51)

Matching Iφ,t
n = Iφ,t

f , the relations between the integration
constants are

Cφ
f = Cφ

n + 2
4(1 − √

1 − e2) + (7
√

1 − e2 − 4)q2

√
1 − e2q3

ln 2q2

−2
e2(2 − q2)(2 − √

1 − e2)√
1 − e2q3

ln 2q2

−4 ln(2 + q) − 2(1 + λ − √
1 − e2) − e2(1 + λ)

(2 − e2)λ
q

+4(2 − e2 − 2
√

1 − e2)

q3 , (52)

Ct
f = Ct

n − q

λ
− 2 ln(q + 2)

−q4 + 4e2 − 8 − (7q2 − 8 + e2(4 − q2)) ln 2q2

q3

≈ Ct
n − q

λ
. (53)
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Then the integrals in Eq. (41) are

Iφ = −−4 + 7
√

1 − e2 + e2(2 − √
1 − e2)

q
√

1 − e2

× ln
1

r f
(qDn+q2rn+2(2−e2)λ)(qD f +2r f +q2)

+2 ln
1

rn
(Dn + 2rn + (2 − e2)λ)(D f + r f + 2)

+D f + 4(1−√
1 − e2)+(7

√
1 − e2 − 4)q2

√
1 − e2

ln 4q4

q3

−e2(2 − √
1 − e2)(q2 − 2)√
1 − e2

ln 4q4

q3 − 4 ln(q + 2)

−2(1 + λ − √
1 − e2) − e2(1 + λ)

λ(2 − e2)
q

+2 − e2 − 2
√

1 − e2

q3

(
4 − 2qD f

r f
+ q3Dn

rnλ(2 − e2)

+4 ln
1

r f
(qD f + 2r f + q2)

)
, (54)

I t = 2 ln(D f + r f + 2)

−7q2 − 8 + e2(4 − q2)

q3 ln
1

r f
(qD f + 2r f + q2)

+q2r f − 2(2 − e2)

q2r f
D f + 1

λrn
Dn − q

λ
. (55)

Finally, we can get the integrals in Eqs. (19) and (20) when
the θ integrals drop. In particular, for the case that the photons
are limited in the equatorial plane (θ = π/2), the shifts in
the azimuthal angle φ and time t can be calculated as

φ f − φn = −1

2
Iφ

∣∣
q=

√
3−4e2

1−e2

, (56)

t f − tn = 1

2
I t

∣∣
q=

√
3−4e2

1−e2

. (57)

For the case that the photons are emitted from a distant source,
pass by near a black hole, and finally are observed by a distant
observer, their deflection angle and time delay can be mea-
sured with Eqs. (56) and (57) if the photon trajectories are
limited in the equatorial plane. Correspondingly, we assume
one endpoint is near the photon sphere of the black hole and
the other one is located at infinity; then we have the deflec-
tion angle and time delay in the strong gravitational limit for
the photons

�φ = 2(φ f − φn) − π, (58)

�t = 2(t f − tn), (59)

where the factor 2 comes from the symmetry analysis of the
geodesics.

5 Summary

In this paper, we considered a special class of null geodesics
in an extremal KN black hole background. Adopting the
matched asymptotic expansion method, we performed the
integrals for the null geodesic and derived the algebraic equa-
tions; see Eqs. (36), (54), and (55). These equations are
parameterized by (λ, q) given in (15) and (17). They relate
two endpoints, one is near the horizon (tn, rn, φn) and another
is located at a far region from the black hole (t f , r f , φ f ). The
photons are free of the polar angle when they move from the
near region to the far one. A stronger constraint is that the
photon trajectory is limited in the equatorial plane θ = π/2,
which is also a simple requirement when considering the
strong black hole lensing.

As pointed out in Refs. [32,34], the parameter � must be
positive. For the extremal Kerr black hole, θ must be in the
region θ ∈ (47◦, 133◦). While for the extremal KN black
hole, such region is modified by the black hole charge. For
example, the condition 3 + (1 − e2) cos2 θ − 4 cot2 θ ≥ 0
must be held, which implies that θ should lie between

θ0 = arccos

√√
e4+48−6−e2

2(1−e2)
and π − θ0. When the black

hole charge vanishes, it recovers the region for the Kerr
black hole. On the other hand, when the black hole charge
approaches its maximum e = 1, the region will approxi-
mately be (49◦, 131◦). A detailed analysis suggests that this
region shrinks with the increase of the black hole charge.

Since our analysis of the null geodesics shows that near
the critical point the photons can escape from the black hole,
many astronomical phenomena are related with it, such as
black hole lensing and shadow. So using the analytical results
obtained in this paper, one can consider these phenomena in
an analytical way for the extremal black hole.
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