Eur. Phys. J. C (2017) 77:110
DOI 10.1140/epjc/s10052-017-4678-z

THE EUROPEAN
PHYSICAL JOURNAL C

@ CrossMark

Regular Article - Theoretical Physics

Thermodynamic geometry and phase transitions of dyonic

charged AdS black holes

Pankaj Chaturvedi'?, Anirban Das?°, Gautam Sengupta®

I Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
2 Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Rd, Mumbai 400005, India

Received: 16 December 2016 / Accepted: 3 February 2017 / Published online: 17 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract We investigate phase transitions and critical phe-
nomena of four dimensional dyonic charged AdS black holes
in the framework of thermodynamic geometry. In a mixed
canonical-grand canonical ensemble with a fixed electric
charge and varying magnetic charge these black holes exhibit
a liquid—gas like first order phase transition culminating in
a second order critical point similar to the van der Waals
gas. We show that the thermodynamic scalar curvature R for
these black holes follow our proposed geometrical character-
ization of the R-crossing Method for the first order liquid—gas
like phase transition and exhibits a divergence at the second
order critical point. The pattern of R crossing and divergence
exactly corresponds to those of a van der Waals gas described
by us in an earlier work.

1 Introduction

In the last two decades the investigation of the thermodynam-
ics of black holes has evolved into one of the most crucial
issues in the study of quantum theories of gravity [1-8]. The
thermodynamics of asymptotically anti de Sitter (AdS) black
holes has assumed critical importance in this context owing
to the famed AdS/CFT duality. Although a complete under-
standing of the microscopic statistical basis of black hole
thermodynamics has eluded a clear explanation the study of
the thermodynamics of AdS black holes has revealed a rich
variety of phase structures and critical phenomena [9—12].
Remarkably in [10—13] an interesting similarity between the
phase diagrams of electrically charged Reisner Nordstrom
(RN) AdS black holes and that of a van der Waals fluid could
be established.
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In a completely different context a geometrical approach
to thermodynamics and phase transitions has been developed
through the work of Weinhold [14,15] and Ruppeiner [16].
In this framework a Riemannian geometry with a Euclidean
signature for classical thermodynamic fluctuations, may be
defined for the equilibrium thermodynamic state space of
any thermodynamic system. The probability distribution of
such fluctuations in a Gaussian approximation could then be
related to the positive definite invariant interval defined by
this geometry. It was found that the thermodynamic scalar
curvature arising from this equilibrium state space geome-
try encodes the microscopic interactions underlying the ther-
modynamic system. From standard scaling and hyperscaling
arguments it was possible to show that the thermodynamic
scalar curvature was directly proportional to the correlation
volume of the system whereas, it is inversely proportional to
the singular part of the free energy which is associated with
the long range correlations [16]. It is for this reason that the
thermodynamic scalar curvature diverges at the critical point
of a second order phase transition where the singular part of
the free energy vanishes. This direct connection between the
thermodynamic scalar curvature and the microscopic correla-
tion length make this geometrical framework extremely suit-
able for the description of black hole thermodynamics where
a complete microscopic structure is still an elusive issue. In
fact the application of this framework has provided interest-
ing insights into the thermodynamics of both non-extremal
and extremal black holes [17-28]. Although the geometrical
framework described characterized second order phase tran-
sitions through the divergence of the thermodynamic scalar
curvature, a similar characterization based on the thermody-
namic curvature, for first order phase transitions was lacking.
One of the authors (GS) in the collaborations [29-31] showed
that the thermodynamic scalar curvature exhibited a multiple
valued branched structure similar to the free energy at a first
order phase transition which could be used for their charac-
terization. Application of this to the study of liquid—gas like
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first order phase transitions for a large class of asymptotically
AdS black holes provided a confirmation of this alternative
characterization. Following this in [32] a complete alterna-
tive geometrical characterization for first order phase transi-
tion, phase coexistence and supercritical phenomena could
be established in the framework of thermodynamic geome-
tries. This characterization extended Widom’s [33] micro-
scopic approach based on the correlation length to describe
first order phase transitions, to propose the equality of the cor-
relation length in the coexisting phases. In the framework of
thermodynamic geometries the above characterization trans-
lates to the equality of the thermodynamic scalar curvature
R for the coexisting phases. This essentially amounted to
the crossing of the branches of the multiple valued curvature
R for the coexisting phases. This R-crossing formula [32]
applied to conventional simple fluids as an alternative to the
Maxwell equal area construction or the equality of the free
energy, showed remarkable correspondence with experimen-
tal data. Additionally this framework [32] also provided a first
theoretical method for the construction of the Widom line,
the locus of the maxima of the correlation length in the super-
critical regime. The Widom line serves as a line of dynamical
crossover for fluid properties that seems to retain the memory
of the distinct subcritical phases [33—36]. Thus our construc-
tion led to a complete unified geometrical framework for the
characterization of subcritical, critical, and supercritical phe-
nomena based on the thermodynamic scalar curvature and
has led to interesting further applications [37].

Following earlier studies of the thermodynamics of elec-
trically charged AdS black holes [10,11,13] in [38] the
authors have investigated the thermodynamics of dyonic
charged AdS black holes [39] in four dimensions which
involves both electric and magnetic charges. These dyonic
charged black holes are solutions to the equations of motion
of a Einstein-Maxwell theory with a negative cosmologi-
cal constant. In [38] the cosmological constant A is consid-
ered as the thermodynamic pressure [40] and it was shown
that in a mixed canonical-grand canonical ensemble with a
fixed magnetic charge and a varying electric charge the black
hole undergoes a liquid—gas like first order phase transition
culminating in a critical point that resembles the phase dia-
gram of a van der Waals fluid [41]. A similar result is also
expected to follow for the fixed electric charge and varying
magnetic charge scenario due to the symmetrical fashion in
which the charges occur in the Smarr formula for the black
hole mass. As these black holes exhibit first order phase tran-
sitions in mixed ensembles it is naturally interesting to study
the phase structure using the thermodynamics scalar curva-
ture R referred earlier in the framework of thermodynamic
geometries. In this article we investigate the thermodynamic
geometry of such dyonic charged AdS black holes in four
dimensions using mixed canonical-grand canonical ensem-
bles and study their phase transition and critical phenomena.
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However, in our analysis we adopt a more conventional ther-
modynamic approach without considering the cosmological
constant as a thermodynamic pressure. Remarkably a study
of the thermodynamics of this simpler case also reproduces
the first order phase transition and critical phenomena in a
mixed ensemble similar to that observed in [38] where the
cosmological constant is considered as the thermodynamic
pressure. In particular we implement our R-crossing formula
for the thermodynamic scalar curvature R to characterize
the phase coexistence in the first order liquid—gas like phase
transition for dyonic charged AdS black holes and show that
the curvature R diverges at the critical point in accordance
with the conclusions in [29-32]. It is also to be noted that
our study of the thermodynamic geometry of dyonic charged
AdS black holes constitutes the first example where the R-
crossing formula for the thermodynamic scalar curvature R
is used to characterize the phase coexistence in the first order
phase transition for such black holes.

This article is organized as follows: in Sect. 2 we briefly
review the four dimensional dyonic charged AdS black holes
as solutions to the equation of motion of a Einstein Maxwell
AdS action. In Sect. 3 we discuss the thermodynamics of
these dyonic charged AdS black holes in a more conventional
scenario without considering the cosmological constant as a
thermodynamic pressure and reproduce the first order phase
transition and critical phenomena described in [38]. In Sect.
4 we briefly review the essential elements of thermodynamic
geometries and employ this geometrical framework to inves-
tigate the thermodynamics and phase transitions of the four
dimensional dyonic charged AdS black holes and implement
the R crossing method to characterize the first order liquid—
gas like phase transition for these black holes. In Sect. 5 we
present a summary of our results and discussions including
future open issues.

2 Dyonic black holes

In this section we briefly review the dyonic charged black
hole solutions to the equations of motion of the Einstein
Maxwell theory in a four dimensional AdS space time as
described in [38]. The action for this theory may be expressed
as

1 6 1

where R is the scalar curvature, F},, is the electromagnetic
field strength tensor and / is the AdS length scale which we set
to unity for further computations. Moreover, we also set the
gravitational constant G, speed of light ¢, reduced Planck
constant 2, Coulomb constant k, and the Boltzmann con-
stant kg to unity which corresponds to expressing the phys-
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ical quantities in natural (Planckian) units. The equations of
motions may be written down as

1 3 1 p
Ry — 2g R+ — 12 =2 M)LF —ZF apF 2)
VMF‘“) =0. 3)

A static spherically symmetric solution to the equations of
motion is

2
ds? = — f(r)de> + }1( ) + r2do? + r*sin® 0de>, )
2 2
f(r)—1+l—2——+%r+2q'”, 5)
A, dx* =g, (ri - —) dt + (g cos0)dg, (6)
+

where A, g, gm, and M are identified as the electromag-
netic four-potential, electric charge, magnetic charge, and
mass of the black hole, respectively. The quantity r4 is the
outer horizon radius of the black hole given by the zeroes of
the lapse function f(r) described above.

A dyonic black hole is associated with a dyonic charge
that involves both an electric (¢, ) and a magnetic (g, ) charge
[13,38]. The presence of magnetic charge leads to a corre-
sponding magnetic potential (¢;,;) in addition to the electric
potential (¢.). The expression for electric potential (¢, ) may
be given by

. 11
¢e=¢E—q7=qe(———), )

r4+ r

where ¢r may be defined as the asymptotic value of the
electric potential measured at infinity.

3 Thermodynamics of dyonic charged black holes

It is now well established that in a semi classical framework,
black holes may be considered as thermodynamic systems
characterized by a Hawking temperature 7 and an entropy
S. For the case of the four dimensional dyonic charged AdS
black hole these may be expressed in the natural units as

2
ro L ¥ % ®)
 Adnmr 2 2 220
+ + +
S =mrl. ©)

The first law of black hole thermodynamics in this case
may be written down as

dM = Tds + ¢p.dq. + ¢ndgpm, (10)

where T and S represent the Hawking temperature and the
entropy of the dyonic charged AdS black hole respectively.

Using this the Smarr formula for the mass M of the black
hole in terms of s, g, and g, using Eq. (5) may be obtained
as in [38]:

M=l T (S g (11)
“oVs Ty e T )

Following [29] we have scaled out the AdS length scale
[, which does not figure in our subsequent analysis. To ana-
lyze the thermodynamics of the dyonic charged AdS black
hole we consider a mixed ensemble that is grand canonical
with respect to the varying electric charge g, but canonical
with respect to the magnetic charge g,,, which is fixed. Since
both the magnetic and the electric charges enter in the Smarr
relation given by Eq. (11) in a symmetric fashion, hence the
alternative mixed ensemble with a varying magnetic charge
gm and fixed electric charge ¢, is expected to have an identical
thermodynamic behavior and does not need to be considered
separately. Using the Smarr formula the Hawking tempera-
ture 7 may be expressed as

dM 11 7202 + a2
K_4—2—;[3S + s — (g, +qp)]. (12)
T

The Gibbs free energy specific to the mixed ensemble
involving a varying electric charge ¢, and a fixed magnetic
charge gy, is as follows:

G=M—=Ts—¢cqe. 13)

where ¢, is the fixed electric potential.
Itis now possible to express the Gibbs free energy G given
above in terms of the variables ¢, ¢, and S as

- #\Emzqﬁ, — 2+ 7S —¢2)). (14)

Similarly the temperature of the dyonic charged AdS black
hole may now be expressed in terms of the variables S, ¢,
and ¢, as

(— 7'[26]2 + 352+ 7(s — s¢2))
4(ms)3/?

T = (15)

Now using these Egs. (14) and (15) for the Gibbs free
energy and the Hawking temperature it is straightforward to
obtain the variation of the Gibbs free energy G with respect
to the temperature 7" as shown in Fig. 1. The plot for the free
energy G shows a typical multiple valued branched swallow-
tail behavior characteristic of a first order phase transition
at a certain temperature 7'. This behavior disappears as the
value of the magnetic charge ¢,, is increased demonstrating
the culmination of the subcritical phase coexistence to a crit-
ical point of a second order phase transition. This may be
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Fig. 1 Plots of G with T. The red, green, blue and the brown curves
correspond to (¢, = 0.6, g, = 0.095), (9. = 0.6, g, = 0.1), (¢ =
0.6, g = 0.107), and (¢, = 0.6, g, = 0.13) respectively

S

Fig. 2 T vs. S plot for different values of g,,. The red, green, blue
and the brown curves correspond to values of ¢, = 0.095, ¢,, = 0.1,
gm = 0.107 and g,, = 0.13 respectively

observed from the Fig. 1 where the blue curve corresponds
to the free energy near the critical point. The red curve in
Fig. I corresponds to the value g, = 0.095 for the magnetic
charge which is below the critical value g,, = 0.107. The
subcritical red curve possesses three distinct branches that
form the typical swallowtail structure for the fixed value of
the magnetic charge g,, = 0.095 whereas above the critical
value g, = 0.107 this structure disappears. It may be noted
that the qualitative nature of the plots do not change with the
variation of electric potential ¢,.

The first order phase transition described here occurs
between the two distinct phases typified by small and large
black holes characterized by their (outer) horizon radius 4,
as shown in Fig. 2, where the temperature 7 is plotted against
the entropy S. Branch I or the ‘small black hole’ branch here
corresponds to the ‘liquid-like’ phase and branch III or the
‘large black hole’ branch corresponds to the ‘gas-like’ phase
in relation to a the usual liquid—gas phase transition. The
three branches of the red curve in the 7S plot labeled I, II
and III correspond to the three respective branches of the red
curve in the G—T plot displayed in Fig. 1. As one increases
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the temperature 7' the system moves along branch I, reaches
the point of crossing of branch I and branch III, jumps to
branch III and continues along that branch. Branch II is least
favored as it corresponds to a higher free energy G than the
other two branches at any given temperature 7. As is well
known this branch corresponds to a meta-stable state where
the specific heat becomes negative. As one proceeds beyond
the critical point, branch II disappears and this corresponds
to the usual uniform supercritical phase. Notice that in the
limit g, — O, the resulting black hole is essentially a con-
ventional electrically charged RN-AdS black hole in a grand
canonical ensemble, i.e. with fixed ¢,. In this limit the only
possible phase transition is the usual Hawking—Page transi-
tion [5,9] between a thermal AdS space time and a black hole
solution. In this limit the small black hole branch coincides
with the 7' axis in the G-T plot.

4 Thermodynamic geometry of a dyonic charged black
hole

In this section we briefly collect the relevant results of ther-
modynamic geometry and then procced to obtain the ther-
modynamic geometry and the scalar curvature of the dyonic
charged black hole in the mixed canonical-grand canonical
ensemble elucidated earlier. As mentioned in the introduc-
tion it is possible to associate a curved Riemannian geometry
with an Euclidean signature based on the fluctuations of the
thermodynamic variables in the equilibrium state space of
the system. The positive definite invariant line element for
this geometry is then related to the probability distribution of
the fluctuations connecting such equilibrium thermodynamic
states in a Gaussian approximation. The Riemannian met-
ric describing this geometry may be obtained from the ther-
modynamic potential appropriate to the representation being
considered. In the entropy representation [32], the metric is
given by the Hessian of the total entropy S = S(U, V, N)
with respect to the extensive variables with the volume V
held fixed and U, N being the internal energy and the num-
ber density, respectively. The metric may be represented as

9%s

- 16
dxHoxV (16)

8uv =

where x* are the extensive variables which serve as the coor-
dinates in the state space subject to the condition dS > 0 in
accordance with the second law of thermodynamics and s
is the combined entropy of the system and its surroundings.
The volume V is considered to be infinite in the thermody-
namic limit and in this case s may be considered to be just the
entropy of the system only. Alternatively in the energy rep-
resentation [14,15], the thermodynamic metric is obtained
from the Hessian of the internal energy U with respect to the
extensive variables and may be expressed as
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Using scaling and hyperscaling arguments the thermody-
namic scalar curvature R obtained from this metric may be
shown to be proportional to the correlation volume of the
system as

R~ &%, (18)

where £ is the correlation length and d is the physical dimen-
sion of the system. Thus the thermodynamic scalar curvature
R actually relates to the underlying microscopic interactions
with R = 0 describing a non-interacting microscopic basis.

For our case of the four dimensional dyonic charged AdS
black hole in the mixed canonical-grand canonical ensem-
ble it is convenient to use the energy representation due to
Weinhold [15] to obtain the thermodynamic metric. From the
Smarr formula Eq. (11) the extensive variables which serve
as the coordinates for the geometry are x* = {s, ¢} the elec-
tric charge and the entropy respectively. Here the magnetic
charge g, is held fixed. The thermodynamic metric may then
be expressed as

1 °M 19
810 = T g (19
It is to be noted that the internal energy of the black hole is
determined to be its ADM mass M in the formulation for
black hole thermodynamics which we are using.
The corresponding metric components in this representa-
tion with the coordinates x* = {s, g.} may be expressed as
follows:

372 (g2 4+ q2) — 7s + 352

8ss = ’
U 25 (—w2 (g2 +q2) + 75 +352)
o 27%q,
85qc = 8qes = ) (qe2 4 qr%l) + s + 352’
472
g‘hﬂe = (20)

—n2 (g2 4+ q2) +7s + 352

From the metric in the energy representation in Eq. (20)
using the preceding formula the thermodynamic scalar curva-
ture R in terms of the variables s, ¢, and g, may be expressed
from the standard Riemannian geometry formulation as

N

Ba

N = (%qp, + 35134 (g2 + qp)> + 73 (=3¢] + q)s
+127t2(qe2 + 36],%1)S2 — 975> + 9s4),

D = s(rrz(qe2 + 3q31) — s+ 3s2)2(—n2(q3 + qi)
+7s 4 3s2). (21)

R =—

For our purpose of analyzing the phase structure of the
four dimensional dyonic charged black hole it would be con-
venient to express the thermodynamic scalar curvature R in
terms of the alternative variables s, ¢, and g, as

A

Ea

A= (nzq,zn + 3s2)(37r4q,i +95% + 3753 (=3 + 4¢e2)
32 s(1+ 692) + 312521262 — ¢ + o)),

B = s(3n%q2 4 35> + ws(—1 4+ ¢2)*(—n2q>
4352 + (s — 5p2)). (22)

R=—

The phase structure of the dyonic charged black hole may
now be investigated by studying the variation of the thermo-
dynamic scalar curvature R with the temperature 7 using
Egs. (22) and (15).! A comparison of the plots for the free
energy of the dyonic charged AdS black hole in Fig. 1 and
those for the thermodynamic scalar curvature R with the
temperature 7 in Fig. 3 clearly shows the correspondence
between the two. As mentioned earlier the thermodynamic
scalar curvature R is a multivalued function of the thermody-
namic parameters in the neighborhood of a first order phase
transition similar to the free energy G. The red curve in
Fig. 1 for the value of the magnetic charge ¢g,, = 0.095
corresponds to the subcritical regime accordingly has three
distinct branches moving in the direction of the increasing
temperature 7 we first encounter the branch on the left that
corresponds to the ‘small black hole’ phase (I). As the tem-
perature 7 is increased, the system moves toward the right in
the graph to reach the first order phase transition temperature
at T = 0.2137 where the ‘small black hole’ branch (I) and
the ‘large black hole’ branch (III) intersect each other form-
ing a ‘swallowtail’. At this temperature, the black hole makes
a transition from the ‘small black hole’ phase to the ‘large
black hole’ phase. As the temperature is further increased
the system continues along the branch corresponding to the
‘large black hole’ phase.

Now from the red curve for the value of the magnetic
charge g, = 0.095 shown in Fig. 3a for the R vs. T plot a
behavior similar to that of the red curve in free energy G vs.
the temperature 7" plot described above may be observed. In
this plot also, in Fig. 3a moving in the direction of the increas-
ing temperature 7 the branch on the left that corresponds to
the ‘small black hole’ phase (I) is first encountered. As the
temperature 7 is further increased, the system moves toward
the right to reach the first order phase transition temperature
at T = 0.2174 where the ‘small black hole’ branch (I) and
the ‘large black hole’ branch (III) intersect each other. For
higher temperatures the system continues along the branch

! Notice that in these plots, the R axes have been scaled down by a
factor of 100 and the 7" axes are scaled up by the same factor to present
the important features within a small region.
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Fig. 3 Plots of R with T for ¢, = 0.6. The plots a, b with red and
green curves are for g,, = 0.095 and g,, = 0.1, respectively, while the
blue curve in plot c¢ is for critical value g, = 0.107. In these plots, the
R axes have been scaled down with a factor of 100 and the T axes are
scaled up by the same factor to bring the important features of the plots
within a suitable region

corresponding to the‘large black hole’ phase. In Table 1 we
summarize the values of the first order phase transition tem-
peratures Ty obtained from the free energy G vs. the tempera-
ture T plots in Fig. 1 and the thermodynamic scalar curvature
R vs. T plots in the Fig. 3. It may be noted from the preced-
ing table that the difference in the values of the temperature
Ty for the first order phase transition obtained from both the
G-T plots and the R-T plots, respectively, matches up to the
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Table 1 Table showing the values of the temperature Ty for the first
order phase transition obtained form both the G—T plots and the R—T
plots for a fixed value of ¢, = 0.6 and varying values of g,

$e =0.6 gm = 0.095 gm =0.1 gm = 0.107
T; (Gvs. T) 0.2137 02115 0.2077
T (Rvs. T) 0.2174 0.2125 0.2077

second decimal place. At this point it must be emphasized
that the first order phase transition temperature obtained from
the free energy G vs. the temperature 7" plot essentially cor-
responds to the Maxwell construction signifying equal free
energy in the coexisting phases. Whereas the corresponding
temperature obtained from the thermodynamic scalar curva-
ture R vs. the temperature T plot through the crossing of the
distinct branches is characterized by the R crossing method
proposed by us as an alternative to the Maxwell construction
outlined in [29,30,32]. This essentially corresponds to the
equality of the correlation length & in the coexisting phases
proposed as an extension of Widom’s microscopic approach
to phase transitions. It also must be emphasized here that
unlike the subject of black hole thermodynamics where no
experimental results are available for comparison our alter-
native R crossing method for characterization of a first order
phase transition exhibits a better fit with experimental data
for simple fluids as described in [32].

Further observe now from the plots for the thermodynamic
scalar curvature R vs. temperature 7 that upon increasing
the value of the magnetic charge g,,, the ‘small black hole’
branch (I) and the ‘large black hole’ branch (III) recede away
from each other as one approaches criticality. At the critical
point the crossing of the two branches of the thermodynamic
scalar curvature R completely disappear resulting in a diver-
gence of R as predicted by Eq. (18). The blue curve in Fig.
3 corresponds to the critical point of phase transition which
clearly shows that both branches of the thermodynamic scalar
curvature extend to infinity.

It may be observed from Table 1 that the thermodynamic
scalar curvature diverges at a critical temperature which
matches well with the critical temperature obtained from the
free energy G vs. temperature 7 plot (1). In other words the
critical value of the temperature obtained from the thermody-
namic scalar curvature R vs. the temperature T plot in Fig.
3c almost coincides with the value of the critical tempera-
ture obtained from the free energy G vs. the temperature T
plot corresponding to the blue curve in Fig. 1. Beyond the
critical point the distinct subcritical phases of the small and
large black holes disappear resulting in a uniform supercrit-
ical phase exactly similar to the case of a liquid—gas phase
transition. Notice, however, that, for the case of fluids as
described in [32], the fluid retains the memory of the subcrit-
ical phases across a locus of the maxima of the correlation
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length which is termed the Widom line in the literature, which
serves as a crossover line for dynamical fluid properties and
divides the supercritical regime into a liquid like and gas like
region. The significance of such a Widom line in black hole
thermodynamics, however, is not quite clear although just as
in [32] it is possible to construct the Widom line through the
locus of the maxima of the thermodynamic scalar curvature
R in the supercritical regime.

5 Summary and discussions

In summary we have investigated the thermodynamics, phase
transition and critical phenomena of four dimensional dyonic
charged AdS black holes using the framework of thermody-
namic geometries. Unlike [38] where the cosmological con-
stant is considered as the thermodynamic pressure in our
study we have adopted a more conventional approach where
the cosmological constant is a fixed parameter for the black
hole solution. In this context we have reproduced the first
order liquid—gas like phase transition with coexisting phases
in this more simple scenario using a mixed canonical-grand
canonical ensemble where the magnetic charge is held fixed
and the electric charge is allowed to vary. Due to the sym-
metrical appearance of the electric and the magnetic charge
in the Smarr formula, in the alternative setting of a fixed elec-
tric charge and varying magnetic charge the thermodynamic
behavior is expected to be identical and does not merit a sep-
arate analysis. Our analysis in this simpler scenario for the
Gibbs free energy as a function of the temperature clearly
reproduces the typical swallowtail feature characterizing the
first order liquid—gas like phase transition and coexistence
between a small and a large black hole phase in the subcriti-
cal regime.

The thermodynamic metric for the dyonic charged black
hole is then obtained in the more convenient Weinhold picture
as a Hessian of the internal energy with respect to the entropy
S and the electric charge g,. The thermodynamic scalar cur-
vature R for this black hole is then obtained using standard
Riemannian geometric techniques for the Ricci scalar. Anal-
ysis of the variation of the thermodynamic scalar curvature R
as a function of the temperature T clearly demonstrates the
expected branching behavior signifying a first order phase
transition. The plot of R vs. the temperature 7 exhibits the
crossing of the branches at the first order phase transition
temperature and the fixed value of the magnetic charge g,
in accordance with our R crossing method that serves as an
alternative to the conventional Maxwell construction. The
value of the magnetic charge for the first order phase transi-
tion obtained through the R crossing method compares favor-
ably with and is almost identical to that obtained from the
usual Maxwell construction and the equality of the Gibbs free
energy G for the coexisting phases. For a further increase of

the magnetic charge away from the subcritical regime for
the first order phase transition values finally leads to a crit-
ical point signifying a second order phase transition where
the thermodynamic scalar curvature R exhibits an expected
divergence. The branching and subsequent crossing behavior
leading to a divergence at the critical point of the thermody-
namic scalar curvature R is completely similar to that for the
van der Waals gas described in [29,42].

Our analysis clearly establishes and further corroborates
our approach for studying the phase structure of AdS black
holes in the framework of thermodynamic geometry and
proves our proposal for the R crossing method as an alter-
native to the conventional Maxwell construction and equal-
ity of the Gibbs free energy required for phase coexistence.
An important open problem for future investigation in this
scenario is to implement the framework of thermodynamic
geometry to describe extended black hole thermodynamics
which includes the cosmological constant as a thermody-
namic pressure. In addition it would be interesting to con-
struct the Widom line in the supercritical regime through the
locus of the maxima of the thermodynamic scalar curvature
Rmax as suggested by us and investigate the significance of
this Widom line in the context of black hole phase transitions.
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