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Abstract In this paper we utilise the Krori–Barua ansatz
to model compact stars within the framework of Einstein–
Gauss–Bonnet (EGB) gravity. The thrust of our investiga-
tion is to carry out a comparative analysis of the physical
properties of our models in EGB and classical general rela-
tivity theory with the help of graphical representation. From
our analysis we have shown that the central density and cen-
tral pressure of EGB star model is higher than the GTR star
model. The most notable feature is that for both GTR and the
EGB star model the compactness factor crosses the Buchdahl
(Phys Rev 116:1027, 1959) limit.

1 Introduction

Modeling stars within the framework of Einstein’s theory
of gravity has occupied researchers for a century. The first
exact solution of the Einstein field equations was obtained
by Schwarzschild in 1916. This solution describes the exte-
rior vacuum spacetime of a spherically symmetric body. In
the same year, Schwarzschild presented the interior solution
describing the gravitational behavior of a uniform density
sphere [1]. Since then, hundreds of exact solutions of the clas-
sical field equations describing static fluid spheres have been
obtained in which the energy-momentum tensor describing
the matter distribution incorporated anisotropy, bulk viscos-
ity, electromagnetic field, scalar field, dark energy, and the
cosmological constant. Various techniques ranging from ad
hoc assumptions of the gravitational potentials, specifying an
equation of state, spacetime symmetry, conformal flatness, to
name a few, have been employed to solve the field equations
[2–6]. A systematic study of the physical viability of these
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solutions have been carried out by Delgaty and Lake [7] who
showed that only a few classes of available solutions are
capable of describing realistic stellar configurations. Many
of these results have later been extended to higher dimensions
[8]. Interestingly, the dimensionality of spacetime apparently
influences the stability of these fluid spheres. With astronom-
ical observations of compact objects becoming more precise
and data sets of neutron stars and strange stars being readily
available, a new and invigorated search for exact solutions
of the 4-D Einstein field equations are being carried out. In
the recent past, there has been an explosion of such solu-
tions describing compact objects which adequately fit obser-
vations. Observational data on mass-to-radius ratio, redshift
and luminosity profiles are some of the key characteristics
for testing the physical validity of these models. One of the
objectives of these models is to fine-tune the equation of state
in the high density regime. Apart from classical barotropic
equation of state p = ωρ, where ω is a constant, many mod-
els are being developed based on our current understanding
of particle physics. The MIT bag model first proposed by
Chodos et al. [9] has been widely used in modeling ‘strange
stars’ composed of u, d and s quarks [1,10,11]. The Chap-
lygin equation of state [12] incorporating dark energy into
the stellar fluid configuration has been employed to model
compact objects ranging from quark stars through to neutron
stars. While these models are successful in accounting for
observational data of compact objects, one cannot ignore the
fact that gravitational behavior (metric functions) and ther-
modynamical behavior (energy-momentum tensor) can be
tweaked by hand to align them with observations. Therefore,
the fundamental question to be asked is whether classical
general relativity is sufficient to account for observed stellar
characteristics. In other words, can certain, if not all, stellar
features reside in higher-order theories of gravity?

The behavior and dynamics of the gravitational field can
be extended to higher dimensions in a natural way. An ele-
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gant and fruitful generalization of classical general relativ-
ity is the so-called Einstein–Gauss–Bonnet (EGB) gravity
which arises from the incorporation of an additional term
to the standard Einstein–Hilbert action, which is quadratic in
the Riemann tensor. Varying this additional term with respect
to the metric tensor only produces a system of second-order
equations which are compatible with classical general rela-
tivity [13]. In standard 4-D, EGB and Einstein gravity are
indistinguishable. The departure from the standard 4-D Ein-
stein gravity occurs in higher dimensions. There have been
many interesting results in the 5-D EGB theory ranging from
the vacuum exterior solution due to Boulware and Deser [14]
through to generalization of the Kerr–Schild vacuum solu-
tion. The dynamics of gravitational collapse and the resulting
end-states in EGB gravity has also received widespread atten-
tion. The study of a spherically symmetric inhomogeneous
dust (as well as null dust) in EGB gravity with α > 0 was
shown to alter the causal structure of the singularities com-
pared to the standard 5-D general relativistic case [15]. The
result is, in fact, a counter example of the cosmic censor-
ship conjecture. The study of Vaidya radiating black-holes
in EGB gravity has revealed that the location of the horizons
is changed as compared to the standard 4-D gravity [16].
The universality of Schwarzschild’s uniform density solu-
tion was established using EGB gravity and later extended to
Lovelock gravity [17,18]. The Buchdahl inequality for static
spheres has been extended to 5-D EGB gravity [19]. It was
shown that the sign of the Einstein–Gauss–Bonnet coupling
constant plays a crucial role on the mass-to-radius ratio. An
interesting result of the investigation was that one could pack
in more mass in 5-D EGB compared to standard 4-D Einstein
gravity to achieve stability [20]. Despite the non-linearity of
the field equations, several exact solutions in 5-D EGB grav-
ity have recently been found. The classic isothermal sphere
has been generalized to 5-D EGB gravity. Just as in the 4-D
case, the 5-D EGB models exhibit a linear barotropic equa-
tion of state [21,22].

In 4-D gravity, one of the exact solutions which has
got much attention is the Krori and Barua [23] solution. It
is a solution of the Einstein–Maxwell system describing a
spherically symmetric charged fluid sphere. The gravitational
potentials are finite everywhere within the stellar distribution
and the matter variables are well behaved [24]. Consequently,
the Krori–Barua (KB) solution has been used by many
authors to model compact objects within the framework of
Einstein’s gravity. Several researchers have utilized various
equations of state, ranging from the MIT bag model through
to the generalized Chaplygin gas together with the KB ansatz
to model compact stars such as Her X − 1, 4U1820 − 30,
SAX J1808.4 − 3658, 4U1728 − 34, PSR0943 + 10, and
RX J185635 − 3754 [12,25–27]. In this work, we intend
to extend the KB solution to 5-D EGB gravity. The motiva-
tion for this modification is to analyze the effects, if any, of

the EGB term on stability, compactness and other physical
features of compact stellar objects.

2 Einstein–Gauss–Bonnet gravity

The Gauss–Bonnet action in five dimensions is written as

S =
∫ √−g

[
1

2
(R + αLGB)

]
d5x + Smatter, (1)

where α is the Gauss–Bonnet coupling constant. The strength
of the action LGB lies in the fact that despite the Lagrangian
being quadratic in the Ricci tensor, Ricci scalar, and the Rie-
mann tensor, the equations of motion turn out to be second
order quasi-linear and compatible with the standard Einstein
formalism of gravity. The Gauss–Bonnet term is of no con-
sequence for n ≤ 4 but is generally nonzero for n ≥ 5.

The EGB field equations may be written as

Gab + αHab = Tab, (2)

with metric signature (−++++) where Gab is the Einstein
tensor. The coupling constant α is related to the inverse string
tension arising from the low energy effective action of string
theory and to this end we consider α ≥ 0. The Lanczos tensor
is given by

Hab = 2
(
RRab − 2RacR

c
b − 2Rcd Racbd + Rcde

a Rbcde

)

−1

2
gabLGB, (3)

where the Lovelock term has the form

LGB = R2 + Rabcd R
abcd − 4Rcd R

cd . (4)

In the above formalism we use geometric units with the cou-
pling constant κ set to unity.

3 Field equations

The 5-dimensional line element for a static spherically sym-
metric spacetime has the standard form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2

+ sin2 θ sin2 φ2dψ2), (5)

in coordinates (xi = t, r, θ, φ, ψ). For our model the energy-
momentum tensor for the stellar fluid is taken to be

Tab = diag (−ρ, pr , pt , pt ) , (6)

where ρ, pr , and pt are the proper energy density, radial
pressure, and tangential pressure, respectively. By consider-
ing the comoving fluid velocity as ua = e−νδa0 , the EGB
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field equations (6) yield the following set of independent
equations:

8πρ = 3

e4λr3

(
4αλ′ + re2λ − re4λ − r2e2λλ′ − 4αe2λλ′) ,

(7)

8πpr = 3

e4λr3

[
−re4λ + (r2ν′ + r + 4αν′)e2λ − 4αν′] , (8)

8πpt = 1

e4λr2

(
−e4λ − 4αν′′ + 12αν′λ′ − 4α(ν′)2

)

+ 1

e2λr2

(
1 − r2ν′λ′ + 2rν′ − 2rλ′ + r2(ν′)2

)

+ 1

e2λr2

(
r2ν′′ − 4αν′λ′ + 4α(ν′)2 + 4αν′′) , (9)

where ρ, pr and pt , respectively denote the matter density,
radial and transverse pressure of the fluid. Note that a (′)
denotes the differentiation with respect to the radial coordi-
nate r .

4 A particular solution

We observe that Eqs. (6)–(8) correspond to a system of three
linearly independent equations with five unknowns, namely
ρ, pr , pt , λ and ν. To analyze behavior of the physical param-
eters, we assume that the metric potentials are given by the
Krori and Barua [23] solution,

2λ(r) = Ar2, 2ν(r) = Br2 + C,

where A, B, and C are undetermined constants which can be
obtained from the matching conditions.

Consequently, the matter density and the two pressures
are obtained:

8πρ = 3e−2Ar2

r2

[
−4Aα + e2Ar2 +eAr

2
(

4Aα + Ar2 − 1
)]

(10)

8πpr = 3e−2Ar2

r2

[
−4αB−e2Ar2 +eAr

2
(

1 + 4αB + Br2
)]

,

(11)

8πpt = e−2Ar2

r2

[
−e−2Ar2 − 4αB

{
1 + (B − 3A)r2

}]

+e−Ar2

r2

[
1 + 4αB + {B(3 + 4αB)

− 2A(1 + 2αB)} r2 + B(B − A)r4
]
. (12)

The anisotropy 
 = pt − pr is obtained:

8π
 = e−2Ar2

r2

[
2e2Ar2 + 4αB

{
2 + (3A − B)r2

}]

−e−Ar2

r2

[
2 + 2Ar2 + (A − B)Br4

+ 4αB
{

2 + (A − B)r2
} ]

. (13)

5 Exterior spacetime and matching conditions

The static exterior spacetime in 5-D is described by the
Einstein–Gauss–Bonnet–Schwarzschild solution [14]

ds2 = −F(r)dt2 + [F(r)]−1dr2 + r2
(

dθ2 + sin2 θdφ2

+ sin2 θ sin2 φ2dψ2
)

, (14)

where

F(r) = 1 + r2

4α

(
1 −

√
1 + 8αM

r4

)
. (15)

In (15) M is associated with the gravitational mass of the
hypersphere.

Using continuity of the metric functions and their deriva-
tives, namely grr , gtt and ∂gtt

∂r across the boundary r = R we
get

e−AR2 = 1 + R2

4α

(
1 −

√
1 + 8αM

R4

)
,

eBR2+C = 1 + R2

4α

(
1 −

√
1 + 8αM

R4

)
,

2BeBR2+C = − 1

2α

1 −
√

1 + 8αM
R4√

1 + 8αM
R4

.

Solving the above set of equations we obtain the model
parameters as

A = − 1

R2 ln

[
1 + R2

4α

(
1 −

√
1 + 8Mα

R4

)]
, (16)

B = − 1

4α

1 −
√

1 + 8αM
R4√

1 + 8αM
R4

1

1 + R2

4α

(
1 −

√
1 + 8Mα

R4

) , (17)

C = ln

[
1 + R2

4α

(
1 −

√
1 + 8Mα

R4

)]
− BR2. (18)

The values of the model parameters should be such that the
system remains regular and well behaved.
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6 Features and results

A physically acceptable model should have the following
features:

1. The energy density ρ and two pressures pr and pt should
be positive inside the star. Also, the radial pressure must
vanish at a finite radial distance while the tangential pres-
sure pt need not vanish at the boundary. The radial vari-
ation of density and pressure have been shown in Figs. 1
and 2, respectively. We have

dρ

dr
= −3e−2Ar2

4πr3

[
eAr

2
(

4A2r2α + A2r4 − Ar2 + 4Aα − 1
)

− 4Aα(1 + 2Ar2) + e2Ar2
]
,

dpr
dr

= −3e−2Ar2

4πr3

[
eAr

2
(
Ar2 + 4Ar2αB + ABr4 + 1 + 4αB

)

− 4αB(1 + 2Ar2) − e2Ar2
]
.
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Fig. 1 Matter density ρ plotted against the radial distance r . The
description of the curves is as follows: red small dashed line, black
medium dashed line, brown long dashed line, blue dot-dashed line and
orange solid line for α = 0, α = 10, α = 15, α = 30 and α = 50,
respectively by fixing A = 0.0042 and different values of B mentioned
in Table 1
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Fig. 2 Radial pressure pr plotted against the radial distance r . The
description of the curves is the same as in Fig. 1
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Fig. 3 Transverse pressure pt plotted against the radial distance r . The
description of the curves is the same as Fig. 1
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Fig. 4 Anisotropic factor 
 plotted against the radial distance r . The
description of the curves is the same as Fig. 1

It is clear that dpr
dr < 0 and dρ

dr < 0, both in EGB gravity
and in GTR. It is important to note that EGB predicts
higher values for the density and radial pressure as the
strength of the EGB coupling constant increases. Fig-
ure 3 illustrates the behavior of the tangential pressure as
a function of the radial coordinate. We observe a pecu-
liar behavior of the tangential pressure within the core.
For some radius 0 ≤ r < r0 we observe that the tan-
gential pressures in EGB models dominate the tangential
pressure in the GTR model. At some radius r = r0 the
tangential pressures are independent of α and are equal in
magnitude. For r > r0 the tangential pressures decrease
with an increase in α, with GTR dominating the EGB
models.

2. Figure 4 shows that anisotropy is zero at the centre, i.e.,

(r = 0) = 0 and it increases toward the surface. We
also observe that as α increases the anisotropy decreases
at each interior point of the configuration. The effect of
the Einstein–Gauss–Bonnet term is to diminish the rela-
tive difference between the radial and tangential stresses.
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Fig. 5 (pr + 2pt )/ρ plotted against radial distance r . The description
of the curves is the same as in Fig. 1
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Fig. 6 Radial sound velocity v2
r plotted against the radial distance r .

The description of the curves is the same as Fig. 1

This may be a possible mechanism to achieve pressure
isotropy within the stellar interior.

3. Figure 5 shows that the trace of stress tensor (pr + 2pt )
decreases radially outwards both in EGB gravity as in
GTR which is a desirable feature for a fluid sphere.

4. For a physically acceptable model, it is expected that
the radial sound speed v2

r (= dpr
dρ

) and transverse sound

speed v2
t (= dpt

dρ
) should be causal, i.e., we should have

0 < v2
r ≤ 1 and 0 < v2

t ≤ 1. We have shown graphically
that both in EGB gravity and GTR, the causality condition
is not violated at any point within the stellar interior (see
Figs. 6, 7). It is evident that in EGB gravity, the radial
sound speeds take higher values as compared to their
GTR counterparts.

6.1 Energy conditions

Let us now check whether our anisotropic stellar model sat-
isfies the following energy conditions:
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Fig. 7 Transverse sound velocity v2
t plotted against the radial distance

r. The description of the curves is the same as Fig. 1
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Fig. 8 v2
t − v2

r plotted against the radial distance r. The description of
the curves is the same as in Fig. 1

(i) NEC : ρ ≥ 0. (19)

(ii) WEC : ρ − pr ≥ 0, ρ − pt ≥ 0. (20)

(iii) SEC : ρ − pr − 2pt ≥ 0. (21)

In Figs. 9, 10 and 11, we have shown graphically that all the
energy conditions are satisfied for the assumed set of values
of the model parameters, in both EGB and GTR models.

6.2 Adiabatic index and stability

The stability of a relativistic anisotropic sphere is related to
the adiabatic index Γ , the ratio of two specific heats is defined
by Chan et al. [28],

Γ = ρ + pr
pr

dpr
dρ

. (22)

Bondi [29] has shown that Γ > 4/3 is the condition for the
stability of a Newtonian sphere and Γ = 4/3 being the con-
dition for a neutral equilibrium. This condition changes for
a relativistic isotropic sphere, due to the regenerative effect
of pressure, which renders the sphere more unstable, and
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Fig. 9 WECr plotted against radial distance r . The description of the
curves is the same as in Fig. 1
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Fig. 10 WECt plotted against radial distance r . The description of the
curves is the same as in Fig. 1
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Fig. 11 Verification of strong energy condition. The description of the
curves is the same as in Fig. 1

requires a stiffer material to reach the equilibrium. For an
anisotropic general relativistic sphere, the situation becomes
more complicated, because the stability will depend on the
type of anisotropy. For an anisotropic relativistic sphere, the
stability condition is given by,
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Fig. 12 The adiabatic index Γr plotted against r . The description of
the curves is the same as in Fig. 1
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Fig. 13 The adiabatic index Γt plotted against r . The description of
the curves is the same as in Fig. 1

Γr , Γt >
4

3
+

[
4

3

(pt0 − pr0)

|p′
r0|r

+ 4π
ρ0 pr0

|p′
r0|

r

]
, (23)

where Γr and Γt are defined as,

Γr = ρ + pr
pr

dpr
dρ

, Γt = ρ + pt
pt

dpt
dρ

(24)

and pr0, pt0, and ρ0 are the initial radial, tangential, and
energy density in static equilibrium. The first and last terms
inside the square brackets, the anisotropic and relativistic
corrections, respectively, being positive quantities, increase
the unstable range of Γ [28,30]. In Figs. 12 and 13, it has
been shown that Γr , Γt > 4/3 everywhere within the stellar
interior in GRT and in EGB gravity.

To check the stability of the configuration, we follow the
cracking (or overturning) method of Herrera [30] which sug-
gests that a potentially stable region is one where the inequal-
ity v2

t −v2
r < 0 holds. In Fig. 8, we have shown the difference

of v2
t −v2

r do not change sign which clearly indicates that the
configuration is stable for the assumed set of values. More-
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Table 1 The numerical values
of B, central density (ρc),
surface density (ρs), central
pressure (pc) and mass (M�)

are obtained by fixing
A = 0.0042 and radius of the
star = 8 km and varying the
coupling constant α

α B (km−2) ρc (gm cm−3) ρs (gm cm−3) pc (dyne cm−2) M�

0 0.00481865 1.35294 × 1015 1.11020 × 1015 8.96776 × 1034 12.0486

5 0.00448807 1.40976 × 1015 1.14828 × 1015 9.64062 × 1034 10.6038

10 0.00419993 1.46658 × 1015 1.18636 × 1015 1.02271 × 1035 10.9805

15 0.00394657 1.52341 × 1015 1.22445 × 1015 1.07428 × 1035 11.3571

20 0.00372203 1.58023 × 1015 1.26253 × 1015 1.11998 × 1035 11.7338

25 0.00352166 1.63705 × 1015 1.30061 × 1015 1.16076 × 1035 12.1104

30 0.00334177 1.69388 × 1015 1.33869 × 1015 1.19738 × 1035 12.4871

35 0.00317936 1.75070 × 1015 1.37678 × 1015 1.23044 × 1035 12.8637

40 0.00303201 1.80752 × 1015 1.41486 × 1015 1.26043 × 1035 13.2404

45 0.00289771 1.86435 × 1015 1.45294 × 1015 1.28776 × 1035 13.6170

50 0.00277480 1.92117 × 1015 1.49103 × 1015 1.31278 × 1035 13.9937

over, the Andréasson’s condition |v2
t − v2

r | < 1 (Fig. 8) is
also satisfied [31] both in GTR as well as in EGB gravity.

In order to test the robustness of our approach in mod-
eling compact objects within the framework of EGB and
GTR gravity theories we utilize the following prescription.
We observe that we have five unknowns, viz., A, B, M, R
and α and three equations. Let us fix the radius of the star
at R = 8 km in both EGB and GTR models. We have cho-
sen A = 0.0042 km−2 so that the central density becomes
∼ 1015 gm cm−3. By varying the EGB coupling constant,
0 ≤ α ≤ 50, we generate corresponding values for the con-
stant B and masses for the respective models. These are pre-
sented in the Table 1. It is clear from the figures and the table
that there are non-negligible differences between EGB and
GTR compact objects. An interesting feature that comes out
strongly in this study is that we can pack in more mass for
a given radius with increasing EGB coupling constant thus
leading to higher densities of compact stars in the EGB for-
malism. These observations may give us some insight into
the nature of matter in higher dimensions.

7 Discussion

Gravitational theories with higher derivative curvature terms
developed in the context of string theory in particular, have
long been an area of great research attraction. Studies of grav-
itational behavior in dimensions n > 4 have often been found
to yield many non-trivial and interesting results. Of particular
interest is the Einstein–Gauss–Bonnet gravity in which the
Lagrangian includes a second-order Lovelock term as the
higher curvature correction to GTR. Several vacuum solu-
tions in 5-dimensional Einstein–Gauss–Bonnet gravity have
been found and applied in astrophysics and cosmology. How-
ever, it is extremely difficult to generate interior solutions
corresponding to star like systems in higher dimensions due
to complex nature of the field equations and lack of sufficient

information as regards the equation of state (EOS) of the mat-
ter content of the system. In this paper, rather than providing
new solutions, we have developed the 4-dimensional Krori
and Barua stellar solution in the context of EGB gravity and
analyzed the impacts of the higher derivative correction term
on the gross physical behavior of a relativistic star. Based
on physical requirements, bounds on the model parameters
have been identified. Within the admissible bounds, physi-
cal characteristics of the solution in EGB gravity have been
analyzed. In Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13,
we have shown graphicallly impacts of the higher derivative
coupling term α on physically relevant quantities. It is to be
noted that the α = 0 case corresponds to 5-dimensional Ein-
stein analog of EGB gravity. It turns out that the coupling
constant α in EGB gravity has non-negligible effects on the
physical quantities such as energy density and pressure of
the star. Implication of our results, in the context of current
observational data of relativistic compact stars, needs to be
probed further and will be taken up elsewhere.
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