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Abstract We study the thick brane world system con-
structed in the recently proposed f (R, T ) theories of grav-
ity, with R the Ricci scalar and T the trace of the energy-
momentum tensor. We try to get the analytic background
solutions and discuss the full linear perturbations, especially
the scalar perturbations. We compare how the brane world
model is modified with that of general relativity coupled to a
canonical scalar field. It is found that some more interesting
background solutions are allowed, and only the scalar pertur-
bation mode is modified. There is no tachyon state existing in
this model and only the massless tensor mode can be localized
on the brane, which recovers the effective four-dimensional
gravity. These conclusions hold provided that two constraints
on the original formalism of the action are satisfied.

1 Introduction

The fundamental idea of a brane world [1–6] is that the vis-
ible universe is localized on a 3-brane which is embedded
in a higher-dimensional bulk. A renowned realization is the
Randall–Sundrum (RS) brane world model [5]. There, the
five-dimensional geometry is a slice of AdS5 due to the neg-
ative cosmological constant in the bulk. In such a geometry,
the massless graviton is trapped on the brane. As a conse-
quence, the four-dimensional gravity can be recovered even
when the extra dimension is infinitely large. This subverts
the conventional wisdom that Newton’s law means only four
non-compact dimensions.

An interesting question is that whether this holds for mod-
ified gravity theories. This is the motivation of this paper. In
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this paper, we consider an RS-like brane world model in mod-
ified gravity theory. We use a specific source field instead of
the cosmological constant in the original RS model to con-
struct a warped geometry. This actually leads to a domain
wall configuration [7–24]. Note that there is no gravity in the
original domain wall model considered by Rubakov and Sha-
poshnikov [25]. Usually, in this work one considers a canon-
ical scalar field for simplicity. There is also work where a
noncanonical scalar field (or K-field) was considered [26–
31], which would lead to some interesting background solu-
tions and Kaluza–Klein graviton structures (gravity reso-
nances). The models with multiple scalar fields can be found
in Refs. [32–34]. Recently, an attempt to get a domain wall
with an interacting vector field was made in [35]. There, the
vector field coupled to gravity nonminimally, resulting a nor-
malizable gravity zero mode. What is more interesting, it was
shown that it is possible to get a domain wall even without
both source field and cosmological constant, namely pure
geometrical brane [36–39]. These models are based on the
modifications of the geometry sector of the Einstein equation,
such as f (R) gravity. Inspired by this work, we expect to get
a domain wall (thick brane) model in modified gravity theory.

In this paper, we consider the f (R, T ) gravity theo-
ries [40]. This is a special type of modified gravity theory
in the sense that it introduces an arbitrary coupling between
gravity and source field. As stated in [40], the energy-
momentum tensor may not be conserved, which implies that
the massive particles would not follow the geodesics. In addi-
tion, this gravity model has major differences in cosmology
and gravitational collapse. Some more work on cosmology
with this gravity theory can be found in Refs. [41–49]. The
thick brane world model of this theory was considered in
Ref. [50], and some solutions and the stability of tensor mode
were touched.

We will not consider a general f (R, T ) in this work.
Instead, we will consider a special class of this theory,
namely, f (R, T ) = R + F(T ). We have particular interests
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in this theory because it can be regarded as a class of the gen-
eral K-field theory with L(X, φ) = K (X, φ)−V (φ) [51,52],
which can drive inflation with general initial data. Here X
denotes the kinetic term of the scalar field φ. In Refs. [29,30],
the special K-field with L(X, φ) = K (X) − V (φ) was used
to build domain walls, and some interesting results were
obtained. It is straightforward to see that the theory we will
consider is of the L(X, φ) = K (X, φ) − V (φ) type. To see
whether the four-dimensional gravity can be recovered, we
would like to investigate the full linear gravitational perturba-
tions. The effective four-dimensional gravity can be recov-
ered only when the massless tensor mode is localized on
the brane, and the vector and scalar modes are not local-
ized, since the normalizable massless scalar mode or vector
mode would lead to a “fifth force”. Except the recovering of
four-dimensional gravity, another purpose is to study how the
brane world model is modified by replacing R with R+F(T ),
at both the background and the perturbation levels. As is well
known, the evolutions of perturbations are related to the back-
ground configuration, so it is necessary to get the background
solutions at first.

We review the f (R, T ) gravity theory and its equation of
motion in Sect. 2, and try to get the background solutions
of the brane model with f (R, T ) = R + F(T ). In Sect. 3,
we investigate the full linear perturbations with the scalar-
vector-tensor decomposition. Then we analyze the behav-
iors of these perturbation modes, and conclude whether this
model gives a viable four-dimensional gravity. At last, we
give the conclusions and summary.

2 Background solutions of the model

Let us start with the action and the field equations of the
f (R, T ) theories of gravity. In five-dimensional spacetime,
the action takes the form

S = 1

2κ2

∫
d5x

√−g f (R, T ) +
∫

d5x
√−gLm, (1)

where f (R, T ) is an arbitrary smooth function of the Ricci
scalar R and of the trace of the stress-energy tensor T , and
2κ2 = M−3∗ with M∗ the five-dimensional fundamental
scale. The stress-energy tensor is defined by

TMN = − 2√−g

δ(
√−gLm)

δgMN
. (2)

As discussed in Ref. [40], this formalism of the action allows
one to consider a wide class of theories. In this paper, we con-
sider the choice of f (R, T ) = R + F(T ), which removes
the higher-derivative terms of the field equations. The gravi-
tational field equation can be obtained by varying the action
with respect to the metric gMN , and the result is

RMN − 1

2
(R + F(T )) gMN = κ2TMN + �MN , (3)

where�MN = − δF(T )

δgMN . In this work, we consider a canonical
scalar field for simplicity, that is,

Lm = X − V (φ) = −1

2
∂Mφ∂Mφ − V (φ), (4)

for which the energy-momentum tensor and its trace are given
by

TMN = ∂Mφ∂Nφ + gMN Lm, (5)

T = −3

2
gMN ∂Mφ∂Nφ − 5V = 3X − 5V . (6)

The corresponding equation of motion of the scalar field is

3

2κ2 ∇M

(
FT∇Mφ

)
+∇M∇Mφ−

(
5FT
2κ2 + 1

)
∂V (φ)

∂φ
= 0,

(7)

here FT is the derivative of F(T ) with respect to T . In order
to construct a thick brane world model, we use the metric
ansatz

ds2 ≡ gMNdxMdxN = e2A(y)ημνdxμdxν + dy2. (8)

Here eA(y) is the warp factor, and xM = (xμ, y). With this
metric, the field equations (3) and (7) can be expressed in the
following specific formalism:

−6A′2 − 3A′′ + 1

2
F(T ) = κ2

(
1

2
φ′2 + V (φ)

)
, (9)

−6A′2 + 1

2
F(T ) = κ2

(
−1

2
φ′2 + V (φ)

)
− 3

2
FTφ′2,

(10)

(
κ2 + 3

2
FT

)
φ′′ + 4

(
κ2 + 3

2
FT

)
A′φ′ + 3

2
F ′
Tφ′

=
(

κ2 + 5

2
FT

)
Vφ, (11)

where prime represents the derivative with respect to the
extra dimension coordinate y. Now the system consists of
Eqs. (9), (10), and (11). There are actually two indepen-
dent equations because the covariant divergence of the Ein-
stein tensor is zero (the covariant divergence of the energy-
momentum tensor does not vanish). We have to solve this
system which contains four indeterminate functions, and this
implies that we are allowed to impose two constraints on this
system. In the previous work [50], a series of solutions includ-
ing the sine-Gordon type were obtained by using the first-
order formalism equations. The first-order equations were
derived by introducing a superpotential, and the equations
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(a) eA(y) (b) φ(y)

(c) V1(φ) with υ2
1κ2−45 > 0 (d) V1(φ) with υ2

1κ2−45 < 0

Fig. 1 The shapes of the warp factor eA(y) and scalar field φ(y) with
respect to ky and the scalar potential V1(φ) with respect to φ for the first
brane solution (14), (15). Note that the scalar potential is opening up
(bottom left) for positive υ2

1κ2 − 45, and opening down (bottom right)
for negative υ2

1 κ2 − 45

were solved by giving a specific superpotential. To get more
types of solutions except those found in Ref. [50], we do not
follow this approach in this paper.

As the first example, we consider the simplest case with
F(T ) = αT , for which the effective matter Lagrangian is

Leff = 1

2κ2 F(T ) + Lm =
(

1 + 3α

2κ2

)
X −

(
1 + 5α

2κ2

)
V .

(12)

Using Eqs. (9) and (10), we get a largely simplified equation

−3A′′ =
(

κ2 + 3

2
FT

)
φ′2. (13)

Now the solutions can be obtained by solving Eqs. (11)
and (13). We consider a kink scalar field solution, namely
φ(y) = υ1tanh(ky). This supports the solution of the system
as follows:

A(y) = sech2(ky) − 4 log (cosh(ky)) − 1, (14)

V1(φ) = 9k2

2υ4
1

(
υ2

1κ2 − 45
) (

78υ4
1φ2 − 51υ2

1φ4 + 8φ6
)

,

(15)

with α = 12
υ2

1
− 2

3κ2. Note that we have chosen appropriate

parameters to make A(0) = 0. We show the plots of eA(y),
φ(y), and V (φ) in Fig. 1. Clearly, the scalar potential has a
φ6 profile, and it opens up and down for positive and neg-
ative υ2

1κ2 − 45, respectively. The scalar field approaches a

constant at infinity, which corresponds to the local maxima
of the scalar potential for positive υ2

1κ2 − 45. This seems
contrary to our common sense. However, it should be noted
that the source part of the action and thus the scalar potential
are modified. To see this clearly, we investigate the effective
Lagrangian (12). For constant FT considered here, we have

Leff = 18

c2
0κ

2

(
−1

2
(∂φ)2 − Veff(φ)

)
, (16)

Veff(φ) = −υ2
1κ2 − 45

27
V (φ)

= − 9k2

2υ4
1

(
78υ4

1φ2 − 51υ2
1φ4 + 8φ6

)
. (17)

From this point of view, the infinity of the extra dimension
corresponds to the minimum of the effective scalar potential
Veff(φ) regardless of the sign of c2

0κ
2−45, which is consistent

with our conventional wisdom. However, the original scalar
potential V (φ) in (6) does not need to follow this due to the
inclusion of the F(T ) term. For general F(T ), there will be
some more differences. Now we can see that the two solutions
given by Fig. 1c, d are permissible. This is a new feature,
different from the standard case.

The second example is for a more general power of T ,
i.e., F(T ) = αT n with n a positive integer. The effective
Lagrangian is

Leff = α

2κ2 (3X − 5V )n + X − V . (18)

One of the solution is given by

A(y) = log(sech(ky)), (19)

φ(y) = υ2 arctan (tanh (ky/2)) , (20)

V2(φ) = 27k2

4κ2

(
17n − 14

14 − 9n
− cos (4φ/υ2)

)
, (21)

with υ2 = 6
√

5
κ

. It can easily be checked that T is a constant
here. Note that for n = 1 the action reduces to the first model,
but this solution is different from the first one given in (14)
and (15) since the scalar potential here is the sine-Gordon
one. Similar to the solution in the first example, the infinity
of the extra dimension is at the maxima of the scalar potential.

For nonconstant FT , it is much more difficult to get the
solution. We give the solution here without the expression of
F(T ):

A(y) = log(sech(ky)), (22)

φ(y) = υ3 tanh(ky), (23)

V3(φ) = 9k2

υ2
3κ2

[
φ2− 15

2κ2 log
(

2κ2
(
φ2−υ2

3

)
+15

)]
, (24)
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(a) V2(φ) (b) V3(φ)

Fig. 2 The plots of the potentials V2,3(φ) in the second and third solu-
tions (21) and (24). The infinity of the extra dimension corresponds to
±φ0 = ± πυ2

4 (left) and ±υ3 (right)

F(y) = k2
(
κ2υ2

3 sech4(ky) − 36sech2(ky) + 30
)

−135k2

κ2υ2
3

log
(

15 − 2κ2υ2
3 sech2(ky)

)
. (25)

We require

υ2
3 <

15

2κ2 (26)

to make the log term in (25) real. The plots of the potentialsV2

and V3 are given in Fig. 2. It can be checked that all the three
solutions above give asymptotically AdS5 bulk geometry.

3 Full Linear Perturbations

In this section, we discuss the full linear perturbations of this
brane world model. From now on, we consider the case of
an arbitrary F(T ). In the following the calculation is done
in the conformally flat coordinate system. The physical and
conformal extra dimension coordinates are related by the
equation dy = eA(z)dz, which together with (8) gives

ds2 = e2A(z)
(
ημνdxμdxν + dz2

)
. (27)

Now we introduce the perturbation of this metric. For the
background metric gMN , the perturbed metric is

g̃MN = gMN + δgMN . (28)

Here δgMN is the metric perturbation tensor. To linear order,
the metric perturbation can be decomposed into scalar, vec-
tor, and tensor modes, or in the following specific formalism:

δgMN = e2A(z)

×
(

2hμν + ∂μξν + ∂νξμ + 2ημνψ + 2∂μ∂ν� ζμ + ∂μϕ

ζν + ∂νϕ 2χ

)
.

(29)

The tensor hμν , which is relevant to the gravitational waves,
satisfies the transverse and traceless (TT) condition

∂μhμν = 0, ημνhμν = 0. (30)

The ξν and ζμ are transverse vector modes, i.e.

∂μξμ = 0, ∂μζμ = 0. (31)

The remaining variables ψ , �, ϕ, and χ represent the scalar
degrees of freedom. Clearly, different kinds of modes decou-
ple in the action. As we will see below, this is crucial for our
analysis of perturbation modes.

Since we are interested in the behaviors of these modes, it
is necessary to get their field equations. The perturbed field
equations can be obtained by replacing the background met-
ric in (3) by the perturbed metric (28). If this were done, we
would get the field equations that contain the lowest order
(zero order), the linear order, and the higher order terms of
the metric perturbation. The lowest order parts are just the
background Eqs. (9) and (10). We do not explore the higher
order equations since this subject is beyond the scope of the
present work. So we concentrate on the linear order field
equations. Note that the decomposition (29) makes different
kinds of modes decouple, therefore we are allowed to divide
a linear order equation into three equations (the scalar, vector,
and tensor equations). One can also get the field equations of
the metric perturbation modes by writing down the quadratic
order action, and then varying this action with respect to var-
ious perturbation modes, respectively. We adopt the former
path in this work.

The metric perturbation tensor (29) contains seven vari-
ables, or 15 degrees of freedom totally. Nevertheless, not all
of them are independent because of the gauge invariance. Let
us consider the infinitesimal coordinate transformation

x A → x̃ A = x A + εA. (32)

Under this transformation, the metric perturbation tensor
δgMM transforms as

δgMN → δg̃MN = δgMN + 2∇(MεN ). (33)

It is easy to check that the TT part hμν is gauge invariant.
Although the non-TT part is not gauge invariant, it is possi-
ble to construct some gauge invariant variables [12–14] by
using combinations of the variables given in (29). We are
allowed to choose a suitable gauge to eliminate the redun-
dant degrees of freedom (5, in five dimensions). Usually, it
would be convenient in the longitudinal gauge, i.e. ξμ = 0
and � = 0 = ϕ. In this gauge, the metric perturbation tensor
becomes

δgMN = e2A(z)
(

2hμν + 2ημνψ ζμ

ζν 2χ

)
. (34)
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Using this metric perturbation, we investigate the perturbed
field equation (3):

δRMN − 1

2
δ (F(T )gMN ) = κ2δTMN + 3

2
δ (FT ∂Mφ∂Nφ) .

(35)

To linear order, this equation can be decomposed into μν,
μ5, and 55 components.

The explicit forms of the μν components are
[
� + ∂2

z + 3∂z A∂z + 6 (∂z A)2 + 2∂2
z A + e2AF

]
hμν

−2κ2
(

1

2
(∂zφ)2 + e2AV

)
hμν = 0, (36)

∂μ∂zζν + ∂ν∂zζμ + 3∂z A
(
∂μζν + ∂νζμ

) = 0, (37)

2ημν�ψ − 2∂μ∂νψ + 3ημν∂
2
z ψ + 9ημν∂z A∂zψ

+6ημν

(
(∂z A)2 + ∂2

z A
)

ψ − e2AF(T )ημνψ

+ημνκ
2
(
(∂zφ)2 + 2e2AV (φ)

)
ψ + ημν�χ − ∂μ∂νχ

−6ημν

(
(∂z A)2 + ∂2

z A
)

χ − 3ημν∂z A∂zχ

+ημν

[(3

2
FT + κ2

)
∂zφ∂z +

(5

2
FT + κ2

)
e2AVφ

]
δφ

−ημν

(3

2
FT + κ2

)
(∂zφ)2 χ = 0, (38)

where � = ηαβ∂α∂β is the four-dimensional d’Alembert
operator, and δφ is the perturbation of the scalar field. Equa-
tion (36) is the equation of motion of the tensor perturbation
mode. We can eliminate the first derivative term from (36) to
obtain

�h̃μν + ∂2
z h̃μν −

(
3

2
∂2
z A + 9

4
(∂z A)2

)
h̃μν = 0 (39)

by defining h̃μν = e
3
2 Ahμν . This redefinition is actually

equivalent to canonically normalize the kinetic term of the
tensor mode. This is the equation of motion of the tensor
mode, and we will analyze it in next section. The remaining
two Eqs. (37) and (38) lead to

∂z∂(μζν) + 3∂z A∂(μζν) = 0, (40)

χ + 2ψ = 0. (41)

As can be seen, Eq. (41) is just an algebraic equation of the
two scalar modes. Usually, one cannot get similar relations in
gravity theories with higher-derivative terms of the metric,
for instance, the metric formalism f (R) theories of grav-
ity [53–55]. Equation (40) is the field equation of the vector
mode, and also we will analyze it in the next section.

The μ5 components can be divided into two parts,

κ2
(

1

2
(∂zφ)2 + e2AV

)
ζμ − 1

2
�ζμ − 1

2
F(T )e2Aζμ

+3
(
(∂z A)2 + ∂2

z A
)

ζμ = 0, (42)

3∂z A∂μχ − 3∂μ∂zψ −
(

3

2
FT + κ2

)
∂zφ∂μδφ = 0. (43)

Combining Eqs. (9) and (42), we get

�ζμ = 0. (44)

This implies that the vector mode is massless. By substituting
Eq. (41) into (43), we get the solution of the perturbation of
the scalar field

δφ = −6(∂zψ + 2ψ∂z A)

(2κ2 + 3FT )∂zφ
. (45)

It should be pointed out that it is impossible to get simi-
lar results in gravity theories with higher-derivative terms
of source fields, for example, f (R) theories in the Palatini
formalism [24,54]. The solution (45) is crucial to the simpli-
fication of the 55 component of Eq. (35), which reads

∂zφ

(
κ2 + 3

2
FT − 9(∂zφ)2

2e2A FTT

)
∂zδφ + 3�ψ

−e2AVφ

(
κ2+ 5

2
FT + 15(∂zφ)2

2e2A FTT

)
δφ+12∂z A∂zψ

=
(

2κ2e2AV − e2AF− 3

2
FT (∂zφ)2− 9(∂zφ)4

2e2A FTT

)
χ.

Now it is clear that we can reduce the number of scalar per-
turbation modes of this system to be 1. Again using the back-
ground equations (9)–(11) and some manipulations, we get
an equation which involves only one scalar mode ψ :
{
� + B(z)

(
∂2
z + ∂z

[
ln

(
e3A

G(z)∂zφ

)]
∂z

+4∂2
z A − 2∂z A∂z ln

[
G(z)∂zφ

] )}
ψ = 0, (46)

where B(z) = 1 − 9FTT (∂zφ)3

2G(z)e2A(z) and G(z) = (
κ2 + 3

2 FT
)
∂zφ.

This is the field equation of the scalar mode of the metric
perturbation (29). Until now we have successfully obtained
the field equations of various modes of the metric perturba-
tion (29).

4 Localization of perturbation modes

In this section let us discuss the behaviors of the ten-
sor, vector, and scalar modes. This requires the analysis of
Eqs. (39), (40), and (46).
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4.1 Tensor mode

Equation (39) is a Schrödinger-like equation of the tensor
mode. Clearly, it is the same as that of general relativity.
Therefore it has the same mass spectrum. To get a better
understanding of the effective four-dimensional gravity, we
make a decomposition

h̃μν(x
μ, z) = ĥμν(x

μ)�(z), (47)

and then following from (39) we get

(
∂z + 3

2
∂z A

) (
−∂z + 3

2
∂z A

)
�(z) = m2�(z). (48)

Note that this is consistent with �ĥμν = m2ĥμν . The above
equation gives the mass spectrum of the Kaluza–Klein (KK)
modes of gravity, and it obviously avoids the tachyon instabil-
ity. The zero mode corresponding to the solution with m = 0
is given by

�0(z) ∝ e3A(z)/2. (49)

The recovering of the effective four-dimensional gravity
requires the normalization of the zero mode:

∫
|�0(z)|2dz < ∞. (50)

This is equivalent to having a finite four-dimensional Planck
mass, if we define M2

Pl = M3∗
∫ |�0(z)|2dz, i.e.

S ⊃ M3∗
∫

|�0(z)|2dz
∫

∂ ĥ∂ ĥ. (51)

For our solution (14), this condition can surely be satisfied,
so the zero mode can be localized.

In addition to the zero mode, Eq. (48) allows for a contin-
uous mass spectrum for massive states. If the normalization
condition cannot be satisfied for the massive state �m, then
this massive state would be plane wave at infinity. In other
words, the corresponding massive KK graviton cannot be
localized on the brane. For our case, all the massive gravi-
tons cannot be localized.

4.2 Vector mode

The field equations of the vector mode correspond to
Eqs. (40) and (44). They are the same as in general relativity,
so we do not investigate them in detail. It can be concluded
straightforwardly that, if the tensor zero mode can be local-
ized, then the vector mode cannot be localized on the brane.

4.3 Scalar mode

We now turn to the scalar mode equation (46). This equation
has significant difference from that of general relativity [12–
14]. To get a Schrödinger-like formalism equation (or the
equation of the canonically normalized field), we first per-
form a coordinate transformation

dz ≡ √
B(z)dr. (52)

Note that we have a constraint on the function F(T ) to make
B(z) > 0. If this is satisfied then the Eq. (46) can be written
as

�ψ + ∂2
r ψ + K (r)∂rψ + J (r)ψ = 0, (53)

where

K (r) = ∂r ln

(
e3A(r)

G(r)∂rφ

)
, (54)

J (r) = 4∂2
r A − 2∂r A∂r ln[G(r)∂rφ]. (55)

Clearly, since Eq. (53) contains a term with single derivative
on ψ , the scalar mode ψ is surely not canonically normalized
in the perturbed quadratic action. This trouble can be solved

by redefining the scalar mode as ψ̃(r) = e
∫ 1

2 K (r)drψ(r). In
terms of ψ̃(r), Eq. (53) turns out to be

�ψ̃ + ∂2
r ψ̃ +

[
J (r) − 1

2
∂r K − 1

4
K 2

]
ψ̃ = 0. (56)

The scalar mode can also be separated as ψ̃(xμ, r) =
ψ̂(xμ)�(r) with �ψ̂(xμ) = m2ψ̂(xμ). With this decom-
position, we finally get a Schrödinger-like equation of the
canonically normalized scalar mode �(r):

−∂2
r � + V (r)� = m2�, (57)

with V (r) = 1
2∂r K + 1

4 K
2 − J (r). It can be shown that this

equation can be factorized as

(
∂r + ∂r I (r)

I (r)

) (
−∂r + ∂r I (r)

I (r)

)
� = m2�, (58)

with I (r) = ∂r A[e3AB(r)G(r)∂rφ]−1/2. To get a real I (r)
we requireκ2+ 3

2 FT > 0. This formalism of equation ensures
that no scalar mode with m2 < 0 exists.

Furthermore, the zero mode (massless mode) solution is

�0 ∝ I (r). (59)

As a comparison, we recall the scalar zero mode solution
in the standard case, which corresponds to B(r) = 1 and
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G(r) = κ2. It is more convenient to analyze the normaliza-
tion condition in the physical coordinate y. Using the back-
ground equation (13), we have
∫

|�0(r)|2dr ∝
∫

(∂z A)2 dz

3e3A
[
(∂z A)2 − ∂2

z A
]−9FTT (∂zφ)4/2

∝
∫

(∂y A)2 dy

3e4A∂2
y A − 9e3AFTT (∂yφ)4/2

. (60)

It has a significant difference with that of general relativity
coupled to a canonical scalar field, in which FTT = 0.

For our three background solutions given in Sect. 2, the
corresponding FT and FTT are

F (1)
T = α = 12

υ2
1

− 2

3
κ2, (61)

F (2)
T = −28

45
κ2, (62)

F (3)
T = 2

υ2
3

cosh2(ky) − 2

3
κ2, (63)

and

F (1)
T T = 0, (64)

F (2)
T T = −14(n − 1)(9n − 14)κ4

6075nk2 (n ≥ 1), (65)

F (3)
T T = cosh6(ky)

(
4υ2

3κ2 − 30 cosh2(ky)
)

υ4
3k

2
(
6υ2

3κ2 − 135 cosh2(ky)
) , (66)

respectively. It is easy to verify that all the solutions given in

Sect. 2 satisfy the two conditions, B = 1 − 9FTT (∂yφ)2

2(κ2+ 3
2 FT )

> 0

and κ2 + 3
2 FT > 0. Substituting them to Eq. (60), we can

see that the scalar zero mode cannot be normalized for all the
three solutions. So our background solutions are stable, and
the scalar mode cannot be localized.

It is worth noting here that the first model with F(T ) = αT
is equivalent to general relativity coupled to a canonical
scalar field at background and perturbation levels regard-
less of whether T is a constant or not. For the second model,
namely, F = αT n with T a constant, even though the action
is equivalent to general relativity coupled to a canonical
scalar field, they are not equivalent (except n = 1) at per-
turbation level. The third model is completely different from
the standard case at both of background and perturbation
levels.

5 Conclusions

To summarize, we investigated the thick brane world model
in f (R, T ) theories of gravity. The domain wall configu-
ration was constructed by introducing a scalar field in the
non-compact bulk. The background solution was obtained by
giving a kink scalar field. All of the background quantities

are smooth, and so there is no singularity in this asymptoti-
cally AdS5 space. In thick brane world models constructed
with general relativity coupled to a canonical scalar field, the
scalar potential can be φ4 type and sine-Gordon type etc.,
and these solutions share a common characteristic that the
vacuum is at the minimum. However, in our model this does
not need to be the case. This is a significant new feature that
different from the standard case.

Besides, we studied the full linear perturbations of this
model, including tensor, vector, and scalar modes. Among
these modes, the tensor and vector modes are the same as that
of general relativity coupled to a canonical scalar field, and
only the scalar mode is modified due to the F(T ) term (except
for the special case of F(T ) = αT ). We found that, to linear
order, the scalar, vector, and tensor modes are stable and
no tachyon state exists. Furthermore, we showed that only
the tensor zero mode (four-dimensional massless graviton)
can be localized on the brane, hence we obtained the viable
four-dimensional gravity. These conclusions hold if the two
constraints on the action, namely B(z) > 0 and κ2 + 3

2 FT >

0, are satisfied. We argue that these constraints are significant
for building viable models from this class of theories.
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