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Abstract Based on the observation that the skyrmion in
Skyrme theory can be viewed as a dressed monopole, we
show that the skyrmions have two independent topology, the
baryon topology π3(S3) and the monopole topology π2(S2).
With this we propose to classify the skyrmions by two topo-
logical numbers (m, n), the monopole number m and the
shell (radial) number n. In this scheme the popular (non
spherically symmetric) skyrmions are classified as the (m, 1)

skyrmions but the spherically symmetric skyrmions are clas-
sified as the (1, n) skyrmions, and the baryon number B is
given by B = mn. Moreover, we show that the vacuum of the
Skyrme theory has the structure of the vacuum of the Sine-
Gordon theory and QCD combined together, which can also
be classified by two topological numbers (p, q). This puts
the Skyrme theory in a totally new perspective.

1 Introduction

The Skyrme theory has played an important role in physics.
It has been proposed as an effective field theory of pion
physics in strong interaction where the baryons appear as
the skyrmions, topological solitons made of pions [1–4]. This
view has been very successful, and the rich topological struc-
ture of the theory has advanced our understanding of the
extended objects greatly [5–7].

The construction of skyrmions as nuclei has a long his-
tory. A novel way to obtain non-spherically symmetric multi-
skyrmions was developed based on the rational map, and
the solutions have been associated with and compared to
real nuclei [8,9]. And a systematic approach to construct
the skyrmions with large baryon number numerically which
have the shell strucutre has been developed [10–13]. This,
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with the improved computational power has made people
construct skyrmions with the baryon number up to 108 [14].

With the new development the Skyrme theory have had a
remarkable progress recently. It has been able to provide a
quantitative understanding of the spectrum of rotational exci-
tations of carbon-12, including the excitation the Hoyle state
which is essential for the generation of heavy nuclear ele-
ments in early universe [15–17]. And the spin-orbit interac-
tion which is essential for the magic number of nuclei is inves-
tigated within the framework of Skyrme theory [18]. More-
over, a method to reduce the binding energy of skyrmions to a
realistic level to improve the Skyrme model has been devel-
oped [19,20]. So by now in principle one could construct
all nuclei as multi-baryon skyrmions and discuss the phe-
nomenology of nuclear physics, although the experimental
confirmation of the theory is still in dispute.

But the Skyrme theory has multiple faces. In addition to
the well known skyrmions it has the (helical) baby skyrmion
and the Faddeev–Niemi knot. Most importantly, it has the
monopole which plays the fundamental role [21–23]. In this
view all finite energy topological objects in the theory could
be viewed either as dressed monopoles or as confined mag-
netic flux of the monopole-antimonopole pair. The skyrmion
can be viewed as a dressed monopole, the baby skyrmion
as a magnetic vortex created by the monopole-antimonopole
pair infinitely separated apart, and the Faddeev–Niemi knot
as a twisted magnetic vortex ring made of the helical baby
skyrmion. This confirms that the theory can be interpreted
as a theory of monopole in which the magnetic flux of the
monopoles is confines and/or screened.

The fact that the skyrmion is closely related to the
monopole has been appreciated for a long time. It has been
well known that the skyrmions could actually be viewed as
the monopoles regularized to have finite energy [21–23].
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In fact it has been well appreciated that the rational map
which plays the crucial role in the construction of the multi-
skyrmions is exactly the π2(S2) mapping which provides the
monopole quantum number [10]. Nevertheless the skyrmions
have always been classified by the baryon number given by
π3(S3), not by the monopole number π2(S2). This was puz-
zling.

The purpose of this paper is twofold. We first show that
the skyrmions have two topology, the baryon topology and
the monopole topology, so that they are classified by two
topological numbers, the baryon number B and the monopole
number M . Moreover, we show that the baryon number can
be replaced by the radial (shell) number which describes the
π1(S1) topology of radial excitation of multi-skyrmions. This
is based on the observation that the SU(2) space S3 has the
Hopf fibering S3 � S2 × S1 and that the Skyrme theory is
described by two variables which naturally represent the S2

and S1 manifolds.
Second, we show that the vacuum of the Skyrme theory

has the structure of the vacuum of the Sine-Gordon theory
and QCD combined together, which can also be classified by
two topological numbers (p, q).

The paper is organized as follows. In Sect. 2 we briefly
review the old skyrmions for later purpose. In Sect. 3 we
show that the skyrmions carry two topological numbers, the
baryon number b and the monopole numberm. Moreover, we
show that the baryon number can be replaced by the radial
(shell) number n, so that they can be classified by (m, n).
In this scheme the baryon number is given by b = mn. In
Sect. 4 we discuss the vacuum structure of the Skyrme the-
ory, and show that it has the structure of the vacuum of the
Sine-Gordon theory combined with the vacuum of the SU(2)
QCD. This tells that it can be classified by two topologi-
cal numbers denoted by (p, q), where p and q represent the
π1(S1) topology of the Sine-Gordon theory and the π3(S2)

topology of QCD vacuum. Finally in Sect. 5 we discuss the
physical implications of our results.

2 Skyrme theory: a review

To see this let ω and n̂ (n̂2 = 1) be the massless sigma field
and the normalized pion field in Skyrme theory, and consider
the Skyrme Lagrangian

L = κ2

4
tr L2

μ + α

32
tr

([
Lμ, Lν

])2

= −κ2

4

[1

2
(∂μω)2 + 2 sin2 ω

2
(∂μn̂)2

]

−α

8
sin2 ω

2

[
(∂μω)2(∂ν n̂)2 − (∂μω∂νω)(∂μn̂) · (∂ν n̂)

]

+α

4
sin4 ω

2
(∂μn̂ × ∂ν n̂)2,

Lμ = U∂μU
†,

U = exp
( ω

2i
�σ · n̂

)
= cos

ω

2
− i(�σ · n̂) sin

ω

2
, (1)

where κ and α are the coupling constants. Notice that n̂ and
ω naturally describe the S2 and S1 manifold. With

U = σ − i �σ · �π,

σ = cos
ω

2
, �π = n̂ sin

ω

2
, (σ 2 + �π2 = 1), (2)

the Lagrangian (1) has the familiar form

L = −κ2

2

(
(∂μσ)2 + (∂μ �π)2)

−α

4

(
(∂μσ∂ν �π − ∂νσ∂μ �π)2 + (∂μ �π × ∂ν �π)2)

+λ

4
(σ 2 + �π2 − 1), (3)

where λ is a Lagrange multiplier. In this form σ and �π rep-
resent the sigma and pion fields, so that the Skyrme theory
describes the pion physics.

The Lagrangian has a hidden U (1) gauge symmetry as
well as a global SU(2)L × SU(2)R symmetry [22,23]. The
global SU(2) symmetry is obvious, but the hiddenU (1) sym-
metry is not. It comes from the fact that n̂ has an invariant
subgroup U (1). To see this, we reparametrize n̂ by the CP1

field ξ ,

�n = ξ† �σξ, ξ†ξ = 1, (4)

and find that under the U (1) gauge transformation of ξ

ξ → exp(iθ(x))ξ, (5)

n̂ (and ∂μn̂) remains invariant. Now, we introduce the com-
posite gauge potential Bμ and the covariant derivative Dμ

which transforms gauge covariantly under (5) by

Bμ = −iξ†∂μξ, Dμξ = (∂μ − i Bμ)ξ. (6)

With this we have the following identities,

(∂μn̂)2 = 4|Dμξ |2,
∂μn̂ × ∂ν n̂ = −2i

[
(∂μξ†)(∂νξ) − (∂μξ†)(∂νξ)

]
n̂

= 2Gμν n̂, Gμν = ∂μBν − ∂νBμ. (7)

Furthermore, with the Fierz’ identity

σ a
i jσ

a
kl = 2δilδ jk − δi jδkl , (8)

we have

∂μn̂ · ∂ν n̂ = 2∂μ(ξ
†
i ξ j )∂ν(ξ

†
j ξi )

= 2
[
(∂μξ†ξ)(∂νξ

†ξ) + (∂μξ†)(∂νξ)

+(∂νξ
†)(∂μξ) + (ξ†∂μξ)(ξ†∂νξ)

]

= 2
[
(Dμξ)†(Dνξ) + (Dνξ)†(Dμξ)

]
. (9)
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From this we can express (1) by

L = −κ2

4

[1

2
(∂μω)2 + 8 sin2 ω

2
|Dμξ |2

]

−α

2
sin2 ω

2

[
(∂μω)2|Dμξ |2−(∂μω∂νω)(Dμξ)†(Dνξ)

]

−α sin4 ω

2
G2

μν, (10)

which is explicitly invariant under the U (1) gauge transfor-
mation (5). So replacing n̂ by ξ in the Lagrangian we can
make the hidden U (1) gauge symmetry explicit. In this form
the Skyrme theory becomes a self-interacting U (1) gauge
theory of CP1 field coupled to a massless scalar field.

From (1) we have the following equations of motion [21–
23]

∂2ω − sin ω(∂μn̂)2 + α

8κ2 sin ω(∂μω∂ν n̂ − ∂νω∂μn̂)2

+ α

κ2 sin2 ω

2
∂μ

[
(∂μω∂ν n̂ − ∂νω∂μn̂) · ∂ν n̂

]

− α

κ2 sin2 ω

2
sin ω(∂μn̂ × ∂ν n̂)2 = 0,

∂μ

{
sin2 ω

2
n̂ × ∂μn̂ + α

4κ2 sin2 ω

2
×[

(∂νω)2n̂ × ∂μn̂ − (∂μω∂νω)n̂ × ∂ν n̂
]

+ α

κ2 sin4 ω

2
(n̂ · ∂μn̂ × ∂ν n̂)∂ν n̂

}
= 0. (11)

It has two interesting limits. First, in the spherically symmet-
ric limit

ω = ω(r), n̂ = ±r̂ , (12)

it is reduced to

d2ω

dr2 + 2

r

dω

dr
− 2 sin ω

r2 + 2α

κ2

[
sin2(ω/2)

r2

d2ω

dr2

+ sin ω

4r2

(dω

dr

)2 − sin ω sin2(ω/2)

r4

]
= 0. (13)

Adopting the spherically symmetric ansatz (12) imposing the
boundary condition

ω(0) = 2π, ω(∞) = 0, (14)

we obtain the original skyrmion solution solving (13) which
has the finite energy [1–3]. It carries the baryon number

B = − 1

8π2

∫
εi jk∂iω

[
n̂ · (∂ j n̂ × ∂k n̂)

]
sin2 ω

2
d3r

= 1, (15)

which represents the non-trivial homotopy π3(S3) defined
by U in (1).

Second, when

ω = (2n + 1)π, (16)

the equation is reduced to

n̂ × ∂2n̂ + α

κ2 (∂μHμν)∂ν n̂ = 0,

Hμν = n̂ · (∂μn̂ × ∂ν n̂) = ∂μCν − ∂νCμ, (17)

whereCμ is the magnetic potential of Hμν . This is the central
equation of Skyrme theory which allows the monopole, the
baby skyrmion, the twisted magnetic vortex, and the knot
[21–23]. In fact (17) has the monopole solution [21–23]

n̂ = ±r̂ . (18)

which carries the magnetic charge

M = ±1

8π

∫
εi jk

[
r̂ · (∂i r̂ × ∂ j r̂)

]
dσk = ±1, (19)

which represents the homotopy π2(S2) defined by n̂.
Notice that, with (16) the Skyrme Lagrangian becomes

the Skyrme–Faddeev Lagrangian,

L → −κ2

2
(∂μn̂)2 − α

4
(∂μn̂ × ∂ν n̂)2, (20)

whose equation of motion is given by (17). This tells that
the Skyrme–Faddeev theory is an essential ingredient, the
back bone, of the Skyrme theory. As importantly, this reveals
the “missing link” between Skyrme theory and QCD. This
is because we can derive the Skyrme–Faddeev Lagrangian
directly from QCD, which shows that the two theories are
related by the Skyrme–Faddeev Lagrangian as the common
denominator [21–23].

Solving (11) for multi-skyrmions numerically with (14)
choosing n̂ to describe an arbitrary rational map π2(S2), one
can obtain the well known (non spherically symmetric) multi-
skyrmion solutions whose baryon number is given by the
rational map number of n̂ numerically [8–11]. Some of these
solutions are copied from Ref. [10] in Fig. 1.

In addition to these popular solutions we have other spheri-
cally symmetric multi-skyrmions. To obtain them notice that,
although the SU(2) matrix U is periodic in ω variable by 4π ,
ω itself can take any value from −∞ to +∞. So we can
obtain the spherically symmetric solution of (13) with the
boundary condition

ω(0) = 2πn, ω(∞) = 0, (21)

with an arbitrary integer n [1–7]. Clearly they have the baryon
number

B = 1

8π2

∫
εi jk∂iω

[
r̂ · (∂ j r̂ × ∂kr̂)

]
sin2 ω

2
d3r

= 1

π

∫
sin2 ω

2
dω = n. (22)

This means that the baryon number is given by the winding
number π1(S1) of ω, which is determined by the boundary
condition (21). In Fig. 2 we present the spherically symmetric
skyrmions for n = 1, 2, 3, 4, 5, 6, 7.
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3 Baryon number versus monopole number

The contrast between the two sets of solutions shown in
Figs. 1 and 2 is unmistakable, but this is not just in the
appearence. They have a fundamental difference. Clearly the
baryon number of the skyrmions shown in Fig. 1 is given by
the rational map π2(S2) defined by n̂ [8–13]. Moreover, the
rational map π2(S2) of n̂ in the non spherically symmetric
solutions is precisely the monopole topology of the skyrmion
which determines the monopole number M [21–23]

M = 1

8π

∫
εi jk

[
n̂ · (∂i n̂ × ∂ j n̂)

]
dσk = m. (23)

And clearly this monopole number is different from the
baryon number given by the π3(S3) topology.

However, the baryon number of the skyrmions shown in
Fig. 2 is given by the winding number π1(S1) of ω which
has nothing to do with the rational map of n̂. Moreover, the

Fig. 1 The well known (non spherically symmetric) numerical multi-
skyrmion solutions with baryon number 2,3,4,5,6, and 7, copied from
Ref. [10]
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Fig. 2 The spherically symmetric solutions with baryon number
1,2,3,4,5,6,7, which should be contrasted with the popular multi-
skyrmion solutions shown in Fig. 1

monopole number of these solutions given by the rational
map π2(S2) of n̂ is

M = 1

8π

∫
εi jk

[
r̂ · (∂i r̂ × ∂ j r̂)

]
dσk = 1. (24)

This tells that the baryon number and the monopole number
of these solutions are different.

This shows that the skyrmions actually have two topologi-
cal numbers B and M which are in principle different. But this
was not evident in the popular skyrmion solutions because
they have B = M . But obviously the spherically symmetric
solutions have two topological numbers, the baryon number
B = n and the monopole number M = 1 [1–3,8]. This
proves that the skyrmions do have two topology denoted by
(b,m), the π3(S3) which describes the baryon number b and
the π2(S2) which describes the monopole number m. But so
far this important point has been completely neglected.

Moreover, the integer n in (21) has another meaning. It
describes the π1(S1) topology of the angular variable ω

which depends only on the radial coordinate r . Moreover,
it could be viewed as the radial, or more properly the shell
quantum number, since the spherically symmetric solutions
can be viewed as the generalization of the original skyrmion
which has radially excited shells where n describes the num-
ber of the shells. This implies that we could also classify the
skyrmions by (m, n), the π2(S2) topology of n̂ and π1(S1)

topology of ω.
In this scheme the well known (non spherically symmet-

ric) numerical multi-skyrmion solutions shown in the earlier
works [9,10] become the (m, 1) skyrmions, but those shown
in Fig. 2 become the (1, n) skyrmions. This strongly implies
that the baryon number is made of two parts, the π2(S2) of
n̂ and π1(S1) of ω.

To amplify this point we notice the followings. First, the
S3 space (both the real space and the target space) in π3(S3)

admits the Hopf fibering S3 � S2 × S1. Second, the two
variables n̂ and ω of the Skyrme theory naturally represent
S2 and S1. So the baryon number of the (m, n) skyrmion is
given by

B = − 1

8π2

∫
εi jk∂iω

[
n̂ · (∂ j n̂ × ∂k n̂)

]
sin2 ω

2
d3r

= − 1

8π2

∫
∂iω

[
n̂ · (∂ j n̂ × ∂k n̂)

]
sin2 ω

2
dxi ∧ dx j ∧ dxk

= − 1

8π2

∫
sin2 ω

2
dω × εi jk

[
n̂ · (∂i n̂ × ∂ j n̂)

]
d�k

= n

8π

∫
εi jk

[
n̂ · (∂i n̂ × ∂ j n̂)

]
d�k = mn, (25)

where d�k = εi jkdxi ∧ dx j/2. Clearly the last integral is
topologically equivalent to (23), which assures the last equal-
ity. This shows that the baryon number of the skyrmion can be
decomposed to the monopole number and the shell number.
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Obviously both (m, 1) and (1, n) skyrmions are the particular
examples of this.

At this point it must be emphasized that the shell number
n has first been introduced by Manton and Piette [11]. They
have noticed that the skyrmions can be generalized to have the
multiple shell structure which can be expressed by the shell
number. Moreover, they have shown that this shell structure
is very useful to construct the multi-skyrmions which have a
large baryon number even for the non spherically symmetric
skyrmions.

What we propose here is that the baryon number can be
decomposed to the monopole number and the shell num-
ber, and that this shell number could be interpreted to repre-
sent an independent topology of the skyrmion. This follows
from the fact that the skyrmions have two independent topol-
ogy, the monopole topology π2(S2) and the baryon topology
π3(S3). Given this fact, the natural question is how they are
related. The answer is that the baryon topology is made of the
monopole topology and the shell topology, and the baryon
number is given by the product of the monopole number and
the shell number.

This is based on two facts. First, the Skyrme theory is
made of two variables, the S2 variable n̂ which represents
the π2(S2) topology and the S1 variable ω which repre-
sents the shell topology π1(S1). Second, the baryon topol-
ogy is described by both ω and n̂, but the monopole topol-
ogy is described only by n̂. So it becomes only natural that
ω changes the monopole topology to the baryon topology,
adding the shell structure to the monopole topology. It is this
separation of the roles of the two variables which allows us
to replace the baryon topology with the shell topology in
Skyrme theory. Obviously this is best demonstrated in the
spherically symmetric skyrmions.

An interesting feature of the spherically symmetric solu-
tions is that whenever the curve passes through the values
ω = 2πn, it become a bit steeper. There is a good reason
why this is so. As we will see these points are the vacua of
the theory, and the steep slopes shows that the energy likes
to be concentrated around these vacua. So these steep slopes
are not an irregularity, but just what is expected.

We can easily calculate the energy of the spherically sym-
metric solutions from [23]

E = πκ2

2

∫ ∞

0

{(
r2 + 2α

κ2 sin2 ω

2

)(dω

dr

)2

+ 8
(

1 + α

2κ2r2 sin2 ω

2

)
sin2 ω

2

}
dr

= π
√

ακ

∫ ∞

0

[
x2

(dω

dx

)2 + 8 sin2 ω

2

]
dx, (26)

where x = (κ/
√

α) r is a dimensionless variable. The result
is shown in Fig. 3. Numerically the baryon number depen-
dence of the energy is given by [5–7]
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Fig. 3 The energy of the spherically symmetric solutions with baryon
number 1,2,3,4,5,6,7. The numerical fit (the blue curve) and the n(n +
1)E1/2 curve (the green curve) are almost indistinguishable
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Fig. 4 The energy density of the spherically symmetric skyrmions with
baryon number 1,2,3,4,5,6,7

En � n(n + 1)

2
E1. (27)

This could be understood as follows. Roughly speaking, the
kinetic energy (first part) and the potential energy (second
part) of (26) become proportional to n2 and n, and the two
terms have equal contribution due to the equipartition of
energy. But the truth is more complicated than this, and we
need a mathematical explanation of this.

The energy density of the solutions is shown in Fig. 4.
The B = n solution has n local maxima, which tells that
it is made of n unit skyrmions which make spherical shells.
Moreover, as we have remarked the shells are located at the
vacuum points ω = 2πn.

Of course, these spherically symmetric skyrmions are
precisely the multi-skyrmions that Skyrme originally pro-
posed as nuclei which have baryon number larger than
one [1–7]. But they become unstable and can decay to the
lower energy skyrmions, because the energy En gets big-
ger than the n sum of E1. This is not so for the pop-
ular (non spherically symmetric) multi-skyrmions which
have positive binding energy. Because of this the spher-
ically symmetric skyrmions have been dismissed as
uninteresting.
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But our analysis makes them more interesting. First of
all, they demonstrate that skyrmions actually have two topo-
logical numbers, the baryon number and the monopole
number, which are different. Moreover, they show that
the skyrmions can be made to have the shell structure.
As importantly, they tell that the shell number, together
with the monopole number, determines the baryon
number.

Clearly the shell structure can also be implemented to the
(m, 1) skyrmions shown in Fig. 1. To see this we general-
ize the boundary condition (21), keeping the rational map
number m of n̂ the same but requiring [11]

ω(rk) = 2πk, (k = 0, 1, 2, . . . n),

r0 = 0 〈 r1 〈 · · · 〈 rn = ∞. (28)

With this we could find the (m, n) skyrmion numerically
minimizing the energy varying rk (k = 1, 2, . . . , n − 1).
This way we can add the shell structure and the shell number
to the (m, 1) skyrmion.

Now, one might ask about the stability of the (m, n)

skyrmions. In general they may not be stable. For exam-
ple, the quadratic dependence of the topological number n of
the energy (27) makes (1, n) skyrmions energetically unsta-
ble. On the other hand, even when they decay, the topology
of the solution must not change. In other words the baryon
number and the monopole number must be conserved. This,
together with B = mn, tells that the shell number should also
be conserved. From this we conclude that, when an (m, n)

skyrmion decays to (m1, n1) and (m2, n2) skyrmions, we
must have n = n1 + n2 and m = m1 + m2. This, of course,
is what is expected.

The above discussion raises another deep question. As we
have remarked, when ω = (2n + 1)π the Skyrme theory
has knot solutions described by n̂ whose topology is given
by π3(S2), in addition to the skyrmion solutions [21–23].
If so, can we dress the knots with ω to provide a new type
of shell structure, and extend the knots to have two quan-
tum numbers π1(S1) and π3(S2)? This is a mind boggling
question.

4 Multiple vacua of Skyrme theory

Now we show that the Skyrme theory in fact has another very
important topological structure, the topologically different
multiple vacua. To see this, notice that (11) has the solution

ω = 2πp, (p; integer), (29)

independent of n̂. And obviously this is the vacuum solution.
This tells that the Skyrme theory has multiple vacua clas-

sified by the integer p which is similar to the Sine-Gordon
theory. But unlike the Sine-Gordon theory, here we have the

multiple vacua without any potential. Moreover, the above
discussion tells that the spherically symmetric skyrmions
connect and occupy the p + 1 adjacent vacua. This means
that we can connect all vacua with the spherically symmet-
ric skyrmions. Of course, one could introduce such vacua in
Skyrme theory introducing a potential term in the Lagrangian
[24]. This is not what we are doing here. We have these vacua
without any potential.

But this is not the end of the story. To see this notice
that (29) becomes the vacuum independent of n̂. This means
that n̂ can add the π3(S2) topology to each of the multiple
vacua classified by another integer q, because it is completely
arbitrary. And this is precisely the knot topology of the QCD
vacuum [25].

This is not surprising. Given the fact that there is a deep
connection between Skyrme theory and QCD, it is natural
that the Skyrme theory and QCD have similar vacuum struc-
ture. To amplify this point, notice that the most general SU(2)
QCD vacuum can be expressed in terms of a right-handed
SU (2) basis (n̂1, n̂2, n̂3 = n̂) by [25]

�̂μ = −1

2
εi jk(n̂i · ∂μn̂ j ) n̂k . (30)

Clearly it has the π3(S3) topology of the mapping from the
compactified 3-dimensional space to the SU(2) group space
defined by (n̂1, n̂2, n̂). But since (n̂1, n̂2, n̂) is completely
determined by n̂ up to the U(1) rotation which leaves n̂ invari-
ant, (30) also has the knot topology π3(S2) which describes
the mapping from the real space S3 to the coset space S2 of
SU(2)/U (1).

Now it must be clear why the vacuum of Skyrme theory
has the same knot topology. As we have noticed, the Skyrme
theory has the vacuum (29) independent of n̂, and this n̂ adds
the knot topology π3(S2) to the vacuum. Of course, in the
Skyrme theory we do not need the vacuum potential (30) to
describe the vacuum. We only need n̂ which describes the
knot topology.

This confirms that the vacuum in Skyrme theory has the
topology of the Sine-Gordon theory and QCD combined
together. This means that the vacuum of the Skyrme the-
ory can also be classified by two quantum numbers (p, q),
the π1(S1) of ω and π3(S2) of n̂. And this is so without any
extra potential. As far as we know, there is no other theory
which has this type of vacuum topology.

At this point we emphasize the followings. First, the knot
topology of n̂ is different from the monopole topology of
n̂. The monopole topology π2(S2) is associated to the iso-
lated singularities of n̂, but the knot topology π3(S2) does
not require any singularity for n̂. And for a classical vacuum
n̂ must be completely regular everywhere. So only the knot
topology, not the monopole topology, can not describe a clas-
sical vacuum. And this is precisely the vacuum topology of
QCD.
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Second, the knot topology of the vacuum is different from
the Faddeev–Niemi knot that we have in the Skyrme the-
ory [21]. The Faddeev–Niemi knot is a unique and real (i.e.,
physical) knot which carries energy, which is given by the
solution of (17). In particular, we have the knot solution when
ω = (2n + 1)π . On the other hand, we have the knot of the
vacuum when ω = 2πp. Moreover, the vacuum knot has no
energy, and is not unique. While the Faddeev–Niemi knot
is unique, there are infinitely many n̂ which describes the
same vacuum knot topology. So obviously they are different.
What is really remarkable is that the same n̂ has multiple
roles. It describes the monopole topology, the knot topol-
ogy of Faddeev–Niemi knot, and the knot topology of the
vacuum.

5 Discussions

Skyrme theory has been known to have rich topological struc-
tures. It has the Wu-Yang type monopoles, the skyrmions as
dressed monopoles, the baby skyrmions and twisted mag-
netic flux, and the Faddeev–Niemi knots made of twisted
magnetic vortex ring [21–23]. This makes the theory very
important not only in high energy physics but also in
condensed matter physics, in particular in two-gap super-
conductor and two-component Bose–Einstein condensates
[22,23,26–29].

Our analysis tells that the theory has more topology. In
this paper we have shown that the skyrmions are not just the
dressed monopoles but actually carry the monopole number,
so that they can be classified by two topological numbers,
the baryon number and the monopole number. Moreover, we
have shown that here the baryon number could be replaced
by the radial (shell) number, so that the skyrmions can be
classified by two topological numbers (m, n), the monopole
number m which describes the π2(S2) topology of the n̂ field
and the radial (shell) number n which describes the π1(S1)

topology of the ω field. In this scheme the baryon number B
is given by the product of two integers B = mn. This comes
from the following facts. First, the SU(2) space S3 admits the
Hopf fibering S3 � S2 × S1. Second, the Skyrme theory has
two variables, the angular variable ω which can represent the
π1(S1) topology and the coset variable n̂ which represents
the π2(S2) topology.

In this view the popular (non spherically symmetric)
skyrmions are classified as the (m, 1) skyrmions, and the
radially excited spherically symmetric skyrmions are classi-
fied as the (1, n) skyrmions. and we can construct the (m, n)

skyrmions adding the shell structure to the (m, 1) skyrmions.
Moreover, we have shown that the skyrmions, when they are
generalized to have two topological numbers, should have
the topological stability of the two topology independently.
This is remarkable.

As importantly, we have shown that the Skyrme theory
has multiple vacua. The vacuum of the theory has the struc-
ture of the vacuum of the Sine-Gordon theory and at the
same time the structure of QCD vacuum. So the vacuum can
also be classified by two topological numbers p and q which
represent the π1(S1) topology of the ω field and the π3(S2)

topology of the n̂ field.
The fact that the vacuum of the Skyrme theory has the

π1(S1) topology is not surprising, considering that it has the
angular variable ω. Moreover, the fact that the vacuum of
the Skyrme theory has the π3(S2) topology of the QCD vac-
uum could easily be understood once we understand that
the Skyrme theory is closely related to QCD. What is really
remarkable is that it has both π1(S1) and π3(S2) topology
at the same time. As far as we understand there is no other
theory which has this feature. This again is closely related to
the fact that S3 admits the Hofp fibering and that the theory
has two variables ω and n̂.

This raises interesting questions. Can we generalize the
Faddeev–Niemi knot to have the π1(S1) topology? If so, how
do we obtain such knot? Do we have the vacuum tunneling in
Skyrme theory? What instanton can we have in this theory?

Clearly the above observations put the Skyrme theory in
a totally new perspective. Our results in this paper show that
the theory has so many new aspects which make the theory
more interesting. But most importantly our results strongly
imply that we need a new interpretation of the Skyrme theory.

Note AddedOne of the referees suggested that there might
be a strong similarity between the Hopf map S3 → S2 → S2

discussed by Adam et al. [30,31] and our result that the
baryon number could be decomposed to the monopole num-
ber and the shell number. Although there is no direct rela-
tion between this work and our result, the Hopf fibering
S3 � S2 × S1 does play the central role for us to justify
the existence of the shell number, as we have emphasized in
this paper. The details of the above results and the questions
raised in this paper will be discussed in a separate publication
[32].
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