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Abstract The nucleon generalized polarizabilities (GPs),
probed in virtual Compton scattering (VCS), describe the
spatial distribution of the polarization density in a nucleon.
They are accessed experimentally via the process of electron–
proton bremsstrahlung (ep → epγ ) at electron-beam facili-
ties, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI
(Mainz). We present the calculation of the nucleon GPs and
VCS observables at next-to-leading order in baryon chiral
perturbation theory (BχPT), and confront the results with
the empirical information. At this order our results are pre-
dictions, in the sense that all the parameters are well known
from elsewhere. Within the relatively large uncertainties of
our calculation we find good agreement with the experimen-
tal observations of VCS and the empirical extractions of the
GPs. We find large discrepancies with previous chiral cal-
culations – all done in heavy-baryon χPT (HBχPT) – and
discuss the differences between BχPT and HBχPT respon-
sible for these discrepancies.
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1 Introduction

Long after the early studies of the electron–proton (ep)
bremsstrahlung [1,2], it was realized that this process holds
the key to the generalized polarizabilities (GPs) of the
nucleon [3]; see Ref. [4] for a review. The GPs extend the
concept of static polarizabilities to finite momentum transfer
Q2, and have an interpretation of the distribution of polar-
ization densities in the nucleon [5]. They naturally arise in
virtual Compton scattering (VCS) with the incoming vir-
tual photon of spacelike virtuality Q2, and the outgoing
real photon of very low frequency; hence we have the ep
bremsstrahlung which, in the one-photon-exchange approxi-
mation, decomposes into the Bethe–Heitler (BH) process and
VCS; cf. Fig. 1. Shown in the figure is also the split of VCS
into: A) the Born contribution to VCS, with the intermediate
state being the nucleon itself, and B) non-Born contribu-
tion to VCS, which at low energies is entirely determined by
GPs [3,6,7]. The BH and Born VCS contributions are given
in terms of the electromagnetic nucleon form factors known
from elastic electron scattering. The non-Born VCS ampli-
tude, carrying the information about the “inelastic” structure
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Fig. 1 Mechanisms contributing to ep → epγ in the one-photon-
exchange approximation: Bethe–Heitler, Born VCS, non-Born VCS.
Thick (thin) solid lines denote the proton (the electron), wavy lines

denote photons. Small circles denote the interaction vertex of a proton
with a virtual photon, and the ellipse stands for the generic non-Born
VCS amplitude

of the nucleon, is the unknown piece that one is trying to
access in the ep bremsstrahlung.

Over the past two decades the experimental studies clearly
demonstrated the feasibility of an accurate extraction of pro-
ton GPs from ep bremsstrahlung [8–14]. This experimental
progress has been echoed by theory advances. A number of
impressive calculations have been done in heavy-baryon chi-
ral perturbation theory (HBχPT) [15–19], albeit showing a
rather poor convergence. A much more empirically viable
theory of proton GPs and VCS was developed by Pasquini
et al. [20,21] based on fixed-t dispersive relations (DRs) for
the VCS amplitudes. Incidentally, this framework is used in
many experimental studies to extract the GPs from the VCS
observables.

The present work is aiming to advance the chiral effective-
field theoretic approach by applying the manifestly Lorentz-
invariant variant of baryon chiral perturbation theory (BχPT)
to nucleon VCS and GPs. As many recent calculations
demonstrate (see, e.g., [22–31]), BχPT shows an improved
convergence over the analogous HBχPT calculations, and,
as result, a more “natural” description of the nucleon polar-
izabilities and Compton scattering processes [32–36]. In this
paper, we extend the previous BχPT calculations of Lensky
et al. [35–37], done for nucleon polarizabilities appearing in
real and forward doubly virtual Compton scattering (RCS
and VVCS, respectively), to the case of GPs and VCS. As
in the previous cases, the present calculation is “predictive”
in the sense that it has no free parameters to be fixed by
the empirical information from Compton processes. And, as
in other cases, we find significant improvements in conver-
gence over the analogous HBχPT results. Arguably, the main
improvement is that our postdictions compare well with the
experimental data on VCS observables, at least given the
significant theoretical uncertainties.

The paper is organized as follows. In Sect. 2, we open
with the general remarks concerning the connection between
polarizabilities and low-energy Compton scattering pro-
cesses, and then focus on defining the GPs and the VCS
observables. Section 3 contains the details of our BχPT cal-
culation, including power counting, diagrams, theory error
estimate, and remarks on a number of technical issues which
arise in these calculations. Section 4 compares our calcula-
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Fig. 2 General Compton scattering process. The notation is as in Fig. 1,
with the four-momenta of the corresponding particles denoted in the
figure

tion with previous estimates: the linear σ -model, HBχPT
calculations, and fixed-t dispersive estimates. Section 5 con-
fronts the results with the available experimental data. Sec-
tion 6 contains the concluding remarks. Appendix A contains
expressions for the tensors that are used in the decomposi-
tion of the VCS amplitude, whereas Appendix B contains
analytic expressions for those combinations of the invariant
VCS amplitudes that contribute to the GPs.

2 Polarizabilities in Compton processes

Let us start by pointing out that there are two different ways of
introducing the momentum-transfer dependence of polariz-
abilities: one via the forward doubly virtual Compton scatter-
ing (VVCS), the other via the single-virtual Compton scatter-
ing (VCS). To see the difference, consider a general Compton
scattering (CS) process in Fig. 2, described by a number of
scalar amplitudes Ai , functions of Mandelstam invariants

s = (p + q)2 = (p′ + q ′)2, t = (q − q ′)2 = (p′ − p)2,

u = (p − q ′)2 = (p′ − q)2. (1)

The latter satisfy the usual kinematical constraint,

s + u + t = 2M2 + q2 + q ′ 2, (2)

with M the nucleon mass and q2, q ′ 2 the photon virtualities.
The polarizabilities can be equated with the coefficients in the
low-energy expansion of the CS amplitudes Ai . Introducing
the invariant energies of the incoming and outgoing photon:
ν = p · q/M and ν′ = p · q ′/M , the low-energy expansion
requires at least one of them to be small. Note that the kine-
matical constraint can be written as t = −2M (ν−ν′), hence
by energy conservation t ≤ 0. It is convenient to introduce
the kinematic invariant,
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ξ = s − u

4M
, (3)

which is odd under the photon crossing, ξ → −ξ , whereas
t is even. In the most general situation, the CS amplitudes
are functions of four independent variables, e.g., the photon
energies and virtualities, Ai = Ai (ν, ν′; q2, q ′ 2), or equiva-
lently, Ai (ξ, t; q2, q ′ 2).

Now, for real photons (q2 = q ′ 2 = 0), small ν infers
the smallness of ν′ and t . This is the limit in which the static
polarizabilities are defined. For both photons virtual and hav-
ing the same momentum q ′ = q, we deal with the forward
VVCS process which, by means of unitarity and causality,
can be expressed in terms of nucleon structure functions. In
this case the low-energy expansion of the non-Born ampli-
tude1 is around ν = ν′ = 0 and the polarizabilities arise as
moments of structure functions.

In this work we are concerned with VCS – the Comp-
ton process where the initial photon is virtual (q2 = −Q2)
and the final one is real (q ′ 2 = 0). The polarizabilities are
obtained by expanding around ν′ = 0, while ν is required
to be near the lowest physical value (i.e., the elastic thresh-
old): ν0 = Q2/2M . This limit corresponds with t = −Q2.
Note that our Q2 corresponds to Q̃2 in the notation of
Ref. [3], and to Q2

0 in the notation of Ref. [6]. The three-
momentum squared of the initial photon is given in this limit
by q̄2 = Q2(1 + τ), with τ = Q2/4M2 = ν0/2M .

To distinguish between the GPs arising in VVCS and VCS,
we shall refer to the former ones as “symmetric” and to the
latter ones as “skewed”. The three considered situations can
thus be classified as follows:

static (RCS): q2 = 0, q ′ 2 = 0, ν ≈ 0, ν′ ≈ 0, t ≈ 0.
symmetric GPs (VVCS): q2 = q ′ 2 = −Q2, ν = ν′ ≈ 0,
t = 0.
skewed GPs (VCS): q2 = −Q2, q ′ 2 = 0, ν′ ≈ 0, ν ≈
Q2/2M , t ≈ −Q2.

A nice pictorial representation of these situations can be
found in Ref. [38]. Because the low-energy expansions in
VVCS and VCS are performed around such different kine-
matical points, the symmetric and skewed GPs are only con-
nected in the static (real-photon) limit.

Let us now consider the low-energy expansion of VCS
in more detail. The low-energy theorem for VCS [3,39,40]
states that the expansion of the non-Born amplitude in pow-
ers of the final photon’s energy ν′ starts at O(ν′ 1), whereas
the two leading terms, O(ν′ −1) and O(ν′ 0), are entirely
determined by the tree-level BH and Born amplitudes. The
leading-order [O(ν′ 1)] non-Born contribution had initially

1 The Born amplitude will be treated exactly, as the convergence of
its low-energy expansion is severely limited by the nucleon pole at
ξ = ±Q2/2M .

been parametrized by ten skewed GPs [3]. Soon after, it was
discovered that the crossing symmetry [see Eq. (6b)] reduces
the number of independent GPs to six [6]. These six GPs are
often denoted as2

P(L1,L1)0(Q2), P(M1,M1)0(Q2), P(L1,L1)1(Q2),

P(M1,M1)1(Q2), P(M1,L2)1(Q2), P(L1,M2)1(Q2), (4)

where P(ρ′
′,ρ
)S(Q2) correspond with a multipole ampli-
tude (at ν′ = 0) where ρ = L , M denotes whether the pho-
ton is of the longitudinal or the magnetic type and 
 denotes
the angular momentum (respectively, ρ′
′ or ρ
 for the final
or initial photon); S = 1 or S = 0 indicates whether the
transition involves the proton’s spin flip or not.

To be more specific, we consider the tensor decomposition
of the VCS amplitude Mμν into the gauge-invariant basis of
Ref. [6]:

Mμν(p′, q ′, p, q) = e2
12∑

i=1

ρ
μν
i Ai (ξ, t; q2), (5)

where μ (ν) are the indices of the outgoing (incoming) pho-
ton four-vector fields, with tensors ρi given in Appendix A.
The nucleon crossing symmetry in combination with charge
conjugation yields the following property of the invariant
amplitudes:

Ai (ξ, t; q2) = +Ai (−ξ, t; q2), i = 1, 2, 5, 6, 7, 9, 11, 12 ,

(6a)

Ai (ξ, t; q2) = −Ai (−ξ, t; q2), i = 3, 4, 8, 10, (6b)

with the latter equation leading to the above-mentioned
reduction of the number of independent GPs from 10 to 6.
This property is also helpful in checking our loop calcula-
tions.

The six GPs of Eq. (4) are defined in terms of the non-Born
amplitudes,3

Āi (ξ, t; q2) ≡ Ai (ξ, t; q2) − ABorn
i (ξ, t; q2), (7)

taken at ξ = 0 and t = q2 ≡ −Q2. Introducing a shorthand
notation,

Āi (Q
2) ≡ Āi (0, −Q2;−Q2), (8)

the precise expressions for the GPs are given by

P(L1,L1)0(Q2) =
√

2

3
Nq [ Ā1(Q

2) + 4M2(1 + τ) Ā2(Q
2)

+ 4M2τ(2 Ā6(Q
2) + Ā9(Q

2) − Ā12(Q
2))], (9a)

2 Originally [3] they were denoted as, respectively: P(01,01)0, P(11,11)0,
P(01,01)1, P(11,11)1, P(11,02)1, P(01,12)1.
3 Expressions for the Born contribution in this basis can for instance
be found in Ref. [20].
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P(M1,M1)0(Q2) = −
√

8

3
Nq Ā1(Q

2), (9b)

P(L1,L1)1(Q2) = −2

3
NqMτ [ Ā5(Q

2) + Ā7(Q
2)

+ 4 Ā11(Q
2) + 4M Ā12(Q

2)], (9c)

P(M1,M1)1(Q2) = −2

3
Nq

Mτ

1 + τ
[ Ā5(Q

2) − 2Mτ Ā12(Q
2)],

(9d)

P(M1,L2)1(Q2) = 2

3

√
2

3
Nq

[
τ

2(1 + τ)
Ā5(Q

2)

+1

2
Ā7(Q

2) + 2 Ā11(Q
2) + Mτ

1 + τ
Ā12(Q

2)

]
, (9e)

P(L1,M2)1(Q2) = −
√

2

6
Nq

1

1 + τ
[8M Ā6(Q

2) + Ā7(Q
2)

+ 4M Ā9(Q
2) + 4 Ā11(Q

2) + 2Mτ Ā12(Q
2)], (9f)

with the normalization factor Nq usually taken to be

Nq =
√

2M + ν0

2(M + ν0)
=

√
1 + τ

1 + 2τ
. (10)

At the real-photon point, these GPs relate to the static
nucleon polarizabilities [3,7]:

P(L1,L1)0(0) = − 1

αem

√
2

3
αE1, (11a)

P(M1,M1)0(0) = − 1

αem

√
8

3
βM1, (11b)

P(M1,L2)0(0) = − 1

αem

2

3

√
2

3
γM1E2, (11c)

P(L1,M2)0(0) = − 1

αem

√
2

3
γE1M2, (11d)

where αem = e2/4π � 1/137 is the fine structure constant.
The remaining two GPs, P(L1,L1)1 and P(M1,M1)1, vanish (at
Q2 = 0). Their slopes, on the other hand, can be related to
other static polarizabilities and to “symmetric” GPs via the
spin-dependent sum rules [41–43].

The “skewed” generalizations of the electric and magnetic
dipole polarizabilities are thus defined as follows:

αE1(Q
2) = −αem

√
3

2
P(L1,L1)0(Q2), (12a)

βM1(Q
2) = −αem

√
3

8
P(M1,M1)0(Q2). (12b)

Similar generalizations can be made for the two spin polar-
izabilities in Eqs. (11c) and (11d).

Finally, let us recall the relation to experimental observ-
ables. As noted above, the six GPs of Eq. (4) suffice to fully
parametrize the leading (linear in ν′) term in the non-Born

VCS amplitude. The latter, together with the BH and Born
VCS amplitudes, can be used to calculate the observables
of ep bremsstrahlung. Most notably, the expression for the
unpolarized five-fold differential cross-section can be cast in
the following form:

d5σ = d5σBH+Born + ν′

{
V1

[
PLL(Q2) − 1

ε
PTT (Q2)

]

+ V2

√
ε(1 + ε)PLT (Q2)

}
, (13)

where 
, V1, and V2 are kinematical factors (see Ref. [3] for
the specific expressions thereof), ε is the electron polarization
transfer parameter, PLL , PTT , and PLT are the VCS response
functions given in terms of GPs as follows [4]:

PLL(Q2) = −2
√

6MGE (Q2)P(L1,L1)0(Q2), (14a)

PTT (Q2) = 6MGM (Q2)(1 + τ)
[
2
√

2 Mτ P(L1,M2)1(Q2)

+P(M1,M1)1(Q2)
]
, (14b)

PLT (Q2) =
√

3

2
M

√
1 + τ

[
GE (Q2)P(M1,M1)0(Q2)

−√
6GM (Q2)P(L1,L1)1(Q2)

]
, (14c)

where GE (Q2) and GM (Q2) are the Sachs electric and mag-
netic form factors of the nucleon.

The unpolarized differential cross-section thus gives infor-
mation about two linear combinations of the VCS response
functions: PLL − PTT /ε and PLT . These two quantities are
dominated by the scalar GPs: P(L1,L1)0 and P(M1,M1)0. Note,
however, that performing unpolarized VCS experiments at
fixed Q2 and for two different values of ε allows one to sepa-
rate PLL and PTT and thus to access one combination of spin
GPs, PTT . To obtain information on all spin GPs, one needs
to consider polarization observables. We will be interested,
in particular, in the response function [44]

P⊥
LT (Q2)= M

Q

GE (Q2)

GM (Q2)
PTT (Q2)− Q

4M

GM (Q2)

GE (Q2)
PLL(Q2)

(15)

which has been accessed experimentally using the beam-
recoil polarization asymmetries [13].

3 Chiral perturbation theory of generalized
polarizabilities

Our aim is to compute the nucleon VCS amplitudes
Ai (ξ, t; q2) and subsequently the “skewed” GPs using the
SU(2) chiral perturbation theory (χPT) [45,46], including
the nucleon and �(1232) degrees of freedom. We shall
employ BχPT which is the manifestly covariant extension
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of χPT to the single-baryon sector in its most straightfor-
ward implementation (i.e., not the “infrared regularization”
of Ref. [22]), where the nucleon is included as in4 Ref. [47],
and the �(1232) as in Ref. [48]; see also [49] for concise
overview. The heavy-baryon results can easily be obtained
from BχPT by an additional expansion in the inverse powers
of baryon masses.

3.1 Further remarks on power counting

Let us recall that the chiral effective-field theory is based
on the perturbative expansion in powers of pion momentum
p and mass mπ over the scale of spontaneous chiral sym-
metry breaking �χ ∼ 4π fπ , with fπ � 92 MeV the pion
decay constant. Each operator in the effective Lagrangian,
or a graph in the loopwise expansion of the S-matrix, can
be assigned with an order of p. To give a relevant example
consider the operator

N̄ N F2, (16)

with N (x) standing for the Dirac field of the nucleon, and F2

is the square of the electromagnetic field tensor, Fμν(x) =
∂[μAν](x). This is an operator of O(p4), since two of the p’s
come from the photon momenta which are supposed to be
small, and the other two powers arise because the two-photon
coupling to the nucleon must carry a factor of αem (the charge
e counts as p, as we want the derivative of the pion field to
count as p even after including the minimal coupling to the
photon).

This operator enters the effective Lagrangian with a so-
called low-energy constant (LEC), denoted byC , and it gives
a contribution to the Compton scattering amplitude in the
form of5

Mμν
C = C (q · q ′ gμν − qμq ′ ν), (17)

hence leading to a shift in the magnetic dipole polarizability:
βM1 → βM1 + C/4π . Now, two important remarks are in
order.

(i) Naturalness. The value of C is not completely arbitrary,
but should rather go as C = (e2/�3

χ )c, with the dimen-
sional constant c being of order of 1, or more precisely:

p/�χ � |c| � �χ/p . (18)

4 The power counting concerns raised in [47] have been overcome
by renormalizing away the “power-counting violating” using the low-
energy constants (a.k.a. Wilson coefficients) available at that order. This
has been shown explicitly within the “extended on-mass-shell renormal-
ization scheme” (EOMS) [23], but it is not limited to it.
5 Throughout this paper we use the conventions summarized in the
beginning of Ref. [43].

This condition ensures that the contribution of this oper-
ator is indeed of O(p4), as the power counting requires.

(ii) Predictive powers. This LEC enters very prominently
in Compton scattering and polarizabilities – at the tree
level, which means its value is best fixed by the empir-
ical information on these quantities. If this is so, the
O(p4) is not “predictive”, as it could only be used to
fit the χPT result to experiment or lattice QCD cal-
culations. On the other hand, contributions of orders
lower than p4 are predictive, as they only contain LECs
fixed from elsewhere. It is crucial to first study the
predictive contributions, if there are any, and this is
what we shall focus on here, for the case of VCS and
GPs.

The “predictive” contributions to Compton scattering and
polarizabilities had been identified in Ref. [35] and computed
for the case of real-Compton scattering therein and for VVCS
in [36]. Our present calculation of VCS is quite analogous to
those works and hence we refer to them for most of the tech-
nical details, such as the expressions for the relevant terms
of the effective Lagrangian.

On the conceptual side, it is important to note that the
counting of the �(1232) effects is done in the so-called
“δ-counting” [50]. In it, the Delta-nucleon mass difference
Δ = M� − M is counted as a light scale (Δ � �χ )
which is substantially heavier than the pion mass (mπ � Δ).
Hence, if p ∼ mπ , then O(p4/Δ) is in between of O(p3)

and O(p4).
For the non-Born VCS amplitude and polarizabilities the

predictive orders are O(p3) and O(p4/Δ). The O(p3) con-
tribution comes from the pion–nucleon loops shown in Fig. 3.
We refer to it here as the leading-order (LO) contribution.6

The O(p4/Δ) contribution, arising at the next-to-leading
order (NLO), comes from the Delta pole graph and the pion–
Delta loops shown in Fig. 4.

Going into more detail, we note that the feature of the δ-
counting is that the characteristic momentum p distinguishes
two regimes: low-energy (p � mπ ), and resonance (p � Δ).
The above counting is limited to the low-energy regime.
Since we are interested in the VCS amplitude at the spe-
cific kinematics point where the GPs are defined (i.e., ξ = 0,
t = −Q2), we do not consider the regime where one-Delta-
reducible graphs are enhanced (resonance regime). However,
going to higher Q one does need to count the Delta propa-
gators similar to the nucleon propagators, which, in turn,
calls for inclusion of pion–Delta loops with two and three
Delta propagators, which have been omitted here. They are
only included implicitly to restore current conservation by

6 In the full Compton amplitude (i.e., including the Born term), it is, in
fact, a next-to-leading order contribution, and this is how it is referred
to sometimes, e.g. [35].

123



119 Page 6 of 16 Eur. Phys. J. C (2017) 77 :119

Fig. 3 Pion–nucleon loops of O(p3). Solid (dashed) lines denote nucleons (pions). Crossed and time-reversed graphs are not shown but are
included in the calculation

Fig. 4 Pion–Delta loops and
the Delta tree of O(p4/Δ) (in
the low-energy regime). Crossed
and time-reversed graphs are not
shown but are included in the
calculation. Double lines denote
the propagator of the Delta

adjusting the isospin coefficients of one-nucleon-reducible
graphs in Fig. 4, as explained in Ref. [35]. Apart from that,
pion–Delta loops have a rather mild dependence on momenta
and the missing loops are unlikely to significantly affect
the Q2-dependence of the GPs, even for Q2 comparable
to Δ2.

To conclude this section, a remark is in order about the π0

anomaly graph, sometimes considered to be a part of the Born
contribution. It enters the VCS amplitude at O(p2) and repre-
sents the dominant part of the spin GPs (all except P(L1,L1)1

where it does not enter). However, the anomaly contributions
cancel in the response functions introduced above. We will
also omit them when showing results for the spin GPs.

3.2 In practice

The calculation of the πN and π� loop graphs in Figs. 3 and
4 is analogous to Ref. [35], with the obvious extension to the
case of finite virtuality of the initial photon. The renormal-
ization is done in exactly the same way; namely, graphs with
the nucleon self-energy and with the one-loop γ NN vertices
are subtracted according to the usual prescription

�R(/ps) = �(/ps) − �(/p) − �′(/p)(/ps − M) , (19)

�
μ
R(p, p′) = �μ(p, p′)−

[
γ μF1(q

2) − 1

2M
γ μνqνF2(q

2)
]
,

(20)

where ps and p in the first equation are the off-shell and
the on-shell momentum of the nucleon, whereas F1(q2) and
F2(q2) are the on-shell nucleon Dirac and Pauli form factors
resulting from the unsubtracted γ NN vertex �μ(p, p′), with
q = p′ − p being the momentum transfer from the photon
to the nucleon.

The Delta pole graph in Fig. 4 is calculated in Refs. [26,
36], and as in those works the magnetic γ N� coupling gM
acquires the dipole behavior that mimics the form expected
from vector-meson dominance:

gM → gM
[
1 + (Q/�)2 ]2 , (21)

with the dipole mass �2 = 0.71 GeV2.
Concerning the implementation of tensor decomposition

in Eq. (5), it proved to be useful to write the basis ten-
sors ρi , i = 1, . . . , 12, in terms of the Tarrach tensors
Ti , i = 1, . . . , 34, introduced for the most general VVCS
case [51]; see Appendix A. All tensors ρi , apart from ρ2,
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ρ3, and ρ6, have unique structures that allow for unambigu-
ous identification of the corresponding parts of the ampli-
tude, e.g., the combination T29 + T30 enters only ρ12, T17

enters only ρ11, and so on. After the tensors ρi , i �= 2, 3, 6,
have been identified, the remaining tensors can be identified
as well, since at this stage they are the only ones that can
enter the rest of the amplitude. Since the basis ρi is explicitly
gauge invariant, all the terms that are not proportional to any
of ρi have to vanish when one decomposes a gauge invari-
ant amplitude, e.g., summing up a gauge invariant subset of
Feynman graphs such as the πN loops in Fig. 3 with their
crossed and time-reversed partners, or the Delta pole graph in
Fig. 4 with its crossed partner, or the π� loops in that figure
with their crossed and time-reversed partners. Ensuring that
the rest of the amplitude vanishes after the terms proportional
to ρi have been subtracted represents a non-trivial check of
a VCS calculation.

We note as well that the tensor decomposition introduces
false singularities in the amplitudes due to some of the coef-
ficients in front of Ti proportional to ξ ; these singularities
disappear in the end, which serves as yet another check of
the calculation. These singularities tend to interfere with the
false on-shell singularities in one-nucleon-reducible graphs,
i.e., graphs with the nucleon self-energy loop and those with
the one-loop γ NN vertices. These latter singularities also
have to disappear in the end since both the self-energy and the
one-loop γ NN vertices are subtracted on-shell, as explained
above.

It is more convenient, however, to explicitly remove
on-shell singularities from the integrals over the Feynman
parameters; this can be done by integrating by parts in
these integrals and by additional subtractions where they are
needed. To illustrate these techniques, we give two examples
of typical terms arising in the πN self-energy graph, where
the on-shell singularities are manifest:

(A) X1 = 1

s̄ − 1

1∫

0

dx{log[x2+μ2(1−x)−(s̄−1)x(1−x)]

− log[x2 + μ2(1 − x)]}, (22)

(B) X2 = 1

s̄ − 1

1∫

0

dx

× x2[x2(2x − 1) − 3μ2(x − 1)2 + 2(s̄ − 1)x(x − 1)2]
[x2 + μ2(1 − x)][x2 + μ2(1 − x) − (s̄ − 1)x(1 − x)] ,

(23)

here μ = mπ/M and s̄ = s/M2. The singularity at s̄ → 1
appearing in X1 is canceled when one integrates by parts in
the first integral, whereas in order to deal with X2 one notices
that the integral in it vanishes at s̄ → 1. This means that the

integrand of X2 can be subtracted at s̄ = 1; the singularity
cancels after this subtraction.

Removing the on-shell false singularities explicitly allows
one to deal with the remaining 1/ξ false singularities that
come from the tensor decomposition by simply expanding
the integrals in powers of ξ . It appears to be possible to ana-
lytically verify that coefficients in front of negative powers of
ξ turn to zero after integration over the Feynman parameters,
both for the πN and π� loops.

Given the kinematics of VCS, one is only interested in
the ξ0 term in the expansion of the thus obtained amplitudes
Ai (ξ, t; q2), while the Mandelstam variable t is also set to
t = q2 ≡ −Q2. The resulting functions Āi (Q2) are obtained
as integrals over two Feynman parameters; an expansion in
Q2 around the static point Q2 = 0 allows for the integrals to
be taken analytically. Appendix B contains expressions for
those linear combinations of Āi (Q2) that enter the GPs given
by Eq. 4, resulting from theπN loop graphs in Fig. 3 and from
the Delta pole graph in Fig. 4. The corresponding expressions
for the π� loops in Fig. 4 are given in the supplementary
material to this article.

3.3 Error estimate

In making comparison with experimental data, it is impor-
tant to provide a theoretical uncertainty. In the case of an
EFT expansion, the common way to obtain this uncertainty
is via the estimate of higher-order contributions. This work
employs the following estimate. In the low-momenta regime,
where the expansion parameter is δ ∼ p/Δ, our calcu-
lation is of the next-to-leading order (NLO). A conserva-
tive estimate of the next-to-next-to-leading order (NNLO)
contributions would be error( f ) = δ2 f , where f is a
generic VCS amplitude or response function. It is impor-
tant to note, however, that the error of the scalar polarizabil-
ities αE1(Q2) and βM1(Q2) in the static limit Q2 = 0 is
defined by the error of the corresponding static (real) polar-
izabilities. This error was argued to be small [37] due to
the fact that these polarizabilities are very close at NLO to
the results obtained in BχPT fits to real Compton scatter-
ing data [52], and that there are contact terms at NNLO that
will in any case compensate changes in αE1 and βM1 com-
ing from other higher-order mechanisms. The static errors
are estimated as error(αE1, static) � error(βM1, static) ∼
0.7 × 10−4 fm3 (see Ref. [37]); this translates to the uncer-
tainty of 4.7 GeV2 and 2.3 GeV2 in PLL(0) and PLT (0),
respectively. This static uncertainty has to dominate at
very small Q2, whereas at larger Q2 (still in the low-
momenta regime) the term δ2 f ∼ (p2/Δ2) f will become
more important. In practice, we take the sum of the two
values.

The uncertainty estimate in the high-momenta regime
works in a similar way. In this regime, p � Δ, our calcula-
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tion is at an incomplete leading order (LO), however, we will
treat it as an LO calculation as argued above. The expansion
parameter in this regime can be one of these,

δ =
{
mπ

Δ
,

p

�χ

,
Δ

�χ

}
,

and we take the average value of the three in order to estimate
the NLO contribution. In summary, our uncertainty estimate
for a VCS amplitude or a response function f is given by

error( f ) =

⎧
⎪⎨

⎪⎩

error( f, static) + p2

Δ2 f, p � Δ,

1
3

(
mπ

Δ
+ p

�χ
+ Δ

�χ

)
f, p � Δ,

(24)

where error( f, static) is the static uncertainty discussed
above. To obtain smooth bands in the plots, the uncertainties
in the different regimes are multiplied by smooth transition
functions. One has to note that this error estimate can lead
to artifacts such as zero crossings, in the regime p � Δ:
the error being proportional to the observable, it can become
small or even turn to zero if the latter decreases or vanishes.
While we still consider this issue to be tolerable as far as
the plots we demonstrate here are concerned, one can see it
manifest, for instance, in Figs. 8 and 11 below, where the
bands of PLT and βM1 shrink at larger values of Q2.

4 Comparison with previous calculations

In this section, we compare our BχPT results with previous
results obtained in HBχPT, in the linear sigma model, and
with fixed-t dispersion relations. Matching our results against
those obtained in the former two frameworks provides an
important check of our calculation.

4.1 Linear σ -model

The first check is made by comparing our results with the
results of Metz and Drechsel [53,54] who calculated the
nucleon GPs in the linear sigma model at one-loop level.
Their linear sigma model calculation, performed in the limit
of infinitely large sigma meson mass, is exactly equivalent to
the O(p3) one-loop pion–nucleon BχPT result. The easiest
way to see it is perhaps to compare the Lagrangian used in
Refs. [53,54] with the BχPT Lagrangian after the field redef-
inition done in Ref. [35]. Metz and Drechsel provide only the
expressions at Q2 = 0 for the GPs and their derivatives. They
also give second derivatives for the two spin-dependent GPs
that vanish at Q2 = 0. The expressions for all of the spin-
dependent GPs are in addition expanded in 1/M up to NNLO.
Our calculation has been able to reproduces all of their results
except one: their expression for αE1 of the proton, which we
believe to be due to a typo in the second line of Eq. (17) of

Ref. [53], namely, the first term in the square brackets should
read 152 instead of 157.

4.2 Heavy-baryon expansion

By expanding our results in powers of 1/M we can check
against the HBχPT calculation of Hemmert et al. [17] that
includes the Delta isobar in the ε-expansion [55]. We checked
that the leading term of the heavy-baryon expansion of our
results for the scalar GPs (with the πN and π� loops corre-
sponding to, respectively, O(p3) and O(ε3) result of Hem-
mert et al.) reproduces the results of Ref. [17].

The spin-dependent GPs have also been calculated in
HBχPT without the Delta isobar up to incomplete O(p5) in
Refs. [18,19]. These calculations includeπN loops with pho-
ton couplings to the anomalous magnetic moment (a.m.m.)
of the nucleon inside the loop, which appear at O(p4)

and are not included in our calculation. Nevertheless, the
heavy-baryon expansion of our results should reproduce
their HBχPT expressions, once the a.m.m. couplings are
set to zero. We have reproduced the HBχPT expressions
for P(M1,M1)1 and P(L1,M2)1, calculated in Ref. [19]. The
other two spin-dependent GPs, P(L1,L1)1 and P(M1,L2)1,
are reproducible up to the leading order in 1/M ; the dif-
ferences at NLO start in the second non-vanishing terms in
the expansion in powers of Q2, i.e., the first derivative of
P(M1,L2)1 with respect to Q2, and in the second derivative of
P(L1,L1)1.

Is is important to realize that P(L1,L1)1 and P(M1,L2)1 at
O(p5) were deduced in Ref. [19] by using the nucleon cross-
ing relations of Eq. (6b), which in HBχPT do not hold exactly
due to the lack of an exact charge conjugation symmetry. The
mismatch between the HB results and ours demonstrates that
these crossing relations should not be used in HBχPT to
obtain complete expressions for the terms of higher-order in
1/M expansion.

For completeness, we provide here our results for the HB
expansion of the spin GPs up to NLO in 1/M . The LO results
are the same as given in Refs. [17–19] and read

P(L1,L1)1
HB,LO (Q2) = g2

AQ
2

288π2 f 2
πm

2
π M

[3 − (2w2 + 1)L1(w)],
(25a)

P(M1,M1)1
HB,LO (Q2) = − g2

AQ
2

288π2 f 2
πm

2
π M

[3 − 2(w2+1)L1(w)],
(25b)

P(M1,L2)1
HB,LO (Q2) = − g2

A

72
√

6π2 f 2
πm

2
π

L1(w), (25c)

P(L1,M2)1
HB,LO (Q2) = − g2

A

144
√

2π2 f 2
πm

2
π

L1(w), (25d)
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Fig. 5 Comparison of covariant BχPT and HBχPT results for gen-
eralized polarizabilities: a αE1(Q2); b βM1(Q2); c P(L1,L1)1(Q2); d
P(M1,M1)1(Q2); e P(M1,L2)1(Q2); f P(L1,M2)1(Q2). Red solid curve

Covariant O(p3) + O(p4/Δ); blue dashed curve covariant O(p3);
black dot-dashed curve HB O(p3) + O(ε3); green dotted curve HB
O(p3). HB results are from Refs. [17,19]

with nucleon axial coupling constant gA � 1.27, pion decay
constant fπ � 92.21 MeV, where w = Q/2mπ , and the
function L1(w) is defined as

L1(w) = 3

2w2

(
1 − sinh−1 w

w
√

w2 + 1

)
, L1(0) = 1. (26)

The correct NLO results (without the nucleon a.m.m. cou-
plings) read

P(L1,L1)1
HB,NLO (Q2) = − g2

AQ
2

2304π f 2
πmπ M2

×
[

27w2 + 30

w2 + 1
− (9w2 + 4)L2(w) + τ3(9 − (3w2 + 1)L2(w))

]
,

(27a)

P(M1,M1)1
HB,NLO (Q2) = g2

AQ
2

768π f 2
πmπ M2

×
[

5 − 5w2 + 3

3
L2(w) + τ3

(
1 − 1

3
(w2 + 1)L2(w)

)]
, (27b)

P(M1,L2)1
HB,NLO (Q2) = g2

A

576
√

6π f 2
π Mmπ

×
[
− 3w2

w2 + 1
+ (w2 + 2)L2(w) + τ3(3 + (1 − w2)L2(w))

]
,

(27c)

P(L1,M2)1
HB,NLO (Q2) = g2

A

768
√

2π f 2
π Mmπ

×
[

5w2 + 7

w2 + 1
− 5w2 − 3

3
L2(w) + τ3

(
1 + 1

3
(1 − w2)L2(w)

)]
,

(27d)

where

L2(w) = 3(w − tan−1 w)

w3 , L2(0) = 1, (28)

and τ3 = +1 or −1 for the proton or the neutron, respectively.
Our BχPT results for the GPs are furthermore compared

with the analogous HBχPT results in Fig. 5. Panels (a) and
(b) show, respectively, the results for αE1(Q2) and βM1(Q2);
one can see that, while the HBχPT O(p3) πN loops give
results very similar to the full BχPT result (which describes
the data quite well, as discussed above), the Delta isobar
contribution at O(ε3) is simply too large to provide a rea-
sonable description of the data. On the other hand, the BχPT
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Fig. 6 Comparison of covariant BχPT and DR results for generalized polarizabilities: aαE1(Q2); bβM1(Q2); c P(L1,L1)1(Q2); d P(M1,M1)1(Q2);
e P(M1,L2)1(Q2); f P(L1,M2)1(Q2). Red solid curve covariant BχPT O(p3) + O(p4/Δ); black dash-double-dotted curve DR [21]

O(p3) πN loops underpredict the scalar GPs, which helps
to accommodate the Delta isobar contribution at O(p4/Δ).

A similar pattern emerges in the case of the spin-dependent
GPs, shown in panels (c)–(f); the two GPs that vanish at
Q2 = 0, P(L1,L1)1 and P(M1,M1)1, are much larger in
HBχPT, especially with the Delta isobar. The differences
between BχPT and HBχPT are perhaps not that large for
one of the remaining two GPs, P(M1,L2)1, whereas P(L1,M2)1

differs more significantly. This can be traced to the values
of the spin polarizability γE1M2 being different in BχPT
and HBχPT; one has to note, however, that this pattern will
change once higher orders in the expansion are included (see
also the discussion below).

4.3 Fixed-t dispersion relations

We finally compare our results with the calculations based
on fixed-t dispersion relations (DR) for the VCS ampli-
tudes [21]. In Fig. 6 we compare the numerical results for the
proton GPs. The fixed-t DR calculations rely on the empir-
ical input of pion electro-production multipoles. We com-
pare here with the updated results of Ref. [21] based on the
MAID-2007 [56] pion electro-production multipole analy-
sis.

Panel (a) of Fig. 6 shows the electric polarizability, for
which one can see a very good agreement at Q2 = 0, which
quickly worsens with increasing Q2. For the magnetic polar-
izability, one sees quite an opposite picture; see panel (b).
The current PDG value for the static magnetic polarizabil-
ity, βM1 = 2.5(4) × 10−4 fm3, is adopted in the fixed-t DR
result. Our BχPT prediction is substantially larger [35,37]:
βM1 = 3.9(7) in the usual units. Fits of Compton scattering
data based on χPT also tend to yield a larger value [52,57]:
βM1 � 3.2(5).

As for higher Q2, the tDR calculation of Ref. [21] imposes
a dipole fall-off of the subtraction function in the scalar polar-
izabilities:

αDR
E1 (Q2) = απN

E1 (Q2) + αE1 − απN
E1[

1 + Q2/�2
α

]2 , (29)

βDR
M1(Q

2) = βπN
M1 (Q2) + βM1 − βπN

M1[
1 + Q2/�2

β

]2 , (30)

where αDR
E1 (Q2) is the full DR result, απN

E1 (Q2) is the πN
contribution, with αE1 and απN

E1 being the corresponding val-
ues at Q2 = 0, with the analogous definitions for βM1(Q2).
In using the tDR results we fix the static values of {αE1, βM1}
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Table 1 Values of proton mixed spin polarisabilities γE1M2 and γM1E2,
in units of 10−4 fm4 resulting in the different frameworks: O(p4/Δ)

BχPT [37], fixed-t DR [21,58] based on the MAID-2007 [56] multi-
poles, and O(p4) HBχPT [59,60], compared with the latest empirical
extraction from experimental data [61]

Source γM1E2 γE1M2

BχPT [37] 1.1 ± 0.3 0.2 ± 0.2

Fixed-t DR [21,58] 2.2 −0.1

HBχPT [59,60] 1.9 ± 0.5 −0.4 ± 0.6

MAMI 2015 [61] 1.99 ± 0.29 −0.7 ± 1.2

to the current PDG values {11.2, 2.5} × 10−4 fm3, whereas
the cut-offs {�α,�β} = {0.631±0.011, 0.745±0.021} GeV
are taken from the recent fit of VCS data [14].

For the spin polarizabilities, the GPs P(L1,L1)1 and
P(M1,M1)1 (panels (c) and (d) of Fig. 6, respectively), which
vanish for real photons, show good agreement between BχPT
and DR, especially at low Q2. The agreement for P(M1,L2)1

and P(L1,M2)1, shown in panels (e) and (f) of that figure, is
not so good. Especially for P(L1,M2)1 one notices a different
slope at Q2 = 0 between the BχPT and DR results. On the
other hand, P(M1,L2)1 and P(L1,M2)1 correspond, in the limit
Q2 = 0, to the two mixed spin polarizabilities γM1E2 and
γE1M2 (see Eqs. (11c)–(11d)). The former is about two times
larger in DR than in BχPT [37], which would explain the dif-
ferences in P(M1,L2)1 at low Q2. The second is small and not
well constrained, which means that the difference between
DR and BχPT is probably not a very serious issue at this
stage. To further illustrate this point, we show in Table 1 the
values of the two mixed polarizabilities, γM1E2 and γE1M2,
resulting in BχPT framework at O(p4/Δ), in fixed-t DR, in
HBχPT at O(p4), and the results of extraction of the spin
polarizabilities from experimental data of one of the beam-
target asymmetries, �2x .

5 Results for VCS observables

The experiments aiming to measure the GPs are based on the
low-energy expansion of the epγ process, Eq. (13), which
results in the extraction of the VCS response functions. Then,
with some further assumptions on the size of spin GPs, taken
usually from the fixed-t DR framework of Ref. [21], one
obtains the two scalar GPs, αE1 and βM1. We first consider
our results at the level of the response functions, since it
provides a more direct comparison to experiment.

In Figs. 7, 8, 9 and 10, we show our BχPT results (red solid
line, with cyan band indicating the uncertainty estimate),
compared with the fixed-t DR calculation (blue bands), and
experimental data where available. In this calculation we
used the Bradford et al. [64] parametrization of nucleon form
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Fig. 7 VCS response function PLL (Q2) − PTT (Q2)/ε. The total
O(p3) + O(p4/Δ) result is given by the red solid curve with the
cyan band showing the estimated theoretical uncertainty as explained
in the text. DR results [21] are shown by the blue band. The curves
correspond to ε = 0.65. The data shown are: black open circle, PDG
2014 [62]; blue circle, Olmos de León et al. [63]; green diamond, MIT-
Bates (DR) [8,9]; green open diamond, MIT-Bates (LEX) [8,9]; purple
solid square, MAMI (DR) [14]; purple open square, MAMI (LEX)
[14]; red solid triangle, MAMI1 (LEX) [10]; red solid inverted trian-
gle, MAMI1 (DR) [12]; red open triangle, MAMI2 (LEX) [11]. Some of
the data points are shifted to the right in order to enhance their visibility;
namely, Olmos de León, MIT-Bates (LEX), MAMI LEX, MAMI1 DR
and MAMI2 LEX sets have the same values of Q2 as PDG, MIT-Bates
(DR), MAMI DR, and MAMI1 LEX, respectively

0.0 0.1 0.2 0.3 0.4 0.5

Q2 GeV2

20

10

0

P L
T
G
eV

2

Fig. 8 VCS response function PLT (Q2). Notation is as in Fig. 7

factors, as input in Eq. (14). The bands of the DR results are
obtained by varying the dipole cut-offs �α and �β within
the uncertainties given in Sect. 4.3.

The first two response functions, PLL − PTT /ε and PLT
(Figs. 7, 8), are used to extract αE1(Q2) and βM1(Q2),
respectively. Our results here are in good agreement with
the data as well as with the DR results. The only place of
disagreement is PLT (0) = −2MβM1/αem, due to the larger
value of the static magnetic polarizability resulting in BχPT,
as mentioned already in the previous section.

Apart from these two response functions extracted from
unpolarized measurements, there has been a single low-Q2

double-polarization experiment at MAMI [13] extracting the
response function P⊥

LT defined in Eq. (15). This data point,
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Fig. 9 VCS response function P⊥
LT (Q2). Notation is as in Fig. 7,

except from the data: red square, MAMI [13], and the green dotted
curve that shows the BχPT result with only the contribution of PLL
included; see Eq. (15)
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Fig. 10 VCS response function PTT (Q2). Notation is as in Fig. 7,
except from the green dotted curve that shows the BχPT result with
only the contribution of P(M1,M1)1 in Eq. (14b)

together with theoretical curves, is shown in Fig. 9. This is
perhaps the only place where one can see that the BχPT
calculation is in a better agreement with the data than the DR
calculation. On the other hand, the slope at Q2 = 0 is in a
perfect agreement between the two calculations.

This polarized observable can potentially provide an
access to the spin GPs. For instance, combining it with
PLL − PTT /ε one can extract the PTT response function,
Fig. 10. The latter is given entirely by the spin GPs. We note
that in the PTT response function the large, and well-known,
π0 t-channel pole contribution to several of the spin GPs
drops out. We see from Fig. 10 that the BχPT and DR results
for PTT are again in reasonable agreement.

In Figs. 9 and 10, we also show (by the green dashed
curves) the dominant terms in P⊥

LT and in PTT . They are
given by, respectively, PLL and P(M1,M1)1 terms in Eqs. (15)
and (14b). One thus sees, in particular, that P(L1,M2)1, for
which the BχPT and DR results differ sizably at low Q2,
gives a very small contribution to PTT .

6 Concluding remarks

The BχPT calculation of the nucleon GPs and VCS response
functions, presented here, is done to NLO in the δ-counting
scheme. It shows a good description of the low-Q data
and mostly agrees with the results of the fixed-t DR cal-
culation of Pasquini et al. [20]. The results for the scalar
GPs are summarized in Fig. 11, where panel (a) shows
the electric polarizability and panel (b) the magnetic one.
The theoretical uncertainty of our calculation is sufficiently
large to agree with all the data, including the new [14]
and old [10,11] MAMI data that tend to disagree among
themselves. We can see that the DR curve agrees with the
new MAMI data very well, while missing the older data,
especially for αE1. For βM1, there is an interesting tension
at low Q between the DR and χPT results. The available
VCS data do not have the necessary precision to resolve the
discrepancy.

By making the heavy-baryon expansion we reproduce
some of the previous HBχPT results and, similarly to what
was observed in the calculation of the real CS, we find that
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Fig. 11 Generalized scalar polarizabilities: a αE1(Q2), b βM1(Q2). Description of curves and points is the same as in Fig. 7
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treating the leading chiral loops exactly allows for a more
natural accommodation of the Delta-resonance contribution,
which is especially large in the magnetic polarizability βM1.

We would like to note that a newly approved experiment
at Jefferson Lab [65] which plans to measure the unpolar-
ized GPs at Q2 = 0.3 GeV2 and Q2 = 0.75 GeV2 will
be able to shed further light on the situation. Furthermore,
comparing such data at the same Q2 value taken at differ-
ent values of ε (corresponding with different beam energies)
has the potential to separate off the response function PTT
in Eq. (13). This would allow one to experimentally access
the dominant spin GP P(M1,M1)1 for the first time and pro-
vide a strong test of the BχPT predictions presented in this
work.

Additionally, new data on the unpolarized response func-
tions and GPs are expected to arrive soon from MAMI. These
data will complement the Q2 = 0.2 GeV2 points [14].
In particular, expected are data at Q2 = 0.1 GeV2 and
Q2 = 0.45 GeV2, which is in the domain of applicability
of BχPT. These data will also further test the theoretical pre-
dictions.

One has to admit that the current theoretical uncertainty
estimate gives a rather sizeable error band, which should
be improved upon. An O(p4) calculation of GPs in BχPT
that would include the remaining π� loops that contribute
at O(p3) in the high-momenta regime and both the πN and
the π� O(p4) contributions in this regime would allow one
to significantly decrease the theoretical uncertainty.
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Appendix A: Tensor decomposition of the VCS
amplitude

In this section we give the details of the tensor decompo-
sition of the VCS amplitude. The basis used by us is ρi ,
i = 1, . . . , 12, introduced in Ref. [6]. Its decomposition in
terms of Tarrach’s T1, . . . , T34 (which are given below) reads

ρ1 = −q · q ′T1 + T3,

ρ2 = −4M2ξ2T1 − 4q · q ′T6 + 4MξT7,

ρ3 = −2MξQ2T1 − Mξ(T4 + T5)

+ Q2(T7 − T8) + q · q ′(T9 − T10),

ρ4 = 8T16 − 4MξT21 + MξT34,

ρ5 = 1

2
(T19 − T20) − Q2

2
T22 − Mξ

2
(T23 + T24) − Q2

8
T34,

ρ6 = −8q · q ′T6 + 4MξT7 + 4Mq · q ′T21 − 4M2ξT25

− 2Mξ(T32 + q · q ′T33) + Mq · q ′T34,

ρ7 = T18 − q · q ′T22 + MξT26,

ρ8 = Mξ

2
(T4 + T5) + Q2

2
T8 − q · q ′

2
(T9 − T10)

− M

2
(T14 + T15) + Mq · q ′

2
(T23 + T24) + MQ2

2
T26

+ Q2

4
(T32 + q · q ′T33),

ρ9 = 2MξT8−2Mq · q ′T22+2M2ξT26−q · q ′T27+MξT31,

ρ10 = 2T7 + 4MT11 − 2MT25−4MξT1 + (T32 + q · q ′T33),

ρ11 = 4T17 − 4MξT25 + q · q ′T34,

ρ12 = 2Q2T6 + Mξ(T9 − T10) − MQ2(T21 + T22)

− M2ξ(T23 + T24) − Q2

2
(T27 − MξT33)

− Mξ

2
(T29 + T30) − MQ2

4
T34. (A1)

These tensors correspond to the following combinations of
Tarrach’s τi (with q ′2 set to zero in the latter):

ρ1 =−τ1, ρ2 =−4τ3, ρ3 = τ4 − τ5, ρ4 = τ7,

ρ5 = 1

2
(τ8−τ9), ρ6 =τ10, ρ7 =τ11, ρ8 = 1

2
(τ12+τ13),

ρ9 =τ14, ρ10 =τ17, ρ11 =τ18, ρ12 = 1

2
(τ20+τ21).

(A2)

All tensors apart from ρ2, ρ3, and ρ6 have unique structures
that allow for unambiguous identification, e.g., the combi-
nation T29 + T30 enters only ρ12, T17 enters only ρ11, and
so on. After the tensors ρi , i �= 2, 3, 6, have been identified,
the remaining tensors can be identified as well. Since this
basis is explicitly gauge invariant, all the terms that are not
proportional to any of ρi have to vanish when one decom-
poses a gauge invariant amplitude, e.g., summing up a gauge
invariant subset of Feynman graphs.

The tensors T1, . . . , T34 introduced by Tarrach [51] in
order to decompose the CS amplitude in the most general
case, i.e., when both q2 and q ′2 are non-zero, are given below;
these structures are understood to be contracted with εν and
ε∗μ, the incoming and the outgoing photons’ polarization
vectors.
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T1 = gμν, T17 = (
Pνqμ + Pμq

′
ν

)
/K ,

T2 = qνq
′
μ, T18 = (

Pνqμ − Pμq
′
ν

)
/K ,

T3 = q ′
νqμ, T19 =

(
Pνq

′
μ + Pμqν

)
/K ,

T4 = qνqμ + q ′
νq

′
μ, T20 =

(
Pνq

′
μ − Pμqν

)
/K ,

T5 = qνqμ − q ′
νq

′
μ, T21 = Pνγμ + Pμγν,

T6 = Pν Pμ, T22 = Pνγμ − Pμγν,

T7 = Pνqμ + Pμq
′
ν, T23 = qνγμ + q ′

μγν,

T8 = Pνqμ − Pμq
′
ν, T24 = qνγμ − q ′

μγν,

T9 = Pνq
′
μ + Pμqν, T25 = q ′

νγμ + qμγν,

T10 = Pνq
′
μ − Pμqν, T26 = q ′

νγμ − qμγν, (A3)

T11 = gμν /K , T27 = 2
(
PνγμλK

λ + PμγνλK
λ
)

,

T12 = qνq
′
μ /K , T28 = 2

(
PνγμλK

λ − PμγνλK
λ
)

,

T13 = q ′
νqμ /K , T29 = 2

(
qνγμλK

λ + q ′
μγνλK

λ
)

,

T14 = (qνqμ + q ′
νq

′
μ) /K , T30 = 2

(
qνγμλK

λ − q ′
μγνλK

λ
)

,

T15 = (qνqμ − q ′
νq

′
μ) /K , T31 = 2

(
q ′
νγμλK

λ + qμγνλK
λ
)

,

T16 = Pν Pμ /K , T32 = 2
(
q ′
νγμλK

λ − qμγνλK
λ
)

,

T33 = 2γνμ,

T34 = 2
{
γνμ, /K

} = 4γνμλK
λ.

Here, P = 1
2 (p+ p′), K = 1

2 (q+q ′), γ μν = 1
2 [γ μ, γ ν] and

γ μνλ = 1
2 {γ μν, γ λ}. The following relations hold between

these tensors that allow one to exclude two of them (the usual
choice being T13 and T28):

2(T17 − T19) − (q2 − q ′2)T22 + 2P · K (T23 − T25)

− 2MT28 − 2MP · K T32

+
(
M2 + q.q ′

4
− q2 + q ′2

4

)
T34 = 0, (A4)

P · K (T2 − T3) + 1

4
(q2 + q ′2 + 2q · q ′)(T7 − T9)

− q2 − q ′2
4

(T8 + T10) − M(T12 − T13)

+ M

4
(q2 + q ′2 + 2q · q ′)(T23 − T25) − M

q2 − q ′2
4

(T24 + T26)

− P · K T28 + q2 − q ′2
8

(T29 − T31)

− 1

8
(q2 + q ′2 − 2q · q ′)(T30 + T32)

−
[
(P · K )2 + 1

4
(q2q ′2 − (q · q ′)2)

]
T33 + M

2
P · KT34 = 0.

(A5)

Taking into account the fact that, for the (real) final photon
ε′ · q ′ = 0, one can obtain the following useful identities:

T2 = 0, T4 = T5, T9 = −T10, T12 = 0, T14 = T15,

T19 = −T20, T23 = T24, T29 = T30. (A6)

Appendix B: Invariant amplitudes

Here we provide expressions for the linear combinations of
invariant amplitudes Āi (Q2) = Āi (0,−Q2,−Q2) that con-
tribute to the generalized polarizabilities, see Eqs. (9a)–(9f):

g1 = Ā1, g2 = Ā2, g3 = Ā5, g4 = Ā5 + Ā7 + 4 Ā11,

g5 = 2 Ā6 + Ā9, g6 = Ā12. (B1)

The results are given for the πN loop and Delta pole contri-
butions; for the π� loop results, see supplementary material
to this article.

1. πN loops

Here, D1(x, y) = [
τ(1 − x)2(1 − 4y2) + DN (x)

]−1
,

D2(x, y) = [
τ x2(1 − 4y2)+DN (x)

]−1
, D0(x, y)

= [DN (x)]−1, and Dπ (x, y) = [
4τ(1 − x)x + μ2

]−1
. In

turn, DN (x) = x2+μ2(1−x). The amplitudes are expressed
as integrals over the Feynman parameters as follows:

gi (Q
2) = g2

A

8π2 f 2
π M

ni

1∫

0

dx

1/2∫

−1/2

dy φi (τ, x, y), (B2)

where φi are given below, gA = 1.27 and fπ = 92.21 MeV
are the axial coupling constant and the pion decay constant,
and ni = 1, 3, 2, 2, 3, 3 for i = 1, 2, 3, 4, 5, 6 account for
the correct dimensions of the respective gi .

a. Proton

φ1 = − 1

2
D2

1(x, y)(x − 1)3x(−4y2 + 2x + 1)

− 1

4
D2

2(x, y)x4(4y2 + 2x − 1)

− 1

2
D2

0(x, y)x3(3x2 − 5x + 2)−2Dπ (x, y)(x−1)2x, (B3)

φ2 = 4D4
1(x, y)y2(4y2 − 1)τ (x − 1)6x3

− 1

3
D3

1(x, y)(x − 1)4x(4y2(4y2 − 1)τ

+ x2(8y2τ − 1) − 4y2(4y2 + 1)τ x)

+ 1

24
D2

1(x, y)(x − 1)3x((36y2 − 7)x + 4)

+ 2D4
2(x, y)y2(4y2 − 1)τ (x − 1)2x7

− 1

12
D3

2(x, y)(x − 1)x5(τ (−48y4+2(36y4 − 5y2+1)x−1)

+ 2(3y2(x − 2) − 1))
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+ 1

16
D2

2(x, y)x3(−4y2 + (4y2 + 5)x2 − 8x + 3)

− 3

2
D4

0(x, y)(x − 1)2x4(μ2 + (μ2 − 1)x2 − 2μ2x)

+ 1

12
D3

0(x, y)(x − 1)x2(−18μ2 + 10x4 + 9(μ2 − 3)x3

+ (26 − 36μ2)x2 + 45μ2x)

− 1

6
D2

0(x, y)(x − 2)(x − 1)2, (B4)

φ3 = 1

2
D2

1(x, y)(x − 1)2x(8y2 + (8y2 + 1)x2 − 16y2x)

+ 1

4
D2

2(x, y)x4(8y2x + x − 1)

+ 1

4
D2

0(x, y)x3(3x2 − 5x + 2), (B5)

φ4 = 1

2
D2

1(x, y)(x − 1)3x(4y2(4x − 3) + 1)

+ 1

4
D2

2(x, y)x4(4y2(4x − 3) − 1), (B6)

φ5 = − 2D3
1(x, y)y2(4y2 − 1)τ (x − 1)5x2 − 1

4
D2

1(x, y)(x − 1)3

× x(−4y2 + (12y2 − 1)x + 1)

+ 1

12
D3

2(x, y)(x − 1)x5(−12y2 + (4y2 − 1)

× τ(−8y2 + 2(6y2 − 1)x + 1) + 2x − 1)

− 1

48
D2

2(x, y)x3(−12y2 + 16x2 + (12y2 − 25)x + 9)

+ 3

2
D4

0(x, y)(x − 1)2x4(μ2 + (μ2 − 1)x2 − 2μ2x)

− 1

12
D3

0(x, y)(x − 1)x2(−18μ2 + 10x4 + 9(μ2 − 3)x3

+ (26 − 36μ2)x2 + 45μ2x)

+ 1

12
D2

0(x, y)(x − 1)2x2(5x − 6), (B7)

φ6 = − 4D3
1(x, y)y2(x − 1)4x3−2D3

2(x, y)y2(x−1)x6. (B8)

b. Neutron

φ1 = 1

2
D2

1(x, y)(x − 1)2x(−4y2 + 4y2x + x + 1)

− 1

2
D2

2(x, y)(4y2 + 1)x4

− 2Dπ (x, y)(x − 1)2x, (B9)

φ2 = − 4D4
1(x, y)y2(4y2 − 1)τ (x − 1)5x3

+ 1

12
D3

1(x, y)(x − 1)2x

× (4y2τ(x2 + x − 2)2 − x2(τ (x − 1)2

+ x(x + 2) − 4) + 64y4τ(x − 1)3)

+ 1

24
D2

1(x, y)(x − 1)2x(x(4x − 1) − 4)

+ 4D4
2(x, y)y2(4y2 − 1)τ (x − 1)2x6

− 1

12
D3

2(x, y)(x − 1)x4

× (4y2(τ (2x2 + x − 8) + 3(x − 2)x)

− 48y4τ(x − 2)x + x(τ (x + 1) + x − 3) − 2)

+ 1

24
D2

2(x, y)(x − 1)x2(4x2 + 24y2(2x − 1)x + x + 1),

(B10)

φ3 = − 1

2
D2

1(x, y)(x − 1)x(8y2 + (8y2 + 1)x2 − 16y2x)

+ 1

2
D2

2(x, y)x3(8y2x + x − 1), (B11)

φ4 = 1

2
D2

1(x, y)(x − 1)3x(4y2(4x − 3) + 1)

+ 1

4
D2

2(x, y)x4(4y2(4x − 3) − 1), (B12)

φ5 = − 1

6
D3

1(x, y)(x − 1)2x3((4y2 − 1)τ (x − 1)2 − (x − 2)x)

− 1

12
D2

1(x, y)(x − 1)2x(12y2 + 4x2 − 3(4y2 + 1)x − 3)

− 1

12
D3

2(x, y)(x − 1)x5((4y2 − 1)τ (−20y2 + 12y2x

+ x + 1)s + 36y2 − 12y2x − x − 1)

− 1

24
D2

2(x, y)(x − 1)x3(−36y2 + (48y2 + 4)x + 3),

(B13)

φ6 = 4D3
1(x, y)y2(x − 1)3x3 − 4D3

2(x, y)y2(x − 1)x5. (B14)

2. Delta pole

Here, gE and gM are the electric and magnetic γ N� cou-
plings [50], M+ = M� + M , and

fM = gM
[
1 + (Q/�)2 ]2

is the magnetic γ N� coupling modified by the dipole form
factor, with �2 = 0.71 GeV2.

g1 = fM
[
2gM M+

(
4M2 + Q2

) − gE Q2Δ
] + gE Q2(gM M+ − 2gE Δ)

4M2M3+Δ
,

(B15)

g2 = − fM gM M+ − g2
E Δ

2M2M3+Δ
, (B16)

g3 = fM
(
8M2 + Q2

)
(gMM+−2gE Δ)+gE

[
2gM M+Q2−gE Δ

(
8M2+Q2

)]

8M3M3+Δ
,

(B17)

g4 = fM gM M+ − 2 fM gE Δ − 2g2
E Δ + 3gE gM M+

MM3+Δ
, (B18)

g5 = − fM gM M+ − 3 fM gE Δ − g2
E Δ + 3gE gM M+

4M2M3+Δ
, (B19)

g6 = − fM gM M+ − 2 fM gE Δ − g2
E Δ + 2gE gM M+

4M2M3+Δ
. (B20)
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