
Eur. Phys. J. C (2017) 77:98
DOI 10.1140/epjc/s10052-017-4651-x

Regular Article - Theoretical Physics

The branching ratio ω → π+π− revisited

C. Hanhart1, S. Holz2, B. Kubis2,3,a, A. Kupść4,5, A. Wirzba1,6, C. W. Xiao1
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Abstract We analyze the most recent data for the pion vec-
tor form factor in the timelike region, employing a model-
independent approach based on dispersion theory. We con-
firm earlier observations about the inconsistency of different
modern high-precision data sets. Excluding the BaBar data,
we find an updated value for the isospin-violating branching
ratio B(ω → π+π−) = (1.46 ± 0.08) × 10−2. As a side
result, we also extract an improved value for the pion vec-

tor or charge radius,
√

〈r2
V 〉 = 0.6603(5)(4) fm, where the

first uncertainty is statistical as derived from the fit, while
the second estimates the possible size of nonuniversal radia-
tive corrections. In addition, we demonstrate that modern
high-quality data for the decay η′ → π+π−γ will allow for
an even improved determination of the transition strength
ω → π+π−.

1 Introduction

In recent years interest in high-quality pion form factor data
below s = 1 GeV2 has increased tremendously, since it pro-
vides a crucial input to quantify the standard model prediction
for the hadronic contribution to the muon anomalous mag-
netic moment (see, e.g., Refs. [1–3] and references therein)
and the dispersion integral that needs be evaluated in this con-
text puts a lot of weight on the low-energy transition γ ∗ →
hadrons. To make the most of the existing data, it is com-
pulsory to employ model-independent theoretical tools that
allow for an appropriate parametrization of the data, but also
for a judgment on their consistency. For the two-pion con-
tributions to the above-mentioned transitions the appropri-
ate tool is again dispersion theory, for it allows one to use

a e-mail: kubis@hiskp.uni-bonn.de

the high-quality information available for pion–pion scatter-
ing [4–7] in the form factor analysis in a way consistent with
analyticity and unitarity. The strong impact these theoretical
constraints can have on our understanding of the pion form
factor has been emphasized and used to good effect several
times before [8–14], with some of those references very close
in spirit to what we are attempting here.

We exemplify the power of this formalism by an analysis
of the most recent data sets for the pion vector form factor
extracted from measurements of e+e− → π+π−, with the
specific goal to extract an update on the partial width for
ω → π+π−. As a side result we also determine an updated
value for the pion vector or charge radius. Since final-state
interactions are universal within the same scheme, we also
propose to analyze the reaction η′ → π+π−γ : not only
will high-quality data for this reaction become available from
different experiments in the very near future, but also it is
shown to provide additional, independent access to the ω →
π+π− transition strength. To illustrate the potential accuracy
of such a determination once the new data are available, we
here analyze pseudo-data generated according to preliminary
results from BESIII [15].

One key feature of the formalism employed here is that
it makes maximal use of the universal phase introduced by
the pion–pion final-state interactions. In particular, we do
not have the freedom to add Breit–Wigner functions with
arbitrary relative phases. This allows us to extract the rele-
vant amplitudes in a controlled fashion. As a side note, we
illustrate the reaction-dependence of Breit–Wigner functions
explicitly by demonstrating that a (constant) complex phase
in the coupling and a shift of the ω mass parameter lead to
similar effects on the observables.

This paper is organized as follows. In Sect. 2, we lay
out the necessary formalism, introducing the dispersive rep-
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resentations of both the pion vector form factor and the
η′ → π+π−γ decay amplitude and showing how the param-
eters of the ρ–ω mixing signals can be related to the decay
width of ω → π+π−. This is followed in Sect. 3 by a
detailed discussion of the results for the ω → π+π− branch-
ing fraction, obtained from elaborate fits both to various
e+e− → π+π− data sets as well as the BESIII pseudo-data
for the decay η′ → π+π−γ . Section 4 presents our findings
on the pion vector radius. We close with a summary.

2 Formalism

2.1 Matrix elements

The pion vector form factor FV (s), which describes the reac-
tion e+e− → π+π−, is defined by the vector current matrix
element

〈π+(k+)π−(k−)|V μ|0〉 = e(k+ − k−)μFV (s),

s = q2, qμ = kμ
+ + kμ

−, (1)

where e > 0 is the unit of the electric charge. Throughout
this work we apply the definition V μ = −δLint/δAμ, with
the photon field Aμ. For the pion fields, we use the Condon–
Shortley sign convention π± = ∓(π1 ∓ iπ2)/

√
2.

The matrix element describing the decay η′ → π+π−γ

in the P-wave approximation can be written as1

〈π+(k+)π−(k−)|Vμ|η′(p)〉 = εμναβ p
νkα+ kβ

− f1(s) (2)

(see Ref. [18] for a definition of the partial-wave expansion).
We define εμναβ such that ε0123 = +1. The corresponding
differential decay rate is given by

d�(η′ → π+π−γ )

d
√
s

= | f1(s)|2 �1(s), (3)

where the function

�1(s) = 4

3

(m2
η′ − s

16πmη′

√
s − 4m2

π

)3

(4)

collects the phase-space terms and kinematical factors of
the modulus squared of the invariant matrix element for the
point-particle case [19], with mη′ and mπ denoting the mass
of the η′ and the pion, respectively.

1 We use the sign and phase assignments according to Refs. [16,17],
adapted for the fact that both works implicitly assume a negative value
for e and do not follow the Condon–Shortley convention.

2.2 Universality of final-state interactions and dispersive
representations

We base our analysis on the fact that as a result of unitarity, all
elastic pion–pion (ππ ) interactions of a definite partial wave
are largely determined by a single, universal function given
in terms of the corresponding ππ phase shift—the Omnès
function 
(s), depending only on s, the squared invariant
mass of the outgoing pion pair. For pion pairs with relative
angular momentum L = 1, it is given by


(s) = exp

{
s

π

∫ ∞

4m2
π

dx
δ1(x)

x(x − s−iε)

}
, (5)

where δ1(s) denotes the pion–pion P-wave phase shift.
The Omnès function captures the physics of the ρ-meson,
encoded in the phase shift in a model-independent way, thus
eschewing the need to use a model like vector-meson dom-
inance. Recent phase-shift analyses based on sophisticated
dispersive analyses are available from the Madrid [6] and
Bern [7] groups in an energy range from threshold up to
about 1.4 GeV. In our analysis, we continue these phase
shifts smoothly to an asymptotic value of π above 1.3 and
1.42 GeV, respectively, in order to fix 
(s) completely. As
we are interested in an evaluation of the Omnès function only
for energies below 1 GeV, the precise rate at which this lim-
iting value is approached is immaterial: it leads to changes in
the Omnès function that can be absorbed in the parametriza-
tions used in this work.

In Refs. [19,20], the universality of the final-state inter-
actions was used to express FV (s) and f1(s) in the forms

FV (s) = R(s)
(s), f1(s) = P(s)
(s). (6)

The functions R(s) and P(s) must be real and free of right-
hand cuts in the elastic region; in Refs. [19,20] they were
assumed to be linear polynomials, which was demonstrated
to be sufficient for the (isospin-related) vector form factor
featuring in the decay τ− → π−π−ντ , as well as the decay
η → π+π−γ [21,22] similar to the η′ transition. The univer-
sal phase that FV (s) and f1(s) share with the Omnès func-
tion, given by δ1(s), is a consequence of Watson’s final-state
theorem [23]. The formalism for the η′ decay was improved
further in Ref. [18], where it was shown that P(s) contains a
left-hand cut induced by tensor-meson (a2(1320)) exchange,
which in the physical decay region can be approximated to
very good precision by the inclusion of a quadratic term in
P(s).

However, the expressions given so far ignore the contri-
bution from the ω-meson, which can also decay into the
π+π− final state via isospin-violating interactions. While
we assume isospin symmetry everywhere else, this partic-
ular isospin-breaking effect is enhanced by a small energy
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Fig. 1 Diagrammatic representation of the reaction γ ∗ → π+π−. The
pions from both diagrams undergo final-state interactions that are not
shown explicitly
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Fig. 2 Diagrams contributing to the reaction η′ → π+π−γ . The pions
from both diagrams undergo final-state interactions that are not shown
explicitly

denominator, as the ω-resonance is very narrow and close in
mass to the ρ, the dominant resonant enhancement of the ππ

P-wave amplitude. It is well-known that the inclusion of this
mechanism, often named ρ–ω mixing (see also Refs. [24,25]
for effective field theory approaches to this phenomenon), is
essential for an accurate description of the vector form factor
in e+e− → π+π−. In this paper we extend the formalism
of Refs. [18–20] to include this effect, which gives access to
the ω → π+π− transition strength.

The contributions of the ω are shown diagrammatically in
Figs. 1 and 2. In both cases the outgoing pion pair undergoes
final-state interactions in the P-wave, which are universal
and controlled by the Omnès function. In the ω-channel on
the other hand, the use of a Breit–Wigner function appears to
be justified, since the ω total width is small, �tot

ω = (8.49 ±
0.08) MeV [26]. Our generalization of the polynomials R(s)
and P(s) now reads

R(s) = 1 + αV s + κ1 s

m2
ω − s − imω�tot

ω

, (7)

P(s) = A
(
1 + α s + β s2) + κ2

m2
ω − s − imω�tot

ω

, (8)

where mω denotes the ω mass and αV , α, β, κ1, and κ2 are
constants to be determined from a fit to data. Equations (7)
and (8) are correct to leading order in isospin violation. Uni-
tarity dictates that after the transition from the ω-meson to a
pion pair, the phase induced by the final-state interaction must
again be equal to that of pion–pion P-wave scattering. This
leads to the requirement that both κ1 and κ2 are real-valued.
This statement also holds up to higher orders in isospin vio-
lation, which are expected to provide negligible corrections.
Similar ansätze for the ρ–ω mixing term were used before

frequently [10,12,13,27–29]; we employ the sign convention
of Ref. [29].

We checked that the results extracted from the pion vec-
tor form factor using Eqs. (6) and (7) are stable against the
inclusion of an additional term quadratic in s in R(s), as we
will discuss in detail in Sect. 3. A detailed study of the effect
of an s3-term on an analysis of the η′-decay using Eq. (8) is
postponed until a final data set becomes available; the effect
on the extraction of κ2 is expected to be negligible.

2.3 The relation to �(ω → π+π−)

The parameters κ1/2 are proportional to the coupling strength
of the ω to two pions gωππ , see Figs. 1 and 2, which in
turn can be related to the partial decay width ω → π+π−.
To calculate the factor of proportionality we need to utilize
proper vertex functions as outlined below. This subsection
is devoted to establishing the connection in such a way that
�(ω → π+π−) can be determined from an extraction of
κ1/2 in a fit to the available data.

In order to connect gωππ to the quantities κ1 and κ2 defined
in Eqs. (7) and (8), we first derive the ω → π+π− vertex

〈π+(k+)π−(k−)|Lωππ |ω(q)〉 = −gωππ ε(ω)
μ (q)(k+−k−)μ,

(9)

with ε
(ω)
μ (q) the pertinent polarization vector of the vector

meson ω of momentum q, from the interaction Lagrangian

Lωππ = igωππ

(
π−∂μπ+ − π+∂μπ−)

ωμ, (10)

which is the analog of the γππ Lagrangian with gωππ and
the vector field ωμ of the ω-meson taking over the role
of the charge e and the photon field Aμ, respectively; see
also Ref. [17], as well as Ref. [30] for a comprehensive
overview of vector-meson Lagrangians. Furthermore, we
need the coupling of the ω to a virtual photon as well as
the vertex for η′ → ωγ . For the former we use the effective
Lagrangian [17,31]

Lωγ = − e

2
gωγ F

μνωμν, (11)

where Fμν = ∂μAν − ∂ν Aμ is the electromagnetic field
strength tensor and ωμν = ∂μων − ∂νωμ. Contrary to stan-
dard vector-meson dominance formulations, we couple the
ω-meson (with the coupling strength gωγ ) to the electromag-
netic field strength tensor and not to the vector field in order
to ensure gauge invariance directly on the level of the vertex.
The additional derivatives that accompany this choice are the
origin of the factor s (= q2) in Eq. (7); the corresponding
vertex reads

〈ω(q)|Vμ|0〉 = egωγ q2ε(ω)
μ (q). (12)
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Furthermore, when taking q2 = m2
ω and neglecting the elec-

tron mass, the e+e− decay width of the ω is given by

�(ω → e+e−) = 4πα2
em

3
g2
ωγmω, (13)

with αem ≈ 1/137.036 the electromagnetic fine structure
constant. Using �(ω → e+e−) = (0.60 ± 0.02) keV [26],
we obtain

|gωγ | = (5.9 ± 0.1) × 10−2. (14)

In this way one finds for the transition γ ∗ → ω → π+π−,
corresponding to Fig. 1b,

〈π+(k+)π−(k−)|V μ|0〉∣∣
ω

= e gωππ gωγ s

m2
ω − s − imω�tot

ω

(k+−k−)μ,

(15)

where we used
∑

ε
(ω)
μ (q)ε

(ω)
ν (q) = −gμν + qμqν/m2

ω.
Comparison with Eqs. (6) and (7) allows us to identify

κ1 = gωππ gωγ . (16)

Since we have extracted gωγ above, we may quantify gωππ

once κ1 is fixed from a fit to form factor data. Note that
Eq. (14) does not fix the sign of gωγ , which therefore would
also leave the sign of gωππ undetermined. However, if ρ-
dominance is used to model the isospin-conserving part of
the pion form factor and the signs of gωγ and gργ are assumed
equal as suggested by SU (3) flavor symmetry, then positive
values for κ1 (which we will find empirically in the following
section) show that gωππ has the same sign as a conventional
gρππ coupling. Accordingly we assume gωππ to be positive
in our analysis. Obviously, the observable ω → π+π− par-
tial width or branching fraction is independent of this sign.

The expression for the η′ωγ vertex, again according to
the sign and phase conventions of Refs. [16,17], is

〈ω(q)|V μ|η′(p)〉 = gη′ωγ εμναβ pνqαε
(ω)
β (q). (17)

The coupling constant gη′ωγ can be determined using

�(η′ → ωγ ) = g2
η′ωγ

32π

(m2
η′ − m2

ω

mη′

)3

, (18)

and the measured decay width �(η′ → ωγ ) = (5.17 ±
0.35) keV [26], which leads to

gη′ωγ = −(0.127 ± 0.004) GeV−1, (19)

where the negative sign is consistent with the specifications
in Refs. [16,17]. Analogously to the steps followed above,

we may combine the vertex given in Eq. (17) with Eq. (9) to
find

〈π+(k+)π−(k−)|V μ|η′(p)〉∣∣
ω

= gη′ωγ gωππ

m2
ω − s − imω�tot

ω

εμναβ pνqα(k+ − k−)β . (20)

Thus, the comparison with Eqs. (2) and (8) yields

κ2 = −2gωππgη′ωγ . (21)

We will see later that κ2 turns out to be positive empirically,
such that Eq. (19) shows consistency with the positive sign
for gωππ once more. With these expressions we are prepared
to analyze the data for both the pion vector form factor as
well as the decay η′ → π+π−γ .

It should be clear from the discussions above that gωππ

only provides the strength for a pion pair to be produced in the
decay of the ω-meson. This pion pair subsequently undergoes
final-state interactions that are parametrized via the complex-
valued Omnès function 
(s), which leads to a significant
enhancement of the ω transition rate, since

∣∣
(m2
ω)

∣∣2 � 30.
Accordingly, the partial decay width for the transition ω →
π+π− is given by

�(ω → π+π−) = g2
ωππ

48π

(
m2

ω − 4m2
π

)3/2

m2
ω

∣∣∣
(m2
ω)

∣∣∣
2
. (22)

We checked numerically that the results change only
marginally if we take the finite ω mass distribution into
account.

3 Extracting the branching ratio ω → π+π−

3.1 Pion vector form factor

Recent data for the pion vector form factor is available
from SND [32], CMD-2 [33], BaBar [34], KLOE [35,36],
labeled below as KLOE10 and KLOE12, respectively, and
BESIII [37]. Up to now, only the first of these data sets is
included in the averages of the Particle Data Group (PDG)
for �(ω → π+π−), and none for the pion vector radius.
As the fitting ranges we chose all data of the mentioned sets
from the lowest-energy point up to s = 1 GeV2 – beyond
this energy, effects of the excited ρ resonances start to set
in that can no longer be parametrized by a polynomial (see
e.g. Fig. 1 of Ref. [20]). We use the form factor data pro-
vided by the experiments without covariance matrices; these
are available only from KLOE (for BESIII there is an uncer-
tainty in the overall normalization factor). We have checked
for the KLOE data that the inclusion of the covariance matri-
ces does not change the fit results. In addition, the errors
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of the parameters obtained from the fits to the KLOE data
are not affected when the dominating systematic uncertainty
(near s = m2

ω) due to unfolding of the initial-state-radiation
cross sections is included. For the main results of our study
we employ the Omnès function derived from the phase shift
based on the best-fit values quoted by the Madrid analysis [6];
as a cross-check we also performed fits based on the Bern
phase shifts [7].

First we only fit the parameters αV and κ1, keeping the val-
ues for the ω mass and width fixed to the central values pro-
vided by the PDG [26], namely 782.65 MeV and 8.49 MeV,
respectively. The fit parameters as well as the values for χ2

per degree of freedom are given as Fit 1 in Table 1.
We observe that the fits work well in some, but not in all

cases: the p-values characterizing the goodness of the fits in
particular to the SND and BaBar data are tiny. In addition,
not all results are consistent with each other. Of particular
interest for this work is the coupling gωππ , extracted from
each value of κ1 via Eq. (16).

Then using Eq. (22) one can calculate the branching ratio
for the transition ω → π+π− from gωππ . This quantity is
also shown for all analyses in Table 1 as well as in Fig. 3. We
find that most of the results appear consistent, however, the
branching ratio extracted from the BaBar analysis is signifi-
cantly larger than any of the other determinations.

To better understand the reliability as well as uncertainty
of the extraction, we performed various additional fits. We
account for the possibility of minor shifts in the experimen-
tal energy calibration, which may have consequences in par-
ticular in view of the narrowness of the ω signal. Hence we
repeated the fit described above, allowing the ω mass parame-
ter to float. The corresponding results are contained in Table 1
as well as in Fig. 3 as Fit 2. We observe that the χ2/dof
improves significantly in particular for the SND and BaBar
data, which accordingly are the only two sets for which the
fitted ω mass deviates significantly from the PDG value (tak-
ing into account both the fit errors and the uncertainty quoted
by the PDG, mω = (782.65 ± 0.12) MeV). We note, how-
ever, that the extracted branching ratios B(ω → π+π−) are
stable throughout within one standard deviation, even in the
cases where the overall fit quality improves strongly. We con-
vinced ourselves that replacing the constant ω width by an
energy-dependent width as derived, e.g., in Ref. [38] changes
the results negligibly.

In addition to the Madrid phase shifts [6] used in most
of the fits of our analysis, there is a second high-accuracy
analysis of the ππ system available from the Bern group [7].
We thus also performed two fits using these phase shifts:
Fit I is based on the ω mass as reported by the PDG, and
Fit II allows for a floating ω mass. Overall, the resulting
χ2/dof values tend to be a bit worse compared to the fits
based on the Madrid phase shift; in particular, we cannot find
acceptable p-values for fits to the BaBar data, not even with

a floating ω mass. The extracted ω → π+π− couplings tend
to be somewhat higher than in Fits 1 and 2; see also Fig. 3.
Varying the input phase around its central solution within the
corresponding uncertainty band in a simplified, linearized
manner, we can slightly improve on the fit quality, but not by
much; gωππ does not change beyond its error quoted for the
various Fits I and II in Table 1. This is most likely not the
optimal way to utilize form factor data to fine-tune the Bern
phase-shift solution; a more sophisticated attempt to this end
is currently under way [39].

In principle, the pion vector form factor provides one of
the most precise sources of information on the ππ P-wave
interactions, so one could turn the argument around and actu-
ally improve the precision of the phase shift δ1(s) by adapt-
ing it to these data. This has in fact already been done for
the Madrid phase-shift analysis [8,9], based on older form
factor data. Ref. [6] provides an analytic parametrization
for δ1(s) – cf. Eq. (A7) of this reference – that explicitly
contains a mass parameter for the ρ-meson. This parameter
denotes the energy at which the phase shift passes through
π/2 (and is therefore not to be confused with the real part
of the pole position of the ρ); its allowed range is quoted
as mρ = (773.6 ± 0.9) MeV. In an attempt to optimize the
phase shift ourselves in the fit to the pion form factor, we also
allowed mρ to float. The corresponding fit results appear in
Table 1 and Fig. 3 as Fit 1-ρ and Fit 2-ρ for a fixed and a float-
ing ω mass, respectively. Fit 2-ρ finally is flexible enough to
yield good fits with reasonable p-values for all six data sets.
It is interesting to observe that in all cases but for the fit to
the BaBar data, the fits of the ρ-mass parameter overlap well
within uncertainties with the range given by the analysis of
Ref. [6].

In the case of the BaBar data we found that the best fit
is achieved when both the ρ and the ω mass parameter are
shifted downwards by about 1 MeV. This is in contrast to,
e.g., the SND data, where the shift in mω is also large; how-
ever, the one in mρ is not (and tends to go in the opposite
direction). This might suggest that indeed some calibration
problem is the origin of the incompatibility of the BaBar
results with the remaining data sets; such an explanation
has been suggested before [40]. We could show, however,
that at least the extracted value for gωππ , the main focus of
the present study, is still rather insensitive to this (potential)
issue: it changed only insignificantly when we re-calibrated
the BaBar data by a constant energy shift, adjusted such that
the fit returns the central value of the ω mass. Finally, one
might wonder whether the larger value of gωππ as extracted
from the BaBar analysis is a consequence of the higher energy
resolution of that experiment. To test this hypothesis, we
combined the BaBar bins in pairs, thus doubling the bin size,
and redid the analysis. This again led to an insignificant shift
in the extracted value of gωππ .
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Fig. 3 Comparison of the values for the branching ratio for ω →
π+π− extracted from the various fits to the different data sets, where
circles refer to Fit 1, squares to Fit 2, diamonds to Fit I, the triangles-
up to Fit II, triangles-left to Fit 1-ρ (red) triangles-down to Fit 2-ρ,
triangles-right to Fit 1-φ, and crosses to Fit 2-φ. The red thick solid
line denotes the average of the values, the gray band the corresponding
uncertainty found from our preferred analysis – Fit 2-ρ – omitting the
contribution from BaBar. The average with the BaBar value included is
shown as the perpendicular dotted line. Note that the values extracted
from η′ → π+π−γ refer to pseudo-data generated according to pre-
liminary results

As discussed in Sect. 2.2, the fitting parameters used in
our analysis in general, and κ1 in particular, are necessarily
real-valued as a consequence of unitarity. Contrary to this, in
many experimental analyses a complex-valued coupling for
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2(
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Fig. 4 The line shapes of the amplitudes BW1(s) and BW2(s) defined
in Eqs. (23) are shown as (red) solid and (black) dashed lines. The
peaked lines refer to the imaginary parts, while the ones with a zero
refer to the real parts. The inserts magnify the regions of the zero-
crossing of the real parts (bottom left) as well as the maximum of the
imaginary parts (top right)

ω → π+π− is allowed. In order to demonstrate the stability
and consistency of our results, we therefore redid Fits 1 and
2, however, now allowing for a complex phase (sometimes
called Orsay phase) attached to gωππ . The results are reported
in both Table 1 as well as Fig. 3 as Fit 1-φ and Fit 2-φ.
One observes that for the three newest data sets (KLOE10,
KLOE12, and BESIII) the fits returned phases consistent with
zero. However, for the fits to the data by SND, CMD-2, and
BaBar in particular, Fit 1-φ shows phases that are nonzero by
many standard deviations. In contrast, Fit 2-φ, where the ω

mass parameter was allowed to float, yielded phases for SND
and CMD-2 that are only marginally different from 0 – the
analysis of the BaBar data requires a nonvanishing phase also
in this case. The fact that the phases for the SND and CMD-2
fits become consistent with zero once the ω mass is allowed
to float is an illustration of the observation that Breit–Wigner
parameters are reaction-dependent: a phase in the coupling
has a similar effect as a shift in the ω parameters. This is also
illustrated in Fig. 4, where we compare real and imaginary
parts of two Breit–Wigner functions, namely

BW1(s) = 1

m2
ω − s − imω�tot

ω

,

BW2(s) = ei φ

m2
ω − s − imω�tot

ω

, (23)

using the PDG values for ω mass and width for illustration,
as well as φ = 10◦.

As Fig. 4 demonstrates, introducing this phase in the
coupling shifts the peak location of the imaginary part by
0.37 MeV to smaller values of the energy, while the zero in
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the real part is shifted by 0.75 MeV in the same direction.
Note that both shifts are significantly larger than 0.12 MeV,
the uncertainty currently quoted for the ω mass by the PDG.
The isospin-violating effect that occurs in the pion vector
form factor is (dominantly) sensitive to the real part of the
Breit–Wigner amplitude, while reactions in which the ω is
seen in the 3π channel are largely sensitive to its imaginary
part. The fact that the analysis of the BaBar data calls for a
nonvanishing phase in the ωππ coupling even if the ω mass
is allowed to float again points at some inconsistency of those
data.

Finally, we also investigated the effect of an additional
βV s2-term in Eq. (7). We found that although this adds an
additional free parameter to the analysis, the χ2/dof changed
only marginally for all fits. In addition, the change in the value
for κ1 turned out to be entirely negligible compared to the
quoted uncertainty.

We are now in the position to combine the results from the
different experiments. The fits with the least bias are provided
by Fit 2-ρ. A weighted average of those results, omitting the
result from the BaBar experiment, gives

B(ω → π+π−) = (1.46 ± 0.08) × 10−2, (24)

where the uncertainty was scaled by a factor 1.5, applying
the standard method of the PDG (described in detail in the
introduction of the Review of Particle Physics [26]). The
result reported in Eq. (24) is consistent with the PDG average
of (1.49 ± 0.13)% [26], however, with a somewhat reduced
uncertainty. We omit the BaBar results from the average on
account of the following arguments that seem to indicate an
inconsistency within that data set, discussed in detail in this
section:

1. the optimal ω mass is outside the range suggested by the
PDG;

2. the optimal ρ mass parameter in the ππ P-wave
phase parametrization is outside the range determined
in Ref. [6];

3. Fit 2-φ calls for a statistically significant nonvanishing
complex phase of the coupling gωππ , which is at odds
with unitarity as long as the phase motion of the dominant
(isospin-conserving) signal is under control, as it is in our
analysis;

4. the BaBar data set is the only one that does not seem to
allow for an extraction of the branching fraction B(ω →
π+π−) that is reasonably stable under the different fit
variants; see Fig. 3.

If we keep the BaBar data in the average, the branching ratio
goes up to (1.61 ± 0.15)%, with a scaling factor larger than
3. In addition to the theoretical problems, this therefore also

points at some inconsistency of the BaBar result with the
other experiments.

3.2 η′ → π+π−γ

While the large number of high-quality data sets on e+e− →
π+π− clearly makes this a preferred reaction to extract
B(ω → π+π−), it appears to be advisable to access the
isospin-violating ω → π+π− decay amplitude also from
different reactions. Besides aiming for a further improvement
in the statistical precision of the determination of this quan-
tity, we may find further, systematically independent justifi-
cation for our conclusion on the data selection in the average,
namely the omission of the BaBar results. One future option
could be the decay B̄0

d → J/ψπ+π−, where the mixing
signal shows up very prominently [29]. However, the data
presently available in this channel [41] are insufficient for a
quantitative analysis.

An alternative is the very recent data on the radiative
η′ decay η′ → π+π−γ from BESIII. We have gener-
ated pseudo-data from the preliminary results presented in
Ref. [15], where a model-independent fit of a functional form
very similar to Eqs. (6) and (8) was used (with, in view of
the discussion in the previous subsection, mass and width
of the ω fixed to their respective PDG values). BESIII has a
data sample of about 9.7 × 105 η′ → π+π−γ signal events
in 100 energy bins, with very low background (about 1%)
and a nearly flat acceptance; therefore, pseudo-data using
9.7 × 105 events should represent the statistical properties
of the data set very well. We have performed an analogous
series of eight fits as to the form factor data (with fixed and
floatingmω, Madrid and Bern phase input to the Omnès func-
tion, fitting mρ inside the Madrid phase parametrization, and
allowing for an Orsay phase φ multiplying the mixing term).
The main difference is that the polynomial P(s) has a free
normalization constant A as well as a curvature term ∝ β; see
Eq. (8). All fits were further constrained by the integrated par-
tial width �(η′ → π+π−γ ) = (0.0574±0.0028) MeV [26].
Given that we are fitting pseudo-data, it is little surprising that
mω, mρ , and φ all come out consistently with their physical
values in the cases where they are allowed to float. We mainly
include these alternative fits to illustrate the sensitivity of the
data to these parameters.

The optimal fit to these pseudo-data is shown in Fig. 5.
The resulting fit parameters as well as the corresponding val-
ues for the minimal χ2/dof are displayed in Table 2. They
confirm one major finding that was already firmly established
for the closely related decay η → π+π−γ [18,19,21,22]:
the parameter α is large, about an order of magnitude larger
than the corresponding parameter αV in the form factor fits.
Here, however, the BESIII data for the first time demonstrate
the necessity of the inclusion of the quadratic term ∝ βs2

with very high significance. The leading left-hand-cut con-
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Fig. 5 Best fit to the differential decay rate d�(η′ → π+π−γ )/d
√
s.

Pseudo-data generated according to preliminary BESIII results [15]

tribution provided by a2-exchange gave an estimate of this
parameter, β = (−1.0 ± 0.1) GeV−4 [18], which yields the
correct sign and order of magnitude, but is somewhat larger
than what the new data suggest.

In Table 2 we also show the various values of gωππ ,
extracted from κ2 using Eq. (21), as well as the results for
B(ω → π+π−), which are also added at the bottom of
Fig. 3. Here, the variation of coupling constant and branch-
ing ratio is entirely negligible over the different fit variants.
Although we have only analyzed preliminary pseudo-data at
present, the key message is that data of this quality are suffi-
cient to provide an alternative access to the isospin-violating
decay ω → π+π− with an accuracy comparable to that
of form factor measurements. In addition, the experimental
analysis currently available provides a clear preference for
smaller values of B(ω → π+π−), potentially even some-
what below the average cited in Eq. (24), and definitely in
contradiction to the large numbers found based on the BaBar
form factor data.

4 The pion charge radius

On the basis of the present analysis we are now also in the
position to extract an improved value for the pion vector
radius. It is understood as the square root of the mean squared
radius 〈r2

V 〉, which in turn is defined by the polynomial expan-
sion of the form factor FV (s) around s = 0,

FV (s) = 1 + 1

6
〈r2

V 〉s + O(s2). (25)

Within the formalism introduced above it may be written as

〈r2
V 〉 = 6

π

∫ ∞

4m2
π

dx
δ1(x)

x2 + 6

(
αV + κ1

m2
ω

)
, (26)
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Fig. 6 Comparison of the values for the pion charge radius extracted
from the analysis of the different vector form factor data sets. Only
the results of our preferred Fit 2-ρ are shown. The red thick solid line
denotes the average of the values, the gray band the corresponding
uncertainty found omitting the contribution from BaBar. The average
with the BaBar value included is shown as the perpendicular dotted line

where the first term stems from the expansion of the Omnès
function, and we have neglected tiny corrections scaling with
the ω width in the isospin-breaking contribution (which is
very small to begin with). The ratio of two Omnès functions
calculated employing two moderately differing high-energy
continuations of the phase shifts has a polynomial form at
low energies. Since the parameter αV is determined via a
fit to data it therefore implicitly also depends on the high-
energy behavior assumed for the phase shifts. However, the
pion radius is necessarily independent thereon.2

For the study of the radius we again only use the results
of our preferred fit, namely Fit 2-ρ. In order to control the
effect of possible correlations between the fitted value of the
ρ mass parameter mρ and the parameter αV on the radius,
we performed two additional fits to each data set, where we
fixed mρ to its corresponding minimal and maximal value
allowed by Fit 2-ρ. The uncertainty of the radius is then
determined for each experiment from the largest spread in the
radii allowed in those fits. The results are shown in Table 1
and Fig. 6.

Finally also for the study of the radius we investigated the
effect of an additional βV s2-term in Eq. (7) and observed that
the uncertainty in α increased by a factor of 4–10 (combined
with an almost unchanged χ2/dof), depending on the data
set, while the values of βV turned out consistent with 0 within

2 In fact, we have also performed fits with a pion form factor phase
(instead of the elastic scattering phase shift) as input to the Omnès
function, including effects of the ρ(1450) and ρ(1700) resonances; see
Ref. [42] for details. This reduces the parameter αV almost to zero,
however, the radii come out consistent with the present analysis in line
with the reasoning given.

(a) (b)

Fig. 7 Examples for Feynman diagrams in chiral perturbation the-
ory, leading to nonuniversal radiative corrections. Dashed lines refer
to charged pions, wiggly lines to photons

1–2σ . The only exception is once more the BaBar data set that
calls for a nonzero value for βV by about 4.5σ . In addition,
the central values determined for the radius including the βV -
term are in most cases consistent with those from the original
fit within 1σ . We therefore do not quote the results of these
additional analyses in detail.

The statistical uncertainty of the squared radius extracted
from the fit turns out be of the order of 0.2%. At this level of
accuracy one needs to worry also about effects from radia-
tive corrections. The generic size of one-loop corrections
in the squared radius is given by 6αem/(4πm2

π ) (see e.g.
Ref. [43]), which is much larger than the statistical uncer-
tainty. However, these are all universal in the sense that they
can be formulated in terms of an overall multiplicative fac-
tor, calculable in scalar QED, and were already removed in
the experimental analyses when extracting the form factor
from the cross sections. On the other hand, there are addi-
tional s-dependent terms induced by nonuniversal terms –
see, e.g., Fig. 7 –, which in the framework of chiral pertur-
bation theory appear at two-loop order. These may affect the
extrapolation of the form factor from the physical, timelike
region (s > 4m2

π ) to s = 0, where the radius is defined; note,
for instance, that the diagram Fig. 7a contains a logarithmic
singularity at threshold; see e.g. the detailed discussion in
Ref. [44].3 We therefore estimate the possible effect of an
additional s-dependence on the squared radius, induced by
nonuniversal radiative corrections, by those obtained from
chiral perturbation theory two-loop diagrams such as those
in Fig. 7, which generically scale as 6αem/(π�2), where
� ≈ 1 GeV denotes the characteristic scale for the chiral
expansion.

Averaging the fit results to the individual experiments,
omitting again the result from BaBar for the reasons dis-
cussed in Sect. 3.1, we find

〈r2
V 〉 = (0.4361 ± 0.0007 ± 0.0005) fm2, (27)

where the first error denotes the statistical uncertainty given
by the fit – it includes a scale factor of 1.5 determined accord-
ing to the procedure proposed by the PDG – and the second

3 We point out that in general, it is not possible to isolate purely hadronic
quantities in the presence of electromagnetic interactions [45].
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one the uncertainty by possible residual radiative corrections
estimated above. Our result is consistent with the allowed
parameter range for the squared radius between 0.42 fm2 and
0.44 fm2 derived on very general grounds in Ref. [46]. This
translates into

√
〈r2

V 〉 = (0.6603 ± 0.0005 ± 0.0004) fm (28)

for the radius. This value is to be compared to the current
PDG average (0.672 ± 0.008) fm. Both values agree within
2σ , however, our number has a significantly reduced uncer-
tainty. It is also interesting to remark that if one keeps only
those values in the average quoted in the Review of Particle
Physics that were extracted from eπ → eπ (which basi-
cally means omitting values extracted from eN → eπN
that might contain some additional model dependence not
included in the uncertainty [47]), the average drops to
(0.663 ± 0.006) fm, fully in line with the value quoted
above, however, with a significantly larger uncertainty. Had
we kept the BaBar result, the radius would have shifted to
〈r2

V 〉 = (0.4385 ± 0.0009 ± 0.0005) fm2, which translates

to 〈r2
V 〉1/2 = (0.6622 ± 0.0007 ± 0.0004) fm, however, here

again a scaling factor of 3.3 was necessary for the uncer-
tainty, once more pointing at an inconsistency of the BaBar
data compared to the others. This inconsistency is also quite
apparent in Fig. 6.

5 Conclusion

Exploiting the universality of final-state interactions by
means of dispersion theory as well as the analytic struc-
ture of the pion vector form factor and the amplitude for
η′ → π+π−γ , we extracted information on the branching
fraction B(ω → π+π−) and the pion charge radius. Our
analysis shows that the BaBar form factor data [34] are incon-
sistent with the other analyses as well as with theoretical con-
straints in various respects, but in particular concerning the
ω → π+π− coupling strength. It should be noted that other
groups came to similar conclusions; see, e.g., Refs. [48,49].
We therefore do not include the BaBar form factor data in
our final averages.

Based on recent data from SND, CMD-2, KLOE, and
BESIII, we found B(ω → π+π−) = (1.46 ± 0.08) × 10−2

and
√

〈r2
V 〉 = 0.6603(5)(4) fm, where the first uncertainty is

statistical based on the data fits, and the second estimates the
size of nonuniversal radiative corrections. Both values are
consistent with those currently reported by the PDG [26],
however, with reduced uncertainties. Only one of the exper-
iments included in our study has been included in the PDG
average for B(ω → π+π−) so far, and none for the pion
charge radius.

We have finally pointed out that high-quality data on
η′ → π+π−γ will allow one to further improve on the
value for B(ω → π+π−), and cross-check the consistency
of the different pion form factor data sets. Final data for this
decay can be expected in the very near future from both the
CLAS [50] and the BESIII [15] collaborations.
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