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Abstract We analyze the gravity-induced effects associ-
ated with a massless scalar field in a higher-dimensional
spacetime being the tensor product of (d − n) -dimensional
Minkowski space and n-dimensional spherically/cylindri-
cally symmetric space with a solid/planar angle deficit. These
spacetimes are considered as simple models for a multidi-
mensional global monopole (if n � 3) or cosmic string (if
n = 2) with (d−n−1)flat extra dimensions. Thus, we refer to
them as conical backgrounds. In terms of the angular-deficit
value, we derive the perturbative expression for the scalar
Green function, valid for any d � 3 and 2 � n � d − 1, and
compute it to the leading order. With the use of this Green
function we compute the renormalized vacuum expectation
value of the field square 〈φ 2(x)〉ren and the renormalized
vacuum averaged of the scalar-field energy-momentum ten-
sor 〈TMN (x)〉ren for arbitrary d and n from the interval men-
tioned above and arbitrary coupling constant to the curvature
ξ . In particular, we revisit the computation of the vacuum
polarization effects for a non-minimally coupled massless
scalar field in the spacetime of a straight cosmic string. The
same Green function enables to consider the old purely clas-
sical problem of the gravity-induced self-action of a classical
point-like scalar or electric charge, placed at rest at some fixed
point of the space under consideration. To deal with diver-
gences, which appear in consideration of the two problems,
we apply the dimensional-regularization technique, widely
used in quantum field theory. The explicit dependence of the
results upon the dimensionalities of both the bulk and conical
submanifold is discussed.

1 Introduction

In the last decades the higher-dimensional generalizations of
known four-dimensional solutions in general relativity (GR)
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became the object of intense research in the context of widely
developing higher-dimensional theories. It is enough to men-
tion the possibility of the mini-black-hole creation in the high
energy physics experiments [1,2]. Experimental confirma-
tion of such a creation is considered as one of the tests of the
existence of extra dimensions, or it has to set new bounds on
the parameters of the multidimensional theories predicting
the existence of mini-black holes. Though at present there
are no confirmations of the existence of extra dimensions
[3], the modern theories stimulated the research of the GR
in d > 4 spacetime dimensions. This implies not only the
search of new solutions, but also the research of the higher-
dimensional generalizations of the known four-dimensional
solutions. The partial goal of such research is to clarify which
predictions by GR are proper for four dimensions only, and
which ones are universal and extended to higher dimen-
sions. At the other hand, it is expected that the research of
higher-dimensional generalizations allows one to shed light
on some peculiarities of the standard four-dimensional the-
ory and assists in the better understanding of the latter. This
research assumes not only the study of geometric features
of higher-dimensional solutions, but also the study of partic-
ularities of the classical/quantum matter dynamics on their
background.

The standard problems of research within the field the-
ory on the curved background, to which the physicists return
through decades, are the effects of the induced by gravity vac-
uum polarization and the problem of self-action of the clas-
sical charged particle. These two problems, weakly related at
first glance, in fact have a number of common features. The
main of those is that the two problems are determined by the
appropriate Green function being the solution of a partial dif-
ferential equation which is sensitive to the global structure of
the manifold. Thus, the two effects become essentially non-
local. Furthermore, for the elimination of divergences arising
in the two cases, one uses the same techniques.
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The present work is devoted to the consideration of
gravity-induced effects of the vacuum polarization of a mass-
less scalar field and the self-action of a scalar or elec-
tric charge on the ultrastatic spacetime being the prod-
uct of (d − n)-dimensional Minkowski spacetime and n-
dimensional spherically symmetric space with an angular
deficit.

For the particular cases such problems were considered
in a series of papers: the analysis of the vacuum polarization
in four, five, and six dimensions was done in Refs. [4] (non-
perturbative), [5], and [5–7], respectively. The self-action for
different four-dimensional models was considered in work
by Bezerra de Mello et al. [8,9]. For the cosmic strings the
average vacuum energy was considered by Dowker [10] in
terms of Bernoulli polynomials for even spacetime dimen-
sionality; the energy-momentum tensor in four dimensions
was computed in [11] for the conformal coupling and gener-
alized in [12] to the arbitrary coupling ξ , in three-dimensional
gravity these problems were discussed in [10,13]. The elec-
trostatic self-action near the four-dimensional cosmic string
is computed in the integral form in [14]. The basic diffi-
culty to generalize these results is that they are based on
the coordinate-space Green function which has a drastically
different behavior in odd and even dimensions and has no
universal form even for the series of the same spacetime par-
ity.

We will concentrate on the computation of the renormal-
ized vacuum expectation values (VEV) for 〈φ 2(x)〉ren and
〈 TMN (x)〉ren, as well as the calculation of the renormalized
self-energy Uren(x) and self-force Fren(x) of the static scalar
or electric charge. The basic goal here is to obtain the univer-
sal expressions valid for given arbitrary d, n, and ξ , as well
as to compare the particular examples with known results.
For the regularization of formally diverging expressions we
will use the dimensional-regularization technique.

The paper is organized as follows: the Introduction is the
first section. In the second section, the Setup, we briefly
present the background metric with angular deficit in arbi-
trary spacetime dimension and derive the initial expres-
sions for the subsequent computation of classical self-force
and vacuum averages. The perturbation theory we use is
described in Sect. 3, where we also construct the approxi-
mate Green function. Section 4 is devoted to the computation
of the renormalized vacuum averaged expression 〈φ 2(x)〉ren
in the dimensional-regularization scheme. The comparison
with the analogous results known in the literature is pre-
sented. The renormalized stress-energy tensor is computed
in Sect. 5. The classical self-energy and self-force of a point-
like scalar or electric charge in the spacetime at hand are
computed in Sect. 6. In Sect. 7 we discuss the special case
of an infinitely thin cosmic string. We show that there is a
some ambiguity in the previous calculations and propose an
alternative approach to the problem. In Sect. 8, the Conclu-

sion, we summarize the results and present prospects. Useful
integrals are given in the appendix.

We use the units G = c = h̄ = 1 and metric with the
signature (−,+,+, ... ,+).

2 Setup

In the model we consider quantized or classical massless
scalar field φ, living in the static d -dimensional bulk with n -
dimensional submanifold with solid or planar angular deficit.
This n -dimensional subspace may be considered as created
by the n -dimensional global monopole (for n � 3) or as a
straight cosmic string (for n = 2).

First we overview the background geometry.

2.1 Background of the cosmic string and the global
monopole, and their higher-dimensional analogues

The metric of a straight infinitely thin cosmic string with
a mass per unit length μ, located along the z -axis in four
spacetime dimensions, in cylindric coordinates reads

ds2 = −dt2 + dz2 + dρ2 + β2ρ2dϕ2 (2.1)

where β = 1−4Gμ . (For the review of the formation, evolu-
tion and geometry of topological defects and some physical
effects near them see [15,16] and the references therein.) The
corresponding Riemann tensor vanishes everywhere except
for the symmetry axis ρ = 0, where it has a δ-like singular-
ity [17]. A straight string does not affect the local geometry of
the spacetime, its effect on matter fields is purely topological,
and the dimensionless parameter Gμ is the only parameter
which measures the effect of the conical structure on the
dynamics of classical and quantized matter.

In some applications it is more appropriate to use coor-
dinates (t, x, y, z), which are conformally Cartesian on the
plane transverse to the string. With the radial-coordinate
transformation ρ → r

ρ = r0

β

( r

r0

)β
, x1 = r cos ϕ, x2 = r sin ϕ,

where r0 is an arbitrary scale with the length dimensionality,
the line element (2.1) takes the form

ds2 = −dt2 + dz2 + e−2(1−β) ln(r/r0)δab dxadxb, (2.2)

where r 2 = δab xaxb, a, b = 1, 2.
The idea to use conformal coordinates was put forward in

the framework of low-dimensional gravity [18–21]. In this
case it gives the possibility to find a self-consistent solution
for the metric of a multi-center space, i.e. a static (2 + 1)-
dimensional spacetime of N point masses. Later it was shown
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that the line element of a multi-center spacetime can be gen-
eralized for the case of N parallel cosmic strings [22]. The
same idea enables one to obtain the explicit solutions of the
problem of topological self-action in the multi-center and
multi-string spacetimes [23–26], and it provides an appro-
priate framework for consideration of the vacuum polariza-
tion effect in the spacetime of multiple cosmic strings and,
in particular, the vacuum Casimir-like interaction of parallel
strings [27].

One can consider the generalization of the metric (2.1)
and (2.2) for a spherically symmetric case, when any plane
containing the center of symmetry and dividing the space
into two equal parts is a cone with the angular deficit δϕ =
2π(1 − β),

ds2 = −dt2 + d	2 + β2	2(dθ2 + sin2θ dϕ2). (2.3)

This metric describes an ultrastatic spherically symmetric
spacetime with the solid angle deficit equal to 4π(1 − β2).

Equation (2.3) approximates the metric of a global
monopole [28,29]. Strictly speaking, the metric of a global
monopole contains a mass term, but this term is too small to
be of importance on astrophysical scales.

As in the string case, there is a possibility to use confor-
mally Cartesian coordinates on the section t = const of the
spacetime (2.3). After a redefinition of the radial coordinate
β	 = r0(r/r0)

β the metric of the spatial sector of the above
line element takes the conformally Euclidean form. Thus, we
can introduce a set of Cartesian coordinates {xi } , i = 1, 2, 3
with the usual relation with the spherical coordinates r, θ, ϕ.
In these coordinates the metric (2.3) reduces to the form

ds2 = −dt2 + e−2(1−β) ln(r/r0)δikdxidxk, (2.4)

where r2 = δik xi xk , i, k = 1, 2, 3.
We see that the two conical defects have no Newtonian

potential and exert no gravitational force on the surrounding
matter. For the two defects their gravitational properties are
determined by the deficit angle only. The main difference of
a global monopole from the case of a cosmic string is that
the monopole spacetime is not locally flat, and its gravita-
tional field provides a tidal acceleration which is proportional
to r−2β .

Below we will consider multidimensional generalization
of the spaces (2.2) and (2.4), with arbitrary number of conical
and flat spatial dimensions. The corresponding metric reads

ds2 ≡ gMN dxMdxN

= −dt2+dx2
d−1+· · ·+dx2

n+1+e−2(1−β) ln r δikdxidxk,
(2.5)

with r2 ≡ δik xi xk and i, k, ... = 1, ... , n while M, N , ... =
0, 1, ... , d − 1. Here d � 3 and 2 � n � d − 1. Without
loss of generality we put r0 equal to unity.

The spacetime with metric (2.5) represents the ten-
sor product of the (d − n)-dimensional Minkowski space
and the n-dimensional centro-symmetric conformally flat
space with a solid angle deficit equal to δ� = 2(1 −
βn−1)πn/2/� (n/2), if n � 3, or planar angular deficit equal
to δϕ = 2π(1 − β), if n = 2.

The corresponding Ricci tensor and the scalar curvature
are determined by the conical sector only:

Rik = 2π(1 − β) δ2(r) δik,

R = 4π(1 − β) r2(1−β) δ2(r), n = 2;

Rik = (1 − β2)(n − 2)
r2 δik − xi xk

r4 ,

R = (1 − β2)
(n − 1)(n − 2)

r2β
, n � 3. (2.6)

For these spaces and corresponding Green functions we
will use the notations (d, n) and G(x, x ′ | d, n). Notice, in
these notations, the spacetime of a straight infinitely thin cos-
mic string and notice that one of the point global monopoles
in four spacetime dimensions has the type (4, 2) and (4, 3),
respectively.

Therefore, (2.5) represents the multidimensional general-
ization of the four-dimensional solutions obtained in [28–31],
respectively.

For the first time a metric of the form (2.5) with two-
dimensional conical subspace (n = 2) was considered in
Ref. [32]. Later a number of solutions for a coupled system
of the Einstein equation and the equations of motion for n
scalars was found and analyzed in [33]. It was shown that
the n � 3 solution with a zero cosmological constant has
approximately the form (2.5) (in our coordinates). Thus, the
metric (2.5) describes the conical defects which live in a d -
dimensional bulk, having a flat (d − n − 1) -brane as a core.
Some tiny QFT effects have been found on these backgrounds
for some particular dimensionalities of the bulk dimension
d and the dimension of the conical subspace n. The vac-
uum polarization effects for a massless scalar and fermionic
fields on the higher-dimensional monopole/string spacetime
were investigated in [5–7] and [27,32,34–36]. In [37–39]
the authors analyze the vacuum fluctuations of a quantum
bosonic and fermionic currents induced by a magnetic flux
running along the string. In this paper we continue the inves-
tigation of quantum and classical field-theoretical processes
on the generalized background (2.5).

The geometry of the spacetime under consideration is sim-
ple enough and the metric does not contain any dimensional
parameters. Nevertheless we cannot compute explicitly the
Green function G(x, x ′ | d, n) in a workable closed form. So,
we restrict our consideration by the particular case of a small
angular deficit; in the following, we put (1 − β) � 1. It
enables us to obtain perturbatively the universal expression
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for the Green function, which is valid for any d and n and
for any value of the coupling constant ξ .

2.2 Self-energy of a point-like charge in a static spacetime:
formalism

Let us consider a massless scalar field φ with a source j in a
static d -dimensional spacetime with the metric

ds2 ≡ gMN dxMdxN = g00 dt2 + gμν dxμdxν, g00 < 0.

(2.7)

In this subsection the small Greek indices μ, ν, ... run over
all spatial coordinates 1, 2, ... , d − 1.

The interaction of scalar field with the bulk curvature R is
introduced via coupling ξ , while the interaction with charges
is introduced by the charge density j (x) in a standard way:

Stot = −1

2

∫
d dx

√−g
(
φ ;M φ ;M + ξ Rφ 2 − 2φ j

)
+ S j .

(2.8)

S j is the action for a charged matter.
From (2.8) one derives the equation of motion for the

scalar field:

∂M

(√−g gMN ∂Nφ
)

− ξ
√−g φ R = −√−g j. (2.9)

In the static case, when ∂0φ = 0 = ∂0gMN , and point-like
charge q placed at a fixed spatial point x it reads

∂μ

(√−g gμν∂νφ
) − ξ Rφ

√−g = −√−g j, (2.10)

where

j (x ′) = q
δd−1 (x − x ′)√−g

. (2.11)

The field energy in a static spacetime reads

U = −
∫

T 0
0

√−g d d−1x, (2.12)

where T 0
0 stands for the zero–zero component of the energy-

momentum tensor, which for the scalar field is derived from
the action (2.8) and given by

T N
M =(1−2ξ) φ,Mφ,N + 4ξ − 1

2
φ,Lφ ,L δNM − 2ξφ ;M ;Nφ

+ 2ξφ �φ δNM + ξ

2

(
2RN

M − R δNM
)
φ 2. (2.13)

Note that the interaction part of the action does not con-
tribute to the field energy-momentum tensor. It is particularly

obvious in the case under consideration since for a point-like
charge with the source (2.11) the Lagrangian density reads
Lint = √−g φ j = q δd−1(x − x ′) and does not depend on
the metric.

Making use the fact that the field and the metric are static
we have

T 0
0 = −1 − 4ξ

2
φ,μφ,μ + 2ξφ

1√−g
∂μ

[√−g gμν∂νφ
]

+ ξ

(
R 0

0 − 1

2
R

)
φ 2.

Substituting T 0
0 , the scalar-field energy is given by

Usc = 1 − 4ξ

2

∫
d d−1x ∂μ

(√−g gμνφ ∂νφ
)

− 1

2

∫
d d−1x

[
φ ∂μ

(√−g gμν ∂νφ
)

+ √−g ξ
(

2R 0
0 − R

)
φ 2

]

and integrating with the help of the Gauss theorem, only
the second integral survives. Simplifying and by the field
equations (2.10), (2.12) becomes

Usc = 1

2

∫
d d−1x

√−g
[
φ j − 2ξ R 0

0 φ 2
]
. (2.14)

The corresponding form via the Green function of Eq.
(2.10) reads

Usc = 1

2

∫
d d−1x d d−1x ′ √g(x) g(x ′) j (x)G(x, x ′) j (x ′)

− ξ

∫
d d−1x

√−g R 0
0 φ 2,

where G(x, x ′) satisfies

∂μ

(√−g gμν∂νG(x, x ′)
) − ξ R

√−g G(x, x ′)
= −√−g δ d−1(x, x ′). (2.15)

Thus for a point charge localized at the point x of the
spacetime from Eq. (2.11) we get

Usc(x) = 1

2
q2 G(x, x) − ξ

∫
d d−1x

√−g R 0
0 φ 2 . (2.16)

Note that for the general case of a static spacetime one has
g = g00 det(gμν), while R in Eq. (2.15) stands for the scalar
curvature of the whole d -dimensional space.

In addition, if the spacetime is ultrastatic (i.e. g00 = −1),
then g = − det(gμν), R 0

0 = 0, and (2.16) takes the form

Usc(x) = 1

2
q2 G(x, x),

where G is a solution of the equation

∂μ

(√
g gμν∂νG(x, x ′)

) − ξ R
√
gG(x, x ′)

= −√
g δ d−1(x, x ′), (2.17)
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where g = det(gμν) and R is the corresponding scalar cur-
vature. That is, G is the Green function on the (d − 1) -
dimensional space with the metric gμν with Euclidean sig-
nature and the curvature R.

Now let us suppose that there exists at least one flat
extra spatial dimension, say xd−1. Then formally identifying
i xd−1 = t , one notices that Eq. (2.15) for the static Green
function coincides with the full field equation (3.1) for the
Euclidean Green function GE (x, x ′ | d − 1, n) in the space-
time with (d − 1) spacetime dimensions and n -dimensional
conical subspace. Finally, with the use of the well-known
relation between Euclidean GE and Feynman GF Green
functions, we obtain, in this case,

Usc = 1

2
q2 GE (x, x | d−1, n) = − i

2
q2 GF (x, x | d−1, n).

(2.18)

One can study the self-energy of a static electric charge
along the same lines.

In this case the solution of the Maxwell equations is static,
with the d -potential AM = (

A0(x), 0, ... , 0
)

if the current
equals J M = (

J (x), 0, ... , 0)
)
. The only non-trivial com-

ponent of the Maxwell equations is

∂μ

(√−g g00gμν∂ν A0

)
= −√−g J, (2.19)

so for the electrostatic self-energy one obtains (e.g. see [40])

Uel = −1

2

∫
dd−1x

√−g A0 J

= 1

2

∫
dd−1x

√−g
∫

dd−1x ′√−g′ J (x)G(x, x ′) J (x ′),

(2.20)

where the Green function of Eq. (2.19) is defined as the solu-
tion of

∂μ

(√−g g00gμν∂νG(x, x ′)
)

= √−g δd−1(x, x ′). (2.21)

So, for the point charge, when the charge density J =
e δd−1(x, x ′), we obtain

Uel = 1

2
e2 G(x, x). (2.22)

In the particular case of an ultrastatic space Eq. (2.21)
takes the form

∂μ

(√
g gμν∂νG(x, x ′)

) = −√
g δd−1(x, x ′).

This equation coincides with Eq. (2.16) if ξ = 0. Using this
fact one finds that

Uel = 1

2
e2 GE (x, x | d − 1, n)

∣∣∣
ξ=0

. (2.23)

Consequently, on the background under consideration the
electrostatic self-energy can be obtained from the scalar one
if we put ξ = 0 and replace q2 by e2.

The spacetime of interest here, see Eq. (2.5), i.e. the d -
dimensional spacetime with n -dimensional subspace with a
solid or planar angle deficit, satisfies the ultrastaticity condi-
tion, so we will use the simple formulas (2.18) and (2.23).

3 Green function: perturbation theory

For our background metric (2.5) the exact Green function
is unknown. Taking into account the fact that (1 − β) �
1 we make use of the perturbation-theory techniques. The
Feynman propagator for the scalar field in curved background
satisfies the equation1

L(x, ∂)GF (x, x ′ | d, n) = −δd(x − x ′), (3.1)

where L(x, ∂) stands for the field-equation operator and
determined by the background metric.

Following Schwinger [41], we rewrite Eq. (3.1), in the
operator form

LG = −1, G = −L−1. (3.2)

If the operator L is allowed to be expressed as L = L0 +
δL, where δL is considered as a small perturbation, then
representing the solution of Eq. (3.2) in the formG = G0+δG,
withG0 = −L0

−1 being the unperturbed Green function, one
obtains

G =
[
−L0 (1 − G0δL)

]−1

= G0 + G0δLG0 + G0δLG0δLG0 + · · · . (3.3)

In the case under consideration L0 is determined by the
zeroth order in the small quantity (1 − β), hence

L0(x, ∂) = ∂ 2, ∂ 2 ≡ ηMN ∂M∂N .

The perturbation operator

δL(x, ∂) = ∂M

(√−g gMN∂N

)
− ∂2 − √−g ξ R (3.4)

1 In the following we define the Feynman propagator as GF (x, x ′) =
i〈T [

φ (x) φ (x ′)
]〉vac.
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to the first order in (1 − β) reads

δL(x, ∂) = n α(r)

(
∂2

0 −
d−1∑

N=n+1

∂2
N

)

− (n − 2)

n∑
i=1

[
α(r) ∂2

i + (
∂iα(r)

)
∂i

]
− ξγ (r).

(3.5)

In order to compactify our equations below, let us intro-
duce the notation

β ′ ≡ 1 − β.

With the use of this notation

α(r) = β ′ ln r

and

γ (r) =
{

4πβ ′ δ2(r), n = 2;
2(n − 1)(n − 2)β ′/r2, n � 3 ,

(3.6)

with r = (x1, x2, ... , xn).
In the problem at hand the function GF

0 (x, x ′) =
〈x |G0|x ′〉 = −〈x |∂−2|x ′〉 in Fourier basis takes the form:2

GF
0 (x − x ′) =

∫
d d p

(2π)d

ei p (x−x ′)

p 2 − iε
,

where p 2 = p2 − (p 0)2 and p x = px − p 0x0.
For the first-order correction to the Green function from

(3.3) we get the following expression:

GF
1 (x, x ′ | d, n) = 〈x |G0δLG0|x ′〉

=
∫

d dq

(2π)d
eiqx

∫
d d p

(2π)d
ei p(x−x ′)

× δL(q, i p)[
p 2 − iε

] [
(p + q)2 − iε

] , (3.7)

where δL(1)(q, i p) is defined by

δL(q, i p) =
∫

d dx e−iqx [δL(x, ∂)|∂→i p
]
. (3.8)

Here one implies that the differential operator δL(x, ∂) is
prepared to the form where all differential operators stand
before (at the right-hand side from) the coordinate functions,

2 Hereafter the direct Fourier transform is defined as

F[ϕ (x)](q) =
∫

d d x ϕ (x) e−iqx ,

and further one performs the substitution ∂ j → i p j and cal-
culates the Fourier transform, considering the p j as param-
eters.

In our problem the perturbation operator reads (3.5),

δL(q, i p) =
[
np2−2p2+(n−2)(qp)

]
F[α](q)−ξF[γ ](q),

(3.9)

where p = (p1, ... , pn) and q = (q1, ... , qn) are n -
dimensional conformal vectors with the Euclidean scalar
product (qp) ≡ δikqi pk , while p 2 ≡ ηMN pM pN .

Making use of the explicit form of operator δL(x, ∂), sub-
stitution of (3.9) into Eq. (3.7) yields

GF (x, x ′ | d, n) = GF
0 (x − x ′)+

∫
d dq

(2π)d
eiqx

∫
d d p

(2π)d

× ei p(x−x ′)
[
p 2 − iε

] [
(p + q)2 − iε

]

×
[(

np2 − 2p2 + (n − 2)(qp)
)

× F[α](q) − ξF[γ ](q)
]
. (3.10)

Taking into account that formulas for the background cur-
vature (3.6) differ for cases n = 2 and n � 3, we consider
here the generic case of a global monopole, while the case
of a cosmic string is delegated to Sect. 7 below.

In this case (3.10) takes the form

GF (x, x ′ | d, n)

= GF
0 (x − x ′) − �(n/2)

2 πn/2

∫
d nq

eiqx

(q2)n/2

×
∫

d d p

(2π)d

ei p(x−x ′)
[
p 2 − iε

] [
(p + q)2 − iε

]

×
[
np 2 − 2p

2 + (n − 2)(qp) + 2 ξ(n − 1)q2
]
,

(3.11)

where we use the following well-defined Fourier transforms
[42]:

F[ln r ](q) = − 2d−1

πn/2−d

�(n/2)

(q2)n/2 δ(q0)

d−1∏
N=n+1

δ(qN ),

(3.12)

F[
r−λ

]
(q) = 2d−λ

πn/2−d

�[(n − λ)/2]
�[λ/2]

× 1

(q2)(n−λ)/2
δ(q0)

d−1∏
N=n+1

δ(qN ). (3.13)
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In Eq. (3.11) and in all subsequent equations q ≡
(0,q, 0, 0 ... 0︸ ︷︷ ︸

d−n−1

).

All the quantities we are interested in are expressed via
the Feynman propagator GF (x, x ′ | d, n) and its derivatives,
evaluated in coincident points. The corresponding expres-
sions diverge, and for their evaluation we make use of the
dimensional-regularization method (see, e.g. [43]).

The dimensional regularization consists in the replace-
ment of the determining function G(x, x) by Greg(x, x), cor-
responding formally to the Green function in D = (d − 2ε)

dimensions. The subsequent renormalization includes the
splitting of Greg(x, x) onto two parts; the first one diverges
as ε → 0, while the other is finite. The renormalization fin-
ishes with the neglect of the divergent part Gdiv(x, x), with
subsequent computation of the limit ε → 0. But as it was
remarked by Hawking [44], in the case of a curved space
this procedure may be ambiguous, because in general there
can be a variety of different ways of performing the analytic
continuation from d to D dimensions. The simplest way is to
take the product of the initial d-dimensional spacetime with
a flat space with D− d dimensions with subsequent analytic
continuation with respect to the extra dimensions.

Fortunately, the spacetime of interest here has originally
the structure demanded by this prescription. So, according to
Hawking’s prescription, we will define GF

ren(x, x | d, n) as a
limit

GF
ren(x, x | d, n)

= lim
ε→0

[
GF

reg(x, x | D, n) − GF
div(x, x | D, n)

]
. (3.14)

As it was shown by Hawking, results obtained by this
prescription are in agreement with the ones obtained with
the help of the method of generalized ζ -functions.

4 Renormalized 〈φ 2(x)〉

Now we proceed to a perturbative expression for the regular-
ized value of vacuum averaged 〈φ 2(x)〉ren.

We define the Feynman propagator as GF (x, x ′) =
i〈T [

φ (x) φ (x ′)
]〉vac . So,

〈ϕ2(x)〉ren = −i GF
ren(x, x | d, n) = GE

ren(x, x | d, n). (4.1)

The first problem arising here is an expression arising
in the zeroth order in β ′. Indeed, for the contribution from
the first term on the right-hand side of (3.11) to the Green
function taken in the limit of coincidence points, we have the
formally divergent expression

GF
0 (x, x) = 1

(2π)d

∫
d d p

p 2 .

However, all integrals of the form

∫
d d p

pi1 ... pik
p 2 , (4.2)

which diverge in UV- and/or in IR-limits and correspond
to the “tadpole”-type diagrams in QFT, are set to have
zero value (no tadpole prescription) within the dimensional-
regularization technique (see, e.g., [45]). According to this
prescription we shall put all terms of the form (4.2) equal to
zero.

Thus, in the case d � 4, 3 � n � d − 1, and an arbitrary
value of the coupling constant ξ , for the first non-vanishing
contribution to the coincidence-point Green function one
obtains from Eq. (3.11):

GF (x, x | d, n) = β ′ �(n/2)

2 πn/2

∫
d nq

eiqx

(q2)n/2

∫
d d p

(2π)d

× 2p2 − (n − 2)(qp) − 2 ξ(n − 1)q2
[
p 2 − iε

] [
(p + q)2 − iε

] .

(4.3)

The integral over d d p diverges. However, it has a standard
form for the QFT. Within the framework of the dimensional
regularization one performs the Wick rotation

p0 → i p 0
E , d d p → id d pE

and replaces the integral over d d pE by the expression
that formally corresponds to integration over a (D − 2ε) -
dimensional pE -space:

∫
d d p

(2π)d
... → i μ2ε

∫
d DpE
(2π)D

... . (4.4)

An arbitrary parameter μ with the dimension of reciprocal
length is introduced to preserve the dimensionality of the
regularized expression.

The computational technique for these integrals is well
developed (e.g., see [45]) and we obtain3

∫
d DpE
(2π)D

2p2 − (n − 2)(qp) − 2ξ(n − 1)q2

p 2
E (p + q)2

E

=
(

1 − ξ

ξD

)
2(n − 1)

(4π)D/2

�2(D/2)

�(D)

�(2 − D/2)

(q2)1−D/2 , (4.5)

where we have denoted

ξD ≡ D − 2

4(D − 1)
.

3 For brief reference, we overview derivation of some of them in
Appendix 1.
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Notice, when ε = 0 and ξD = ξd , the field equation for a
massless scalar field φ is invariant under conformal transfor-
mations of the metric.

For even d Eq. (4.5) has a simple pole at ε = 0,
and under the removal of regularization the divergence in
GE

reg(x, x | D, n) may arise due to this pole, or due to the
d nq-integration, or due to the two issues simultaneously.

Let consider this question in more detail.
Substituting (4.5) into (4.3) and making use of the integral

(3.12) for the regularized vacuum mean 〈φ 2(x)〉 we obtain
(for all 3 � n � (d − 1)) the following expression:

〈φ 2(x)〉reg = −iGF
reg(x, x | D, n)

= μ2εβ ′ n − 1

4πD/2

�(n/2) �3(D/2)

�(D)

×
(

ξ

ξD
− 1

)
�
(− D−2

2

)

�
(− D−n−2

2

) 1

r D−2 . (4.6)

We see that the behavior of the regularized VEV 〈φ 2(x)〉reg
in the limit ε → 0 is determined by the factor

�
(
−D − 2

2

)/
�
(
−D − n − 2

2

)
, (4.7)

and, therefore, it depends significantly upon the parity of the
dimensionality both of the entire d-dimensional bulk and of
its n-dimensional conical subspace.

Let us consider all possible cases.

• even d, odd n In this case (d−n−2)/2 is semi-integer, so
Gamma-function in the denominator (4.7) takes a finite
and non-zero value. The Gamma-function �(1 − D/2)

in the numerator of Eq. (4.7) has a simple pole in ε = 0,
thus when the regularization removed, the separation of
divergent part may be performed with help of the Laurent
expansion,

�(−m + ε) = (−1)m

m!
(

1

ε
− γ + Hm + O(ε)

)
, (4.8)

where γ is the Euler constant, and Hm = ∑m
k=1 k

−1 is
the mth harmonic number.

We obtain now

〈φ 2(x)〉div = −iGF
div(x, x | d, n)

= (−1)d/2

ε

β ′

2πd/2

(n − 1)

(d − n)

�(n/2) �2(d/2)

�(d ) �
(− d−n

2

)

×
(

ξ

ξd
− 1

)
1

rd−2 .

Notice, in the case of a conformal coupling 〈φ 2(x)〉div van-
ishes.

Separation of the finite part of the regularized expression
(4.6) is achieved by the following expansions:

ξ

ξD
− 1 =

(
ξ

ξd
− 1

)
+ ε

8ξ

(d − 2)2 + O(ε2),

f (D) μ2ε

r D−2 = f (d )

rd−2

[
1 + 2ε

(
ln μr − f ′(d )

f (d )

)
+ O(ε2)

]
,

where

f (z) ≡ �3(z/2)

π z/2�(z) �
( 2+n−z

2

) ,

and that leads to the final result,

〈φ 2(x)〉ren = (−1)(n−1)/2 β ′ (n − 1) �(n/2) �
( d−n

2

)

2πd/2+1

�2(d/2)

�(d )

×
[(

ξ

ξd
− 1

)
ln μ̃r + 1

(d − 1)(d − 2)

]
1

rd−2 .

(4.9)

Here and below the constant μ̃ stands for the corresponding
renormalized value of the constant μ. In the expression above

μ̃ = μ exp

(
− f ′(d )

f (d )
+ Hd/2−1 − γ

2
+ 1

(d − 1)(d − 2)

)
.

Notice, with the conformal coupling, the logarithmic term
and the uncertainty related with the arbitrary constant μ̃ in it
disappear from 〈φ 2(x)〉ren.

Separately, we consider the case of higher-dimensional
monopole, where n = d − 1. Then from Eq. (4.9), making
use of the well-known formulas for the Gamma-function,

�(x) �(1 − x)= π

sin πx
, �(2x)= 22x−1�(x) �(x+1/2)√

π
,

(4.10)

we have

〈φ 2(x)〉ren = (−1)d/2−1 β ′ (d − 2) �(d/2)

2d−1πd/2(d − 1)

×
[(

ξ

ξd
− 1

)
ln μ̃r+ 1

(d − 1)(d − 2)

]
1

rd−2 .

(4.11)
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In particular, for the spacetime types (4, 3) and (6, 5) one
obtains

〈φ 2(x)〉ren = − β ′

12 π2r2

[(
6ξ − 1

)
ln μ̃r + 1

6

]
, d = 4;

(4.12)

〈φ 2(x)〉ren = β ′

20 π3r4

[(
5ξ − 1

)
ln μ̃r+ 1

20

]
, d=6,

(4.13)

which coincides (with the accuracy required) with the results
of [4,6,7], respectively.4

Finally, the renormalized VEV of 〈φ 2(x)〉 for 3-dim
monopole in six dimensions reads

〈φ2(x)〉ren = − β ′

120π3r4

[(
5ξ − 1

)
ln μ̃r + 1

20

]
,

d = 6, n = 3. (4.14)

Thus the (6, 3) -result is proportional to the (6, 5) -one, as
follows from (4.9). This expression differs from [5, Eq. 40]
by the sign of the logarithmic term.

• odd d and n Here as ε → 0 the Gamma-function
�(1 − D/2) in the numerator is finite, while �

(
1−(D−

n)/2
)

in the denominator of (4.6) has a simple pole.
Therefore, in the lowest order in β ′ 〈φ 2(x)〉ren vanishes .5

• odd d, even n In this case the two Gamma-functions,
�(1 − D/2) and �

(
1 − (D − n)/2

)
in (4.7), are finite,

hence 〈φ 2(x)〉div = 0 and after some algebra (4.10) we
arrive at

〈φ 2(x)〉ren = (−1)n/2 β ′

4πd/2

(n − 1)�(n/2) �2(d/2)

�(d )

× �
(d − n

2

)( ξ

ξd
− 1

)
1

rd−2 . (4.15)

4 Our result (4.12) coincides with the one of [4] numerically, since in
the cited work it is the numerical computation that was done for several
introduced (within their computational scheme) integrals (namely, [4,
eqns. (2.18, 2.19)]). However, these integrals may be computed ana-
lytically; doing this, the result coincides with our result (to the leading
order in β ′ we are interested in here).
5 Unfortunately, we can say nothing about the result in the second order:
neither whether it also vanishes, or if it has a finite value. Probably, the
non-perturbative approach in some particular case (d, n) of this type
may shed light on this problem. The investigation of these effects lies
beyond the mainline of our work here and hopefully will be considered
later. The same concerns the cases with ξ = ξd in Eqs. (4.16, 4.18),
where the first-order value vanishes.

Hence for the d -dimensional monopole, (d, d − 1) -
spacetime, we have

〈φ 2(x)〉ren

= (−1)n/2β ′ (d − 2)�(d/2)

2dπd/2−1(d − 1) rd−2

(
ξ

ξd
− 1

)
.

(4.16)

In particular, for the five-dimensional monopole (d = 5,
n = 4) the VEV 〈φ 2(x)〉ren takes the form

〈φ 2(x)〉ren = β ′ 3(16 ξ − 3)

29πr3 , (4.17)

which coincides with the results of Refs. [5–7].
• even d and n Here the simple pole of �(1 − D/2) in

the numerator (4.7) is compensated by the one of the
Gamma-function �

(−(D − n)/2
)

in the denominator.
The result of (4.7) at ε = 0, thereby, equals the ratio of
the corresponding residuals. Moreover, as in the previous
case, the divergent part 〈φ 2(x)〉div vanishes, and the VEV
equals

〈φ 2(x)〉ren

= (−1)n/2β ′ (n−1) �
( d−n

2

)

4πd/2

�2(d/2) �(n/2)

�(d )

×
(

ξ

ξd
− 1

)
1

rd−2 , (4.18)

and thus 〈φ 2(x)〉ren vanishes (in lowest order in β ′) for
the case of the conformal scalar field.

A direct comparison of (4.15) with Eq. (4.18) shows that
within the accuracy of interest the two cases with even coni-
cal subdimensionality n can be combined into a unified one,
despite the intermediate formulas having been based on the
drastically different behavior of the Gamma-function. How-
ever, for odd n the result depends significantly upon the parity
of the bulk’s dimensionality.

Summarizing, in this section we have computed the renor-
malized vacuum averaged 〈φ 2〉ren for a massless scalar field
on the generalized background (2.5). We have made the com-
putation up to the first order in β ′, but for arbitrary values of
the coupling constant ξ and for any dimension of the space
d � 4 and any dimension of its conical subspace in the inter-
val 3 � n � d −1. For doing so we have used a perturbation
technique combined with the method of dimensional regular-
ization. For the case with even d and odd n (in particular, for
the four-dimensional global monopole) it is the logarithmic
factor ln μr that has the crucial significance for the field with
nonconformal factor, since all finite non-logarithmic terms
may be absorbed by the finite renormalization of μ.
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The methods presented in this section may be used to com-
pute the renormalized mean value of the energy-momentum
tensor in a similar way.

5 Renormalized energy-momentum tensor

The total energy-momentum tensor derived from the action
(2.8) is given by (2.13). In terms of the Green function, the
regularized VEV of the energy-momentum tensor is given
by

〈TMN (x)〉reg = −i lim
x ′→x

DMN GF
reg(x, x

′), (5.1)

where DMN stands for the appropriate differential operator
(∇M and ∇M ′

denote the covariant derivative over xM and
x ′M , respectively):

DMN = (1 − 2ξ)∇M∇N ′ + 1

2
(4ξ − 1)∇L∇L ′

gMN

+ ξ
[
RMN − 1

2
R gMN +2∇L∇L gMN −2∇M∇N

]
.

Taking into account the special significance of the min-
imally coupled field, and in order to dilute routine compu-
tations, it is natural to compute the renormalized vacuum
momentum density separately for different powers of ξ . We
start to separate ξ -terms already from definition: thereby we
can split the energy-momentum tensor thus:

TMN = T (0)
MN + ξ T (ξ)

MN

with

T (0)
MN = φ,Mφ,N − 1

2
gMN φ, Lφ , L

T (ξ)
MN = −2φ,Mφ,N + 2φ, Lφ, L gMN − 2φ ;MN φ

+ 2φ �φ gMN + 1

2

(
2RMN − R gMN

)
φ 2. (5.2)

Each term here contains a quadratic form on φ and, there-
fore, can be derived from the Feynman propagator. Hence we
may apply our point-splitting procedure for the derivatives
combined with the perturbation-theory scheme, to reveal the
contributions linear in β ′.

T (ξ)
MN contains the second covariant derivatives; comput-

ing them, one needs in the corresponding Christoffel sym-
bols. In the coordinates specified, all non-vanishing Christof-
fel symbols are of order O (β ′). Given that the zeroth order
(in β ′) of the Green function vanishes in our scheme (the
no-tadpole prescription), the retaining of the Christoffel-part
contribution yields the order O (β ′2), i.e. exceeds the neces-
sary accuracy. Hence we can neglect these terms and consider
the derivatives as “flat”.

Repeating the steps to construct the Green function, the
first-order operator correction δL(x, ∂) also can be split as
δL(x, ∂) = δL(0)(x, ∂) + ξδL(ξ)(x, ∂) with6

δL(0)(x, ∂) = −nα(r)∂σ ∂σ − (n − 2)

×
[
α(r)∂i ∂

i + (
∂i α(r)

)
∂ i

]
,

× δL(ξ)(x, ∂) = −R(r). (5.3)

In the following, the energy-momentum VEV in the first non-
vanishing order reads schematically

TMN = 0TMN + 1TMN ξ + 2TMN ξ2, (5.4)

where

0TMN = T (0)
MN

[
δL(0)

]
,

1TMN = T (0)
MN

[
δL(ξ)

] + T (ξ)
MN

[
δL(0)

]
,

2TMN = T (ξ)
MN

[
δL(ξ)

]
. (5.5)

The non-vanishing components of the Ricci tensor in our
coordinates are given by (2.6) and survive in the conical sec-
tor only. For this reason, we should neglect the curvature-term
in the last term in (5.2) since it contributes as O (β ′2). Fur-
thermore, after the replacement of the covariant derivatives
by simple ones, the d’Alembert operator in gMNφ �φ adds
the multiplier p 2 into the numerator of Fourier integral. Mul-
tiplying by p−2(p+q)−2, this leads to the single-propagator
Fourier integral, which vanishes in our scheme. Thereby, we
can neglect this term also and replace (5.2) by its effective
expression:

T (ξ)
MN = −2φ,M φ,N + 2φ,Lφ,L gMN − 2φ,MN φ. (5.6)

Performing the Fourier transforms in (5.3), the ξ -separation
in δL(q, i p) reads effectively

δL(0)(q, i p) = −2n−1πn/2(2π)D−n�(n/2)

× δD−n(qσ )
−2p2 + (n − 2)qp

|q|n (5.7)

δL(ξ)(q, i p) = −2n(n − 1) πn/2(2π)D−n�(n/2)

× δD−n(qσ )|q|−(n−2), (5.8)

so the latter actually does not depend upon pM .

6 Within this section the index σ runs over all “flat” indices: σ =
0, n + 1, ... , d − 1.
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5.1 Computation of 〈TMN 〉ren with minimal coupling

Starting from (5.7) and proceeding along the same lines as
for 〈φ 2〉, we obtain

〈0TMN (x)
〉
reg

= β ′
∫

dDq dD p

(2π)2D eiqx
δL(0)(q, i p)[

p 2 − iε
] [

(p + q)2 − iε
]

×
(
pM pN + qM pN − 1

2
ηMN qp

)
. (5.9)

After the integration with help of integrals of Appendix 1,
〈0TMN (x)〉reg reads

〈0TMN (x)
〉
reg = −β ′ �(n/2) �2(D/2) �

(− D−2
2

)

2D+3π(D+n)/2(D+1) �(D)

×
∫

d nq
eiqx

|q|2+n−D

[
−AD q̃Mq̃N +(n−1)

× (D2 − 2D − 2)q2 ηMN + 2 q2 η̃MN

]

(5.10)

with AD ≡ D (D − n) + (n − 2)(D − 2)(D + 1). Hereafter
the “tilded” quantity with indices means that it equals the
corresponding tensor with no tilde for the conical-subspace
index, and it vanishes in the opposite case.

Integrating the remaining Fourier expressions, one arrives
at

〈0TMN (x)
〉
reg = β ′ �(n/2) �3(D/2) �

(− D−2
2

)

23πD/2(D + 1) �(D) �
(− D−n

2

) 1

r D

×
[

AD

D − n

(
D

x̃M x̃N
r2 − η̃MN

)

−(n−1)(D2−2D − 2) ηMN −2 η̃MN

]
.

(5.11)

5.2 Computation of ξ -terms

Starting with the effective Fourier transforms (5.7) and (5.8),
for the 1TMN -contributions we have explicitly:

T (0)
MN

[
δL(ξ)

]
= β ′

∫
d Dq

(2π)D
eiqxδL(ξ)(q)

×
∫

d Dp

(2π)D

1[
p 2 − iε

] [
(p + q)2 − iε

]

×
(
pM pN + qM pN − 1

2
ηMNqp

)
(5.12)

T (ξ)
MN

[
δL(0)

]
= 2β ′

∫
d Dq d Dp

(2π)2D eiqx

× δL(0)(q, i p)[
p 2 − iε

] [
(p + q)2 − iε

] (−qM pN + ηMNqp
)
. (5.13)

Substituting (5.8) into (5.12) and integrating over p and qσ ,
we obtain

T (0)
MN

[
δL(ξ)

]

= −β ′ (n − 1)(D − 2) �(n/2) �2(D/2) �
(− D−2

2

)

2D+1π(D+n)/2�(D)

×
∫

d nq
eiqx

|q|2+n−D

(
q̃M q̃N − |q|2ηMN

)
. (5.14)

Substituting (5.7) into (5.13) and integrating over p and qσ ,
one concludes

T (ξ)
MN

[
δL(0)

]
= T (0)

MN

[
δL(ξ)

]
. (5.15)

Thus combining (5.14) with (5.15) and integrating, for the
regularized 1TMN we arrive at

〈1TMN
〉
reg =β ′ (n−1)(D−2) �(n/2) �3(D/2) �

(− D−2
2

)

πD/2�(D)�
(− D−n

2

)

×
[

1

D − n

(
η̃MN − D

x̃M x̃N
r2

)
+ ηMN

]
1

r D
.

(5.16)

Computation of ξ2-term. The term of interest here is
given by

〈
T (ξ)
MN [δL(ξ)]〉 = 2β ′

∫
d Dq d Dp

(2π)2D eiqx

× δL(ξ)(q, i p)[
p 2 − iε

] [
(p + q)2 − iε

]

× (
qMqN + qM pN + ηMN qp

)
. (5.17)

Integrating and substituting it with (5.8) into (5.6), we obtain

〈
T (ξ)
MN [δL(ξ)]〉reg

= −β ′ (n − 1)(D − 1) �(n/2) �2(D/2) �
(− D−2

2

)

2D−1π(D+n)/2�(D)

×
∫

dnq
eiqx

|q|2+n−D

(
|q|2 ηMN − q̃M q̃N

)
. (5.18)

Comparing it with (5.14) and taking into account (5.15), one
concludes

〈2TMN
〉
reg = −2(D − 1)

D − 2

〈
1TMN

〉
reg

= − 1

2ξD

〈
1TMN

〉
reg

.

(5.19)
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Therefore their ratio does not depend on the conical subdi-
mensionality n.

Integrating the last Fourier integral, we arrive at

〈2TMN
〉
reg

= −β ′ 2(n − 1)(D − 1)�(n/2) �3(D/2) �
(− D−2

2

)

πD/2�(D) �
(− D−n

2

)

×
[

1

D − n

(
η̃MN − D

x̃M x̃N
r2

)
+ ηMN

]
1

r D
,

therefore the combined regularized contribution of the ξ -
terms equals

〈
TMN − 0TMN

〉
reg

= β ′ (D − 2) �(n/2) �3(D/2) �
(− D−2

2

)

(n − 1)−1πD/2�(D) �
(− D−n

2

)
r D

×
[

1

D − n

(
η̃MN − D

x̃M x̃N
r2

)
+ ηMN

]
ξ

×
(

1 − ξ

2ξD

)
. (5.20)

5.3 Summary

Combining (5.11) and (5.20), we obtain for the regularized
value of energy-momentum VEV

〈TMN 〉reg

= Cμ2εβ ′

r D

[(
8(D − 1)(n − 1)

D − n
(ξ − ξD)2 + 1

D2 − 1

)

×
(
D

x̃M x̃N
r2 − η̃MN − (D − n)ηMN

)

+ ηMN − η̃MN

D + 1

]
(5.21)

with

C = �(n/2) �3(D/2) �
(− D−2

2

)

4πD/2 �(D) �
(− D−n

2

) .

We see that the classification by parity is based on the
factor �

(− D−2
2

)/
�
(− D−n

2

)
. Given that d −n � 1, the first

pole of the �-function in the denominator occurs atd = n+2;
we return exactly to the same dimensionality splitting as for
〈φ 2〉reg.

Hereafter it is more useful to consider the non-vanishing
components of TMN separately:

1. The regularized vacuum energy density 〈T00(x)〉reg (as
well as the flat-sector spatial diagonal components
〈Tαα(x)〉):

〈T00(x)〉reg = μ2εC(n − 1)β ′

r D

×
[

8(D − 1)(ξ − ξD)2 − 1

D2 − 1

]

= −〈Tαα(x)〉reg ; (5.22)

2. The conical-subspace components 〈Tik(x)〉reg:

〈Tik(x)〉reg

= Cμ2εβ ′

r D+2

[(
8(D − 1)(n − 1)

D − n
(ξ − ξD)2

+ 1

D2 − 1

)(
D xi xk − (D − n + 1) r2δik

)]
.

(5.23)

With respect to the parity of D and n one distinguishes the
following cases:

• d even, n odd The regularization removal in (5.22) is
obtained in analogy with 〈φ 2〉reg: the pole of the Gamma-

function �
(− D−2

2

)
in the numerator gives rise to the

corresponding divergent part (as ε → 0)

〈TMN (x)〉div = (−1)d/2+1�(n/2) �2(d/2)

4πd/2�(d ) �
(− d−n

2

) β ′

rd
1

ε
�MN

�MN ≡
(

8(d−1)(n−1)

d−n
(ξ−ξd)

2+ 1

d 2 − 1

)

×
(
d
x̃M x̃N
r2 − η̃MN − (d − n)ηMN

)

+ 1

d + 1

(
ηMN − η̃MN

)
, (5.24)

and to finite logarithmic and non-logarithmic terms.

In order to reveal the finite part, we have to make the follow-
ing observation: as we have seen in Sect. 4, the divergent part
corresponding to the pole of a Gamma-function is accompa-
nied by the logarithmic term in the finite part, and there is
some arbitrariness in the non-logarithmic term, related with
the finite renormalization of logarithmic scale factor. Here
we renormalize the tensor quantity, but the Gamma-function
�
(− D−2

2

)
, which produces a pole, sits in the common factor

C in (5.21), while the tensor part is regular. Also taking into
account that the finite logarithmic shift due to expansion ofC
is also common for the whole tensor, we expand C in ε inde-
pendently of the tensor structure, thus we have the unified
logarithmic scale factor μ̃ for all components of TMN , while
the tensor part in (5.21) has to be expanded additionally.
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Thus for the renormalized tensor we write generically

〈TMN (x)〉ren = (−1)d/2−1�(n/2) �2(d/2)

4πd/2 �(d ) �
(− d−n

2

) β ′

rd

×
[

2�MN ln μ̃r + AMN

]
. (5.25)

It also allows for the logarithmic-scale finite shift, but within
the scalar transformation. In other words, for the scale change
μ → μ′ there is an uniparametrical arbitrariness of AMN in
generic form

A′
MN = AMN + 2�MN ln

μ

μ′ . (5.26)

Expanding

8(n − 1)(ξ − ξD)2

(D − 1)−1(D − n)
+ 1

D2 − 1

=
[

8(n − 1)(ξ − ξd)
2

(d − 1)−1(d − n)
+ 1

d 2 − 1

]

+
[(

4(n − 1)(ξ − ξn)

d − n

)2

− 1

(d + 1)2

]
ε

+ O (ε2)

and fixing the logarithmic scale as before (as μ̃, implying the
absorption of all D -dependent coefficients in C) one obtains

AMN =
(
(4ξ − 1)2 − 1

(d + 1)2

)
(n − 1) ηMN

−
[(

4(n − 1)(ξ − ξn)

d − n

)2

+ 1

(d + 1)2

]
η̃MN

+
[
n

(
4(n − 1)(ξ − ξn)

d − n

)2

− (n − 1)(4ξ − 1)2

+ 1

(d + 1)2

]
x̃M x̃N
r2 . (5.27)

For the renormalized vacuum energy density we obtain

〈T00(x)〉ren = β ′ (−1)d/2(n − 1) �(n/2) �2(d/2)

4πd/2 �(d ) �
(− d−n

2

)

×
[(

2

d 2 − 1
− 16(d − 1)(ξ − ξd)

2
)

× ln μ̃r + (4ξ − 1)2 − 1

(d + 1)2

]
1

rd
.

It is not hard to conclude that for the values of a curvature
coupling

ξ = ξd ± 1

d − 1

√
1

8(d + 1)

the renormalized density 〈T00(x)〉ren does not contain a log-
arithmic term and thereby does not depend upon the arbitrary
constant μ̃, while the divergent part vanishes: 〈T00(x)〉div =
0.

The renormalized 〈Tik(x)〉 reads

〈Tik(x)〉ren

= β ′ (−1)d/2−1�(n/2) �2(d/2)

2πd/2 �(d ) �
(− d−n

2

)

×
[(

8(d − 1)(n − 1)

d − n
(ξ − ξd)

2 + 1

d 2 − 1

)

×
(
d xi xk − (d − n + 1) r2δik

)
ln μ̃r + r2

2
Aik

]
1

rd+2 .

(5.28)

In the case of spacetime (4,3) Eq. (5.25) reduces to

〈TMN 〉ren = β ′

8π2r4

[[(
8
(
ξ − 1

6

)2 + 1

90

)(
4
x̃M x̃N
r2

− η̃MN − ηMN

)
+ ηMN − η̃MN

30

]

× ln μ̃r + 1

12
AMN

]
. (5.29)

Furthermore, due to the (theoretical) arbitrariness of the
constant μ̃, the non-logarithmic ξ2-terms may be absorbed
by the logarithm, introducing the new constant μ̃′:

〈T00(x)〉ren = β ′ (−1)d/2(n − 1) �(n/2) �2(d/2)

2πd/2 �(d ) �
(− d−n

2

)

×
[(

1

d 2 − 1
− 8(d − 1)(ξ − ξd)

2
)

ln μ̃′r

− 4ξ

d − 1
+ d 3 − 1

(d 2 − 1)2

]
1

rd
.

In accord with (5.26), this finite shift μ̃ → μ̃′ = e−1/(d+1)μ̃

generates the corresponding shift Aik → A′
ik of the conical-

sector spatial components.
For the higher-dimensional hyper-monopole (n = d − 1)

Eq. (5.25) reduces to

〈T00(x)〉ren = (−1)d/2−1β ′ (d − 2) �(d/2)

2dπd/2 (d − 1)

1

rd

×
[(

1

d 2 − 1
− 8(d − 1)(ξ − ξd)

2
)

ln μ̃′r

− 4ξ

d − 1
+ d 3 − 1

(d 2 − 1)2

]
,

〈Tik(x)〉ren = β ′ (−1)d/2�(d/2)

(4π)d/2(d − 1)
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×
[(

8(d − 1)(d − 2) (ξ − ξd)
2 + 1

d 2 − 1

)

×
(
d xi xk − 2r2δik

)
ln μ̃′r + r2

2
A′
ik

]
1

rd+2 .

Therefore, in the most important particular case of the space-
time (4, 3) - type it is given by

〈T00(x)〉ren

= β ′

4π2

[(
4
(
ξ − 1

6

)2− 1

90

)
ln μ′r+ 2

9

(
ξ− 21

100

)] 1

r4 ,

〈Tik(x)〉ren = β ′

4π2

[(
8
(
ξ − 1

6

)2 + 1

90

)

×
(

2 xi xk − r2δik

)
ln μ̃′r + r2

24
A′
ik

]
1

r6 . (5.30)

Now we can compare our result (5.29) with the part of the
corresponding expression, linear in β ′, in [4], applied to the
spacetime at hand.

The logarithmic expression in [4] within our accuracy7

generically is given by

〈TMN (x)〉log

= 1

160π2

[(
1

3
− 10

3
ξ+10ξ2

)
R ;MN − 1

6
�RMN

+
(

−1

4
+ 10

3
ξ − 10ξ2

)
gMN �R

]
ln μr, (5.31)

while the non-logarithmic term is arbitrary. Substituting the
Ricci tensor and Ricci-scalar (2.6), and making use of

R ;MN = 4(1 − β2)

r4

(
4
x̃M x̃N
r2 − η̃MN

)
,

�RMN = 4(1 − β2)
x̃M x̃N
r6 ,

one concludes that Eq. (5.29) has a discrepancy with (5.31)
by a factor of 2, for all monomials ηMN , η̃MN and x̃M x̃N ,
respectively. Meanwhile, the corresponding expression for
〈φ 2〉 perfectly matches. Such a discrepancy implies neces-
sity of the re-derivation of the generic expression in Ref. [47]
(actually referred to by [4]). Following their ideology, based
on the de Witt–Schwinger kernel, we could fix some inac-
curacy of these works.8 Thus we think that if we take into
account the fixing coefficient, our result (5.29) coincides with

7 It implies that we have neglected O (R2) - terms.
8 Actually, the pre-logarithmic expression (5.31), multiplied by 2, coin-
cides with the pre-logarithmic coefficient in the logarithmically diver-
gent part of the corresponding expression by Christensen [48] for the
renormalized VEV, but for massive scalar-field energy-momentum ten-
sor.

the generic one (applied to the conical spacetime) in the log-
arithmic term, whereas it contains information as regards the
non-logarithmic term.

In six dimensions 〈T00〉ren disagrees with the leading terms
of the perturbative expressions [6,7].

Conservation law and trace anomaly. The trace of the
renormalized energy-momentum tensor (5.25) is determined
by the traces of �MN and AMN , respectively. As it follows
from (5.24), the trace of �MN vanishes for the conformal
field:

Sp�
∣∣
ξ=ξd

= 0,

hence the total trace is entirely determined by the one of AMN

solely; computing it, one obtains

〈
T M
M

〉
ren

= (−1)d/2−1�(n/2) �2(d/2)

4πd/2 �(d ) �
(− d−n

2

) β ′

rd
Sp A

∣∣
ξ=ξd

= (−1)(n+1)/2(n − 1) �(n/2) �2(d/2) �
( d−n+2

2

)

2πd/2+1 (d 2 − 1) �(d )

β ′

rd
.

(5.32)

For the known particular non-perturbative case (4,3), the
trace anomaly (5.32) equals (with our accuracy) its correct
value [46]:

〈
T M
M

〉
ren = 1

2880π2

[
�R−RMN RMN +RMNK L R

MNK L
]

= 1

360

β ′

r4 + O (β ′2).

Such a coincidence also occurs in six dimensions [53] for the
spacetimes (6,5) and (6,3).

In order to prove the conservation law, after some straight-
forward algebra9 one can directly check the following two
properties:

∂N

(
�MN

rd

)
= 0,

2�MN x̃N
rd+2 + ∂N

(
AMN

rd

)
= 0, (5.33)

where we recall that first order implies the “common” deriva-
tives. Thus the renormalized energy-momentum tensor is
conserved.

• d and n odd Now �
(− D−2

2

)
in the numerator is regular,

while �
(− D−n

2

)
in the denominator is infinite, hence the

9 A useful identity here is

2
(

8 (d−1)(n−1) (ξ−ξd )2

(d−n)
+ 1

d 2−1

)
−

(
4 (n−1)(ξ−ξn)√

d−n

)2

= (n − 1)(4ξ − 1)2 − 1
d+1 .
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total renormalized 〈TMN (x)〉 vanishes:

〈TMN (x)〉ren = 0, (5.34)

in accord with the corresponding value of 〈φ 2〉. 10

• d odd, n even Here both �
(− D−2

2

)
in the numerator

and �
(− D−n

2

)
in the denominator are regular, with semi-

integer arguments, so 〈TMN (x)〉div = 0 and we have
simply

〈TMN (x)〉ren

= �(n/2) �3(d/2) �
(− d−2

2

)

4πd/2(d 2 − 1) �(d ) �
(− d−n

2

) β ′

rd
�MN .

Transforming it with the help of (4.10), one obtains

〈TMN (x)〉ren

= (−1)n/2−1 �(n/2) �2(d/2) �
( d−n+2

2

)

4πd/2 �(d )

β ′

rd
�MN .

(5.35)

In particular, for the d -dimensional monopole (n = d −
1) the renormalized energy-momentum tensor reads

〈TMN 〉ren = π1−d/2 �(d/2)

(−4)(d+1)/2

β ′

rd

[(
8(d − 2) (ξ − ξd)

2

+ d + 1

(d 2 − 1)2

)(
d
x̃M x̃N
r2 − η̃MN − ηMN

)

+ ηMN − η̃MN

d 2 − 1

]
.

• d and n even Here both �
(− D−2

2

)
in the numerator and

�
(− D−n

2

)
in the denominator are singular, so their ratio

is determined by the ratio of the corresponding residuals
(4.8).
Thus 〈TMN (x)〉div = 0, and

〈TMN (x)〉ren

= (−1)n/2−1 �(n/2) �2(d/2) �
( d−n+2

2

)

4πd/2 �(d )

β ′

rd
�MN .

(5.36)

Again, Eqs. (5.35) and (5.36) are identical and represent the
unified expression for even n, like for 〈φ 2〉.

For the cases with no divergent part, the energy-momentum
tensor is just proportional to �MN , hence the conservation
law follows immediately: ∂N

(
r−d �MN

) = 0, while the
trace anomaly to the first order disappears:
〈
T M
M

〉
ren

∝ �M
M

∣∣
ξ=ξd

= 0,

10 See the footnote 5 on page 10.

which for odd d agrees with the non-perturbative result in
literature.

Summarizing, in this section we have computed the renor-
malized vacuum averaged 〈TMN 〉ren of the massless scalar
field in the background of (global) monopole up to the first
order in β ′. Computing along the same ideology as in pre-
vious section, we obtain the same splitting with respect
to the parity of the dimensionalities of the total spacetime
and its deficit-angle submanifold. Here the most actual case
with even d and odd n (in particular, for the (4,3)-type of
a spacetime) requires higher accuracy when working with
logarithms, due to the tensorial structure of 〈TMN 〉reg. The
logarithmic mass-scale change generates the uniparametric
equivalence class of the non-logarithmic symmetric tensors
AMN ,11 representing the linear shell of monomials ηMN ,
η̃MN and x̃M x̃N . For definite value of ξ , the logarithmic term
and corresponding logarithmic uncertainty can be removed
from 〈T00〉ren. However, contrary to the case of T00, no value
of the coupling ξ kills the logarithmic term arising in 〈Tik〉ren,
since both terms in the parentheses of (5.23) are positive.
Finally, no value of ξ eliminates the logarithmic arbitrari-
ness both in 〈φ 2〉ren and in 〈TMN 〉ren simultaneously. The
computed energy-momentum tensor is conserved and pro-
vides the proper trace anomaly.

The other cases of d and n are similar to those of 〈φ 2〉ren.
In the next section we show that the Green function

obtained above enables one to consider the well-known
purely classical problem of a gravity-induced self-action on
a charge placed at a fixed point of the space under consider-
ation.

6 Static self-energy and self-force of a point-like charge

As concluded in (2.18) and (2.23), the self-energy of a scalar
(q) or electric (e) point charge in an ultrastaticd -dimensional
spacetime is determined by the coincidence limit of the
Euclidean Green function on the spacetime with the dimen-
sionality (d − 1):

Usc(x) = q2

2
GE

ren(x, x | d − 1, n),

Uel(x) = e2

2
GE

ren(x, x | d − 1, n)

∣∣∣
ξ=0

. (6.1)

Taking into account that for the self-energy the first non-
vanishing order is O (β ′), one obtains to the lowest order
simply

Fren = −gradUren.

11 Contrary to the result of [4] where this matrix is symmetric but
arbitrary.
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Moreover, a simple relation between scalar and electrostatic
self-energy (2.23) enables one to restrict the consideration
by the scalar one.

According to (4.6), the regularized scalar gravity-induced
self-energy is given by

Ureg = q2μ2εβ ′ n − 1

8π(D−1)/2

�(n/2) �3
( D−1

2

)

�(D − 1)

×
(

ξ

ξD−1
− 1

)
�
(− D−3

2

)

�
( 3−(D−n)

2

) 1

r D−3 . (6.2)

Now the classification is determined basically by the factor

�
(
−D − 3

2

)/
�
(3 − D + n

2

)
. (6.3)

With respect to the parity of d and n one distinguishes the
following cases:

• d even, n oddThe Gamma-function �
(− D−3

2

)
is regular,

while �
( 3−D+n

2

)
tends to its pole (unless D − n = 1).

Therefore the renormalized self-energy and the self-force
vanish generically in this case:

Uren = 0, Fren = 0.

For the exceptional case d−n = 1 both Gamma-functions
are regular, hence

Uren = −q2β ′ (−1)d/2 d − 2

8π(d−3)/2

�3
( d−1

2

)

� (d − 1)

×
( ξ

ξd−1
− 1

) 1

rd−3 . (6.4)

The corresponding self-force is given by

Fren = −q2β ′ (−1)d/2 (d − 2)(d − 3)

8π(d−3)/2

�3
( d−1

2

)

� (d − 1)

×
( ξ

ξd−1
− 1

) r
rd−1 . (6.5)

Thus, at ξ = ξd−1 = (d − 3)/4(d − 2) the renormalized
self-energy and self-force vanish.

In the particular case of the (4, 3)-spacetime one obtains

Uren =−q2β ′ π (8ξ−1)

26r
, Fren =−q2β ′ π (8ξ − 1)

26

r
r3 .

(6.6)

Thus, the point-like charge feels the monopole as a point
charge with the magnitude 2−4β ′(8ξ − 1) π2q localized at
the point r = 0. For values ξ > ξ3 = 1/8 the self-force is

attractive (in particular, for the conformal coupling, ξ = ξ4 =
1/6), while for values ξ < 1/8 the self-force is repulsive.

In the case of electrostatic self-action (according to Eq.
(2.23) one has to put ξ = 0 in (6.6) and replace q2 by e2) our
result (6.6) coincides with the one of Ref. [50].

• d and n odd In this case the Gamma-function �
(− D−3

2

)
is singular, while �

( 3−D+n
2

)
is regular. This leads to the

non-zero diverging part, and the finite renormalized value
of the self-energy takes the form

Uren = (−1)(n+3)/2q2β ′ n − 1

8π(d+1)/2

× �(n/2) �2
( d−1

2

)
�
( d−n−1

2

)

�(d − 1)

×
[( ξ

ξd−1
− 1

)
ln μ̃r + 1

(d − 2)(d − 3)

]
1

rd−3

(6.7)

with arbitrary μ̃.12

The corresponding self-force reads

Fren = (−1)(n+3)/2q2β ′ n − 1

8π(d+1)/2

�(n/2) �2
( d−1

2

)
�
( d−n−1

2

)

�(d − 1)

×
[( ξ

ξd−1
− 1

)(
(d − 3) ln μ̃r − 1

) + 1

(d − 2)

]
r

rd−1 .

(6.8)

For ξ = ξd−1 the result becomes free of uncertainty.

• d odd, n even Here the Gamma-function �
(− D−3

2

)
is

singular, while �
( 3−D+n

2

)
is also singular, unless d =

n+1. Hence, in the generic case the divergent part of the
self-energy vanishes, and Uren is determined by the ratio
of corresponding residuals:

Uren = (−1)n/2q2β ′ n − 1

8π(d−1)/2

�(n/2) �2
( d−1

2

)
�
( d−n−1

2

)

�(d − 1)

×
( ξ

ξd−1
− 1

) 1

rd−3 . (6.9)

The corresponding self-force equals

Fren =(−1)n/2q2β ′ (n−1)(d−3)

8π(d−1)/2

�(n/2) �2
(
d−1

2

)
�
( d−n−1

2

)

�(d − 1)

×
( ξ

ξd−1
− 1

) r

rd−1
. (6.10)

12 We remind the reader that throughout the main text we consider the
case of a global monopole where n � 3 and thereby d � 4. The low-
dimensional-gravity case (3,2) will be considered in the next section.
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In the exceptional case of the higher-dimensional monopole
(d = n + 1) the denominator �

( 3−D+n
2

)
is regular, hence

we return to the logarithmic case: along the same lines as
previously we obtain

Uren = q2β ′ (−1)(d+1)/2

8π(d−1)/2

�2
( d−1

2

)

�(d − 1)

×
[
(d − 2)

( ξ

ξd−1
− 1

)
ln μ̃r + 1

d − 3

]
1

rd−3 ,

(6.11)

Fren = q2β ′ (−1)(d+1)/2

8π(d−1)/2

�2
( d−1

2

)

�(d − 1)

×
[
(d−2)

( ξ

ξd−1
−1

)(
(d−3) ln μ̃r−1

)+1

]
r

rd−1 .

(6.12)

• d and n even Here both Gamma-functions in (6.3) are
regular, hence the divergent part vanishes and after trans-
formations with the help of (4.10) we have just

Uren =(−1)n/2q2β ′ n−1

8π(d−1)/2

�(n/2) �2
( d−1

2

)
�
( d−n−1

2

)

�(d−1)

×
( ξ

ξd−1
− 1

) 1

rd−3 ,

Fren = (−1)n/2q2β ′ (n − 1)(d − 3)

8π(d−1)/2

× �(n/2) �2
( d−1

2

)
�
( d−n−1

2

)

�(d − 1)

×
( ξ

ξd−1
− 1

) r
rd−1 . (6.13)

To summarize based on the formal relation of the Feyn-
man propagator with the Euclidean Green function in the
coincidence-point limit, we have expressed the regularized
self-action via the regularized Green function of the previ-
ous dimensionality. As before, the consideration splits into
four characteristic cases of the parities d and n, though here
one meets the significant exceptions of the monopole back-
ground with no flat spatial dimensions (n = d − 1). In most
cases the self-action looks like the flat-space Coulomb inter-
action of a charge q with a charge ∝ (ξ − ξd−1) q placed
into the monopole position, and vanishes for the particular
value ξ = ξd−1 of the curvature coupling. In the case of odd
d while n is odd or equal to d−1, there is an additional loga-
rithmic multiplier, which depends on the arbitrary parameter
μ̃.

Finally, comparing (6.13) with (6.9) and (6.10), we notice
that for even n the cases with even and odd d can be combined
into the unified formula (except for the hyper-monopole
case), in accord with the previous computations of the renor-
malized 〈φ 2〉 and 〈TMN 〉.

7 Vacuum polarization near cosmic string revisited

Now consider the particular case of a two-dimensional (n =
2) conical subspace. If d = 3(4) this space is the spacetime
of a point mass (infinitely thin straight cosmic string).

This problem has been considered in a series of papers.
The primary goal of our consideration is to show that there is
some ambiguity in the computations [10–13,27] in the case
of a non-minimally coupled massless scalar field.

Indeed, in the cited calculations the starting point is Eq.
(5.1) with operator DMN , whose form is determined by the
classical expression for the energy-momentum tensor and
thus includes the ξ -dependent terms. However, as the Green
function of the spacetime at hand the Green function for a
minimally coupled scalar field was used. Thus, it was sup-
posed that one can extract a δ2-like potential from the wave
equation, arguing it by the fact that the space is flat every-
where outside the point mass/cosmic string. This Green func-
tion does not depend on ξ and in the limit β → 1 tends to
the flat Green function GF

0 (x − x ′), which is the solution of
the equation

ηMN ∂M∂N GF
0 (x − x ′) = −δd(x − x ′). (7.1)

On the other hand, we can start from the explicit equation

√−g
[
� − ξ R

]
GF

ξ (x, x ′) = −δd(x − x ′). (7.2)

In the coordinates we use, the potential reads

γ (r) = √−g ξ R = 4πβ ′ξ δ2(r), r = (x1, x2). (7.3)

In Eq. (7.2) there are two independent parameters, namely β ′
and ξ . Suppose that there exists a limit of the Green function
GF

ξ , when

β ′ → 0, ξ → ∞, λ ≡ 4π ξ β ′ = const.

Let us denote it as GF
λ . In this limit Eq. (7.2) takes the form

[
ηMN ∂M∂N − λ δ2(x)

]
GF

λ (x, x ′) = −δd(x − x ′). (7.4)

Thus the Aharonov–Bohm-like potential survives even in the
case where the space is almost Euclidean. It is obvious that,
if the limit does exist, GF

λ cannot be equal to the flat-space
Green function GF

0 .
The corresponding equation for the scalar field φ can be

reduced to a stationary two-dimensional Schrödinger-like
equation with a planar δ2-function potential. Equations of
this kind have been widely discussed in the literature. It was
shown that these interactions require regularization and infi-
nite renormalization of the coupling constant and lead to non-
trivial physical results. Alternatively, one can follow a more
satisfactory approach based on a self-adjoint extension of
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a noninteracting Hamiltonian, defined on a space with one
extracted point (see [51,52] and the references therein).

We think that the example above demonstrates the neces-
sity to revise the vacuum polarization effects on manifolds
with δ2-like singularities. This problem demands considera-
tion in more detail. Here we restrict ourselves by the consid-
eration of this problem in the framework of the perturbation
approach.

Thus, we start from Eq. (3.10) with the potential γ defined
by Eq. (7.3). The Fourier transform of this potential has the
form

F[γ (r)] = 4πβ ′(2π)d−2 δ(q0)

d−1∏
N=3

δ(qN ). (7.5)

Substituting (7.5) into Eq. (3.10), we obtain, with our accu-
racy,

GF (x, x ′ | d, 2)

= GF
0 (x − x ′) + β ′

π

∫
d 2q

eiqx

q2

×
∫

d d p

(2π)d
ei p(x−x ′) p2 − ξ q2

[
p 2 − iε

] [
(p + q)2 − iε

] .

(7.6)

Starting from (7.6) and proceeding along the same line as
in the previous sections, we obtain

〈φ2(x)〉ren = −i GF
ren(x, x | d, 2)

= − β ′

2πd/2

(
ξ

ξd
− 1

)
�3(d/2)

(d − 2)�(d )

1

rd−2 (7.7)

for the renormalized vacuum expectation value of the field
square and

〈T00〉ren =β ′ �3(d/2)

4πd/2 �(d)

(
8(d−1)(ξ−ξd)

2− 1

d 2−1

)
1

rd
,

〈T11〉ren = β ′ �3(d/2)

4πd/2 �(d )

[
2(ξ − ξd)

2

ξd
+ 1

d 2 − 1

]

×
(
x2

1 − (d − 1) x2
2

) 1

r d+2 ,

〈T22〉ren = 〈T11〉ren

∣∣
x1↔x2

,

〈T12〉ren = 〈T21〉ren = β ′ d�3(d/2)

4πd/2 �(d )

×
[

2(ξ − ξd)
2

ξd
+ 1

d 2 − 1

]
x1x2

r d+2 ,

〈Tαβ〉ren = −δαβ 〈T00〉ren, α, β, ... = 3, ... , d − 1 ,

(7.8)

for the non-zero components of 〈TMN 〉ren.

The corresponding classical gravity-induced scalar self-
energy and self-force are given by

Uren = −q2β ′ �2
( d−1

2

)
�
( d−3

2

)

8π(d−1)/2�(d − 1)

( ξ

ξd−1
− 1

) 1

rd−3 ,

Fren = − q2β ′

4π(d−1)/2

�3
( d−1

2

)

�(d − 1)

( ξ

ξd−1
− 1

) r
rd−1 , (7.9)

unless d = 3. Thus in any dimension the self-force is attrac-
tive for ξ > ξd−1, repulsive vice versa, and equal to zero if
ξ = ξd−1. For all quantities discussed above, the infinite part
of the regularized expression vanishes.

Self-action in (3,2)-spacetime. This particular case dif-
fers from the one considered above due to (6.2) diverges
when D → 3. Thus, we have to proceed the dimensional-
regularization prescription and isolate the corresponding sin-
gular terms. The result is

Uren = −q2β ′

4π

[
ln μ̃r + 2ξ ln2 μ̃r

]
+ const,

Fren = q2β ′

4π

[
1 + 4ξ ln μ̃r

] r
r2 . (7.10)

The single-logarithmic term inUren comes from a simple pole
in the no-ξ - term and is similar to the (d, d − 1) -type con-
sidered in (6.11). Contrary to (6.11), the squared-logarithmic
term is obtained as a regularization of a second-order pole
in ξ - term.13 For the minimal coupling (7.10) agrees with
[13,23,26,27].

To conclude, our results coincide with the ones of Refs.
[10–14,23,25–27] in the case of a minimally coupled scalar
field in the three-/four-dimensional spacetime, but they differ
from those if ξ 
= 0. As mentioned above, this distinction is
a consequence of the fact that the Green function satisfies
Eq. (7.2). With respect to Eq. (7.1), the latter contains an
additional two-dimensional δ2(x) -potential which was not
taken into account in the cited references.

However, our result for 〈TMN 〉ren in four dimensions14

coincides with [11,12] also for the particular value ξ = ξ4 =
1/6. This “occasional” coincidence follows from the fact that
the sum

〈
T (0)
MN

[
δL(ξ)

] + T (ξ)
MN

[
δL(ξ)

]〉
reg, representing the

discrepancy, is proportional to ξ (ξ − ξD). If the divergent
part vanishes, which is the case for the cosmic string, then
the latter equals ξ (ξ−ξd) and thus vanishes for the conformal
coupling also. Thus we expect that the coincidence for the
conformal coupling occurs in the first computational order

13 Alternatively, it can be seen in the original ξ -coefficient (7.6) without
regularization since after the Wick rotation it becomes the product of
identical inverse Fourier integrals F−1[q−2] (3.12) well defined in the
sense of distributions.
14 The same concerns the three-dimensional gravity-induced result [13]
for ξ = ξ3.
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(in angular-deficit series), while the difference is going to be
visible in the next orders.

Notice that our results (7.7), (7.8), and (7.9) coincide with
the n → 2 limit of the results obtained in Sects. 4 and 5. First
of all, as we mentioned, the monopole’s results for even n
are combined (for odd and even d). Furthermore, we see that
Eqs. (4.15), (4.18), (5.35), (5.36), (6.13), (6.10), and (6.13)
are regular at n = 2, though the initial expression for the
Ricci scalar was singular in this limit (3.6), representing the
only difference. Next, we observe that this difference dis-
appears after the first Fourier transform. Indeed, the Fourier
transform of the string’s Ricci scalar perfectly coincides with
the (regular) n → 2 limit of the corresponding Fourier trans-
form of the monopole’s Ricci scalar, readily computed with
help of (3.12). Since the rest of the computation is the same
for a cosmic string and a global monopole, it is no wonder
that we have obtained coincidence in the final formulas.

8 Conclusion

On curved backgrounds, being multidimensional general-
izations of the well-known four-dimensional cosmic string/
global monopole, we have considered two at first glance dis-
connected problems – namely, the gravity-induced vacuum
polarization of a massless scalar field and the classical self-
action of a static scalar or electric charge. However, the tech-
nique to solve the problems under consideration turned out
to be similar, since it refers to getting a compact workable
expression for the Green function and its derivatives in the
coincidence-point limit for all d � 3 and 2 � n � d − 1,
representing our primary particular goal. For this purpose we
use the methods of perturbation theory. Taking into account
the actual smallness of the angle deficit, we have performed
computations in first order with respect to the angular-deficit
value. Since, in principle, both the vacuum expectation val-
ues and the classical self-energy are divergent, for regular-
ization and renormalization of these quantities we adapted
the dimensional-regularization method.

The zeroth computational order is determined by the
Minkowskian Green function and completely consists of the
tadpole-like contributions (4.2). In quantum field theory, the
appearance of divergences produced by tadpoles is explained
by the fact that the perturbation theory is constructed with
respect to a nonphysical vacuum, while their elimination is
explained by the necessity of redefining the vacuum state. In
the framework of the self-action, it is of interest to under-
stand why similar divergences appear in the classical the-
ory too. Following the prescriptions of quantum field theory,
we assumed all expressions of the form (4.2) to be equal to
zero. The motivation for this recipe is not associated in any
way with quantum theory. Actually, it relies on the absence
of dimensional parameters in the corresponding expression

and, as a consequence, on the impossibility to assign some
reasonable finite value, except zero, to such integrals under
regularization. Therefore, this rule is also equally applicable
within the classical field theory.

The desired effects are computed in the first order in
β ′. Already starting from the Green function, for all of
our computational tasks we meet the characteristic ratio of
two Gamma-functions, which splits the consideration of all
(d, n)-types onto four characteristic cases, depending on par-
ities of d and n. The poles of Gamma-function may arise in
the numerator, in the denominator, or in both. However, in
the very end of computation one can combine all formulas
with even n (for arbitrary d) into the unified case.

With the help of the regularized Green function we have
computed the renormalized vacuum averaged 〈φ 2〉ren and
〈TMN 〉ren for a massless scalar field coupled with the gener-
alized conical background (2.5) via an arbitrary coupling ξ .
The expressions for vacuum averaged 〈φ 2〉ren, correspond-
ing to all characteristic cases (with our accuracy), vanish at
ξ = ξd . In the case with even d and odd n (in particular,
for the (4,3)-type of a spacetime) the VEVs of 〈φ 2〉ren and
〈TMN 〉ren contain a logarithmic factor. In the pre-logarithmic
coefficient we are in agreement with [5], and we have a
discrepancy by a factor of 2 with [4]. Concerning the non-
logarithmic term in 〈TMN 〉ren, we restrict its arbitrariness by
a single arbitrary parameter, fixing the wider freedom in [4].

For the self-action, in addition to the four basic character-
istic cases of parities d and n, there is a significant excep-
tion of the monopole background (n = d − 1). In most
cases the self-action represents the Coulomb-like field with
“charge”(ξ − ξd−1) and vanishes for the particular value
ξ = ξd−1 of the curvature coupling. Also it should be men-
tioned that (for ξ = 0) the gravity-induced self-energy and
the self-force of the point-like static electric charge e can be
obtained from our expressions by the formal identification
q2 → e2, since the spacetime at hand is ultrastatic, and the
defining expressions for the spatial scalar and the vectorial
Green functions coincide.

We would like to emphasize that within our scheme,
the appearance of the mass-dimension term inside the log-
arithm is related neither with the arbitrary scale factor r0

coming from the Cartesian coordinates (2.5), nor with any
length/mass of the problem at hand since the latter is absent.15

The logarithmic scale factor follows from the regularization
(4.4) and its value, in principle, is arbitrary.

Making use of the same approach, but applying it to the
delta-like interaction in the infinitely thin straight cosmic
string, we have computed the effects under consideration.
The results coincide with the ones in the literature [10–14,27]
only for minimal and conformal coupling, while for other

15 For the real cosmic string one has its real width, but the results for
the cosmic string within our model do not concern logarithms.
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values of ξ they do not coincide already in the first order
(in β ′). We refer this discrepancy to the missing of the ξ -
correction inside the Green function. In the computation of
〈TMN 〉ren to the first order, this difference is reflected in terms
T (0)
MN

[
δL(ξ)

]
and T (ξ)

MN

[
δL(ξ)

]
. If to ignore these two in our

scheme and retain the two remaining ones in (5.5), one would
obtain the old answers.

We have shown that up to the first order in our Fourier
transform language the results for the cosmic string space-
time can be obtained as a smooth limit of the corresponding
results for a global monopole. From this framework, it repre-
sents a problem of independent interest whether this coinci-
dence occurs only in the linear order in β ′, or if we here have
the first non-vanishing part of the non-perturbative limit.

Finally, the usage of perturbation theory restricts the appli-
cability by the requirement of the smallness of the angular
deficit. However, this approach is relatively simple (to the
order under consideration) and allows one to take advantage
of the well-developed QFT methods. The Fourier transform
allows one to consider all dimensional cases in the same lan-
guage, as well as to include into consideration the delta-like
potential for the cosmic string. This improves some drawback
related with the coordinate-space Green functions, used in the
cited literature, which on curved backgrounds differ drasti-
cally not only for the spacetimes of the opposite dimension
parity, but it has no universal form even for the same-parity
spacetimes. As a result, it allowed one to obtain and present
in a closed, universal, and simple form the expressions valid
for arbitrary 2 � n � (d − 1) and d � 3, which, in its turn,
verified the particular cases also, helping to justify (where
we find confirmation) or correct/fix (where we do not) the
corresponding well-known results.
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Appendix A: Basic integrals

Here we give the derivation of basic integrals in the
dimensional-regularization scheme we use. Such a scheme
is rather common in QFT but unusual in the classical the-
ory, so it may be instructive to briefly derive some useful
integrals. The integrals are well defined for Euclidean prop-

agators (with imaginary time), and analytically generalized
for the case of Minkowski metric. Here we rewrite the Fourier
transforms (3.13) in d dimensions:

F[|r|−λ
]
(k) = 2d−λ πd/2 �

( d−λ
2

)

� (λ/2)

1

|k|d−λ
, (A.1)

implying the Euclidean scalar products inside.
The scalar single-propagator integral is defined as

J (1) =
∫

d d p

(2π)d

1

p2 − iε
. (A.2)

Hereafter the right superscript labels the number of prop-
agators. Passing to the spherical coordinates, one obtains
the integral transformation with kernel pn−3 acting on test
function “1”. Treating it as generalized function, in [42] it is
shown that the latter equals zero in distributional sense, as
well as

J (1)
i1 ... ik

≡
∫

d d p

(2π)d

pi1 ... pik
p 2 − iε

= 0. (A.3)

As is well known, this value is advocated as the absence of
the parameter, upon which J (1) could depend explicitly, since
the only variable p in the integrand is integration one.

The scalar two-propagator integral is defined as

J (2) =
∫

d d p

(2π)d

1

[p 2 − iε][(p + q)2 − iε] . (A.4)

After the Wick rotation p0 = i pE , q0 = iqE we have the
analogous Euclidean integral. Thus consider the two follow-
ing integrals with Euclidean scalar product:

J (q) ≡ ∫ d d p
(2π)d

1
p 2 (p+q)2 ,

I ≡ ∫ d d p d dq
(2π)2d

ei x(p+q)

p 2q2 , (A.5)

with J (2) = i J (q), indeed. Being split on the product of
identical integrals, I equals

I = (I0)
2, I0 ≡

∫
d d p

(2π)d

ei px

p 2 .

Making use of the Fourier transform (A.1), I is given by

I = 1

16πd

�2
( d−2

2

)

R2(d−2)
, R ≡

√
x2. (A.6)

Now we change variable q → p + q in I (A.5):

I =
∫

d d p d dq

(2π)2d

ei xq

p 2(p + q)2 = F−1[J (q)](x). (A.7)
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Thus substituting (A.7) into (A.6) and taking the direct
Fourier transform with the help of (A.1), J (2)(q) equals

J (q) = �2
( d−2

2

)

16πd
F
[
r−2(d−2)

]
(q)

= �2
( d−2

2

)
�
(− d−4

2

)

(4π)d/2 �(d − 2)
|q|d−4. (A.8)

Restoring the Minkowskian q0, after the � - function trans-
formations, J (2) is given by

J (2) = −i
2 (d − 1)

(4π)d/2

�2(d/2) �
(− d−2

2

)

�(d )

(
q2

)d/2−2
. (A.9)

In the form (A.9) the arguments of all Gamma-functions do
not intersect zero at n � 3. This result is identical to the ones
given in a series of QFT textbooks and derived via Feynman
parametrization, but remarkably, we have used just the single
basic Fourier integral (A.1).

• The vectorial one reads

J (2)
M =

∫
d d p

(2π)d

pM
[p 2 − iε][(p + q)2 − iε] . (A.10)

Obviously, the result has to be proportional to qM as to
the only available input vector in the problem at hand:
J (2)
M (q) = A1(q)qM . Contracting this equality with qM

and representing p · q = (1/2)
[
(p + q)2 − p 2 − q2

]
,

one uses (A.3) and (A.9) to determine the scalar A1. Thus
the result turns out to be

J (2)
M = −1

2
J (2)qM

= i
d − 1

(4π)d/2

�2(d/2) �
(− d−2

2

)

�(d )

(
q2

)d/2−2
qM .

(A.11)

• The tensorial integral is defined as

J (2)
MN =

∫
d d p

(2π)d

pM pN
[p 2 − iε][(p + q)2 − iε] . (A.12)

Being a symmetric 2-rank tensor, the latter should
be expressible via the flat metric ηMN and qMqN -
monomial: J (2)

MN = A2q2 ηMN + A3qMqN . Taking the
trace and substituting (A.3), one obtains the relation
nA2 + A3 = 0. Projecting (A.12) on qN and realizing the
same strategy as before, one gets the second constraint:

(A2 + A3) qM = 1

2
J (2)
M = 1

4
qM J (2).

Resolving these two, the value of integral (A.12) is given
by

J (2)
MN = − J (2)

4(d − 1)

(
q2ηMN − dqMqN

)
(A.13)

with trace ηMN J (2)
MN = 0.

• Appealing to the same computational arguments, the
three- and four-index integrals

J (2)
MNK ≡

∫
d d p

(2π)d

pM pN pK
[p 2 − iε][(p + q)2 − iε] ,

J (2)
MNK L =

∫
d d p

(2π)d

pM pN pK pL
[p 2 − iε][(p + q)2 − iε] , (A.14)

with the help of symmetry and some combinatorics, are
given by

J (2)
MNK = − J (2)

8(d − 1)

[
(d + 2)qMqNqK

− q2 (qMηNK + qNηMK + qKηMN )
]

(A.15)

and

J (2)
MNK L = J (2)

16(d 2 − 1)

[
− (d + 2) q2

(
qMqNηK L

+ qMqKηNL + qMqLηNK

+ qNqKηML + qNqLηMK + qKqLηMN

)

+ (d + 4)(d + 2)qMqNqKqL +
(
q2

)2

×
(
ηMNηK L + ηMKηNL + ηMLηNK

)]
,

(A.16)

respectively.
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