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Abstract Collider events with multi-stage cascade decays
fill out the kinematically allowed region in phase space with
a density that is enhanced at the boundary. The boundary
encodes all available information as regards the spectrum
and is well populated even with moderate signal statistics
due to this enhancement. In previous work, the improvement
in the precision of mass measurements for cascade decays
with three visible and one invisible particles was demon-
strated when the full boundary information is used instead of
endpoints of one-dimensional projections. We extend these
results to cascade decays with four visible and one invisi-
ble particles. We also comment on how the topology of the
cascade decay can be determined from the differential distri-
bution of events in these scenarios.

1 Introduction

Naturalness of the Higgs sector as well as the weakly interact-
ing massive particle (WIMP) paradigm for dark matter pro-
vide strong motivations for new physics at the TeV scale. The
most commonly studied extensions of the standard model
(SM) that attempt to solve the hierarchy problem do so by
positing the existence of partners to the SM particles that
cancel divergent contributions to the Higgs mass. Many of
these scenarios also provide a dark matter candidate since
they incorporate a parity symmetry under which the partner
particles are odd, making the lightest partner particle stable.
Arguably the best known example for such scenarios is the
minimal supersymmetric extension of the SM, the MSSM.

The collider phenomenology of these scenarios has been
studied extensively in the literature. The most promising
discovery channels include production of colored partners,
which then decay, often in multiple stages, until the lightest
partner is reached. Since the lightest partner is assumed to
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constitute dark matter, it leaves the detector without interact-
ing. Thus no resonances can be constructed from the visible
decay products and discovery as well as mass measurement
prospects often rely on endpoints of one-dimensional distri-
butions of Lorentz-invariant (e.g. edges, endpoints) [1–12]
(for a comprehensive review, see [13]) or boost-invariant (e.g.
mT , mT 2) variables [10,14–38].

The Large Hadron Collider (LHC) has completed its 7
and 8 TeV runs and is currently running with a center of
mass energy of 13 TeV. The LHC experiments currently do
not have significant indications of physics beyond the SM.
Considering that the center of mass energy is already near the
design value, one needs to take seriously the possibility that if
new physics is discovered by the LHC experiments, the signal
statistics will remain low, or moderate at best. Therefore, it
will be of paramount importance to optimize the methods by
which the signal will be studied for low statistics.

Let us consider mass measurement techniques in partic-
ular. For cascade decay chains with sufficiently many inter-
mediate on-shell stages, polynomial methods [39–59] can be
applied to algebraically solve for all unknown masses based
on a small number of events. However, there exist decay
chains which do not have sufficiently many on-shell stages
for these methods to be applicable. For such decay chains, the
one-dimensional variables mentioned above are commonly
accepted as the tool to be used for mass measurements. It
was argued in Ref. [60], however, that when there are more
than two visible particles in the final state, the kinematically
accessible region in phase space is multidimensional and the
commonly used one-dimensional variables are inefficient at
low statistics. It was demonstrated specifically for final states
with three visible particles and one invisible particle that
the density of events near the boundary of the kinematically
accessible phase space is enhanced, and that a determination
of this boundary in the multidimensional phase space could
yield significantly higher precision and accuracy for mass
measurements at low statistics.
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In this paper we will extend the conclusions of Ref. [60]
to the remaining cascade decay topologies where polynomial
methods are not applicable. If all on-shell decay stages are 2
or 3-body decays with one invisible particle emitted from the
last stage of the cascade, then it is straightforward to show
that any cascade decay with more than five final state par-
ticles can be analyzed using polynomial methods, therefore
we will restrict ourselves to final states with at most five final
state particles. We will show that the enhancement in the
density of events near the boundary is in fact even stronger
for five-body decays compared to four-body decays, and in a
number of representative cases for decay topologies we will
demonstrate the improvement for mass measurements com-
pared to the more traditional methods based on kinematic
edges or endpoints.

Various techniques involving kinematic variables have
also been proposed for the purpose of determining decay
topologies [61–67]. We will provide a preliminary assess-
ment of the sensitivity of the full phase space boundary
method to the topology, and suggest an algorithm by which
the topology underlying a signal sample should be deter-
mined.

Our goal will be to provide a proof of principle that these
improvements can be obtained, and therefore as in Ref. [60]
we will compare our methods to those based on kinematic
endpoints under ideal circumstances, without SM or combi-
natorial backgrounds, spin correlations or realistic detector
effects. While these certainly pose additional challenges in
the construction of a fully realistic analysis, they will deteri-
orate the results of both our methods and any method based
on kinematic endpoints, with no obvious reason why one
should be more negatively affected than the other. Also, as in
[60] we will restrict our study to “one-sided” events, where
the cascade decay takes place on one side of the event, and
the other side is assumed to include only the lightest partner.
This corresponds to scenarios such as gluino-LSP associated
production in the MSSM. The reason for this choice is that
our methods use only Lorentz-invariant observables and are
therefore used on one decay chain at a time, with no obvious
way to combine the two sides of the event using the missing
transverse energy (MET) for example. Therefore, for rea-
sons of simplicity, we demonstrate the applicability of our
methods in the simplest possible case of one-sided events.
The same methods can of course simply be used twice in
a symmetric event, but that comes at the cost of combina-
toric issues such as identifying which side of the event any
final state particle belongs to. We will leave a more realis-
tic study including all these complications to future work.
In fact, in parallel to this work, methods are already being
developed to address some of these complications, and for
one decay topology featured in Ref. [60] it has already been
demonstrated [68–70] that the improvement for mass mea-
surements based on the determination of the full phase space

boundary over one-dimensional variables can be maintained
in the presence of SM and combinatorial backgrounds, by
using Voronoi tessellations.

The layout of the paper is as follows. In Sect. 2 we review
the mathematical description of many-body phase space and
we quantify the enhancement near the boundary for five-body
final states. In Sect. 3 we focus on mass measurements and
we set up an analysis to compare the results of mass measure-
ment based on our methods to those obtained from kinematic
endpoints. In Sect. 4 we comment on the potential use of our
methods for determining the underlying decay topology. We
conclude in Sect. 5. Certain details of our methods are more
fully described in appendices A through C.

2 Mathematical description of many-body phase space

The standard form of the phase space volume element of
n final state particles with 4-momenta pμ

i and total 4-
momentum Pμ

dPSn =
(

n∏
i=1

d4 pi
(2π)3 δ(p2

i − m2
i )

)
(2π)4δ4

(
n∑

i=1

pμ
i − Pμ

)

=
(

n∏
i=1

d3pi
(2π)32Ei

)
(2π)4δ4

(
n∑

i=1

pμ
i − Pμ

)
(1)

is expressed as a function of individual components of 4-
momenta which are not manifestly Lorentz invariant. There
also exists a less well-known formulation which is expressed
purely in terms of Lorentz scalars [71,72]. As argued in [60]
this form contains important clues to optimizing the sensitiv-
ity of mass measurements, therefore we will review it below.

We start by defining Mn as the n×n matrix with elements
pi · p j , and define �i as the coefficients of the characteristic
polynomial of Mn as follows:

Det
[
λ1n×n − Mn

] ≡ λn −
(

n∑
i=1

�iλ
n−i

)
. (2)

The kinematically accessible region of phase space corre-
sponds to �1,2,3 > 0, �4 ≥ 0 and �5,...,n = 0, with �4 = 0
defining the boundary of this region [72]. For the specific
case of n = 4, the volume element is given by

dPS4 = (const.) × M−2
X

⎛
⎝∏

i< j

dm2
i j

⎞
⎠ �

−1/2
4 �(�4)

× δ

⎛
⎝∑

i< j

m2
i j − const.

⎞
⎠ , (3)
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where M2
X = PμPμ and where the δ-function at the end

enforces energy conservation. Note that the volume element
scales as �

−1/2
4 , diverging near the boundary in an integrable

way. This can be understood as follows: �4, which for n = 4
is equal to (− det M4) can be rewritten as − det(V T gV ) =
det2 V , where V is the 4 × 4 matrix whose columns are the
pμ
i and g = diag(1,−1,−1,−1) is the metric. This makes it

clear that the boundary of the kinematically accessible region
corresponds to the final state momenta becoming linearly
dependent. When this happens, the coordinate change from
Cartesian coordinates to the Lorentz-invariant coordinates
m2

i j becomes singular and the Jacobian diverges. Note also
that the presence of intermediate on-shell particles in the
cascade does not change this conclusion, since in the nar-
row width approximation, these contribute δ-functions to the
amplitude squared |M|2, the arguments of which are linear in
them2

i j . Therefore, using these δ-functions to eliminate some

of the integrals over m2
i j never produces nontrivial Jacobian

factors.
Going beyond n = 4, the phase space volume element has

the form [72]

dPSn = (const.) × M−2
X

⎛
⎝∏

i< j

dm2
i j

⎞
⎠ �

(n−5)/2
4 �(�4)

× δ(�5) · · · δ(�n)δ

⎛
⎝∑

i< j

m2
i j − const.

⎞
⎠ . (4)

Naively, this expression seems to imply that the enhance-
ment in the volume element near the boundary is absent for
n > 4. However, a more careful examination reveals that the
arguments of the δ(�n) factors are non-linear in the m2

i j , and
therefore nontrivial Jacobians arise as those δ-functions are
integrated over.

In order to isolate the scaling of the volume element near
the boundary, an alternative expression can be used [72],
which locally takes the form

dPSn = (const.) × M−2
X

⎛
⎝∏

i< j

dm2
i j

⎞
⎠ �

−(n−3)/2
4

×
⎛
⎝∏

α≤β

δ(eαβ)

⎞
⎠ δ

⎛
⎝∑

i< j

m2
i j − const.

⎞
⎠ . (5)

Here the eαβ , where 1 ≤ α ≤ β ≤ n − 4, are a set of
(n − 4)(n − 3)/2 constraints that are linear in all m2

i j to first
order. The form of the eαβ are complicated, which makes this
expression less useful for practical purposes. However, since
no nontrivial Jacobians arise, the correct scaling �

−(n−3)/2
4

is revealed, which results in a stronger and stronger enhance-
ment near the boundary with increasing n. In particular, for

]8GeV15[104
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Fig. 1 The density of Monte Carlo events arising from a 5-body decay
along a direction perpendicular to the boundary of the kinematically
accessible region. The red line visually illustrates a scaling law of �−1

4

n = 5 the volume element scales as �−1
4 . This can be under-

stood in a similar way to our argument above for n = 4: as we
approach the three-dimensional boundary of phase space, a
larger number of 4-vectors must become linearly dependent,
and the coordinate change from Cartesian coordinates to the
m2

i j becomes more singular.
We have also verified the scaling for n = 5 numerically by

generating Monte Carlo data for 5-body decays. Specifically,
after restricting ourselves to the physical hypersurface spec-
ified by the �5 = 0 constraint, we have sampled the density
of Monte Carlo events in a narrow tube perpendicular to the
boundary near randomly chosen points on the boundary. Our
results are shown in Fig. 1 and they confirm the �−1

4 scaling,
demonstrated visually by the red line.

3 Mass determination

In this section we will compare the results of mass mea-
surements obtained by using the multidimensional nature of
the kinematically accessible region in phase space to those
obtained from the traditional kinematic edges and endpoints.
In order to perform this comparison, we introduce quality-of-
fit functions, to be described below, for the two methods, and
we search for the spectrum that results in the best fit, using
Monte Carlo samples of 100 events each for several decay
topologies. By finding the best-fit spectrum over many sam-
ples, and studying the distribution of the best-fit masses, we
can evaluate the precision and accuracy of the two techniques.
We do this by studying representative benchmark spectra in
the decay topologies of interest. Our setup is similar to the
analysis performed in Ref. [60], where final states with three
visible particles and one invisible particle were considered. In
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this paper we extend this to final states with four visible par-
ticles and one invisible particle. We use a shorthand notation
to classify the topologies of interest by using the multiplicity
of final states in each stage of the cascade: for instance “2 + 2
+ 3” denotes a decay topology where the initial state decays
through a 2-body decay, the resulting intermediate particle
decays through another 2-body decay, and the intermediate
particle resulting from the second stage decays through a
3-body decay, where the final state of the last decay stage
includes the lightest partner particle.

We do not consider the 2 + 2 + 2 + 2 topology since it has
sufficiently many on-shell intermediate particles to be ana-
lyzed by polynomial methods. The four on-shell constraints
for the intermediate particles together with the 5-body con-
straint �5 = 0 are sufficient to restrict the likelihood function
to have support on a set of measure zero in the space of mass
spectra. Therefore, the true spectrum can be determined with
a finite number of events. The 2 + 2 + 3, 2 + 3 + 2, and 3
+ 2 + 2 topologies are very similar, and therefore we will
study the 2 + 2 + 3 topology as a representative case. We also
study the 3 + 3 topology which is inequivalent to those. We
do not consider decay topologies involving a direct 4-body
decay. The endpoint formulas in certain topologies have dif-
ferent analytical forms in different regions of the space of
spectra (see Appendix A). Some forms are functions of mass
differences only and cannot contribute to a determination of
the overall mass scale, while others do contain some abso-
lute scale dependence. In order to gauge the performance of
the endpoint method in a more representative way, we pick
two benchmark mass spectra for the 2 + 2 + 3 topology. The
benchmark mass spectra are listed in Table 1. In particular,
benchmark spectrum 2 is expected to be less sensitive to
the overall mass scale, as both the m2

1234 and the m2
234 end-

points depend only on mass differences (see the last lines of
Eqs. 24 and 25), while the endpoint formulas for benchmark
spectrum 1 do have some dependence on the overall mass
scale (line 2 of Eqs. 24 and the first line of Eq. 25).

The Monte Carlo events are generated using the phase
space routines in ROOT [73]. We also use the optimization
routines in ROOT to find the best-fit spectrum. We assume
that the underlying decay topology is known; we will com-
ment on the question of determining the decay topology in
the next section. We start the optimization procedure within
a rectangular box in the space of spectra where each mass is
varied by ±25% of its correct value (for the multidimensional

phase space method) or up to several TeV (for the endpoint
method). We perform a random scan inside this box to find
the best-fit spectrum. We then refine the best-fit spectrum
using the simulated annealing algorithm.

As mentioned in the introduction, an important caveat in
our methods is that all spin correlations are ignored, in other
words we use isotropic decays in our Monte Carlo events,
and in the quality-of-fit variables described below. Therefore,
in the presence of spin correlations, the specific quality-of-
fit variable described below for the multidimensional phase
space method may develop biases. However, we reiterate that
the main purpose of our study in this paper is to provide a
proof of principle that multidimensional phase space meth-
ods can provide an improvement over kinematic endpoints
for mass measurements. Fundamentally, all the information
about the spectrum is encoded in the shape of the boundary of
the kinematically accessible region in phase space, not in the
distribution of events, which will have additional dependence
on the matrix element. The ideal mass measurement analysis
would therefore be based on finding the boundary alone, for
example by using our methods combined with Voronoi tes-
sellations as has already been done in Refs. [68–70]. Once
the masses have been measured by using the boundary, more
sophisticated methods such as matrix element matching can
then be utilized for determining the spins of the particles in
the decay chain. We proceed with the quality-of-fit variables
below mainly to keep the comparison between the two meth-
ods as simple as possible for this initial study of the five-body
decay chains. We leave a more realistic work incorporating
tools such as Voronoi tessellations to future work.

3.1 Quality-of-fit variable for the kinematic endpoint
method

We define the measured position of a kinematic endpoint
as the highest value obtained for the observable in question
within the data sample. We construct the quality-of-fit func-
tion to quantify the agreement between the measured end-
points and those predicted by the spectrum hypothesis:

Q = 	
∑

i=endpoints

(
Opredicted

i − Omeasured
i

Omeasured
i

)2

(6)

where 	 = 1 if all measured endpoints occur at smaller
(or equal) values than the predicted ones. If any one of the

Table 1 Benchmark mass
spectra used in our analysis. For
the labeling of the masses in the
spectra, see Figs. 7 and 8 in
Appendix A

Decay mX (GeV) mY (GeV) mZ (GeV) m5 (GeV) m1,2,3,4 (GeV)

2 + 2 + 3 (1) 500 400 150 100 5

2 + 2 + 3 (2) 400 350 300 100 5

3 + 3 (3) 500 300 – 100 5
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measured endpoints exceeds the predicted value, the mass
hypothesis is rejected (	 is taken to be ∞). We consider
all possible Lorentz-invariant endpoints, with pairs, triplets,
etc. of visible final state particles. All endpoints used in our
analysis and their predicted values are listed in appendix A.
The best-fit mass hypothesis is the one that minimizes Q.

3.2 Quality-of-fit variable for the multidimensional phase
space method

To quantify the quality-of-fit using the multidimensional
phase space method, we introduce a likelihood function.
In particular, let L({Mi }|data) denote the likelihood for a
hypothesis spectrum {Mi } given the data. By Bayes’ theo-
rem, using a flat prior over spectra, this is proportional to
L(data|{Mi }), the probability of obtaining the data from the
underlying spectrum {Mi }. This probability can be factored
over the events in the data sample as

L(data|{Mi }) =
∏

events

Levent({m2
i j }|{Mi }), (7)

where {m2
i j } denote all Lorentz-invariant observables in the

event. The form of the Levent factors and the details of their
calculation are described in Appendix B. Ultimately, we
bring the likelihood functions for each topology into a stan-
dard form,

Levent = �[D1] · · ·�[Dm] × N × F (8)

where for any given decay topology, the �[D] factors encode
the kinematically accessible region in phase space, F con-
tains all dependence on the hypothesis spectrum {Mi }, andN
includes all remaining dependence on the observables in the
events. Note that as in the setup for the kinematic endpoint
method, spectra for which there exist events that fall outside
the (hypothetical) kinematically accessible region are consid-
ered excluded. Since the phase space density becomes large
near the boundary of the kinematically accessible region, the
likelihood function favors spectra where as many events as
possible lie near the boundary, with no events lying outside
the boundary. The best-fit mass hypothesis is the one that
maximizes L (to be more precise, we use the logarithm of
L).

3.3 Analysis and results

As mentioned above, kinematic endpoint methods are gener-
ically much more sensitive to mass differences in the spec-
trum than to the overall mass scale, parameterized e.g. by the
mass of the lightest partner. Therefore, when the statistical
distribution of best-fit values for the mass of any particle in
the spectrum is considered, the spread in the distribution is
dominated by the uncertainty in the overall scale. In order to
better compare the performance of the two methods to the

overall mass scale and to the mass gaps in the spectrum sep-
arately, it is preferable to find an alternative parametrization
for spectra rather than using the masses of the individual par-
ticles. In particular, we parameterize the spectrum in terms
of one parameter that sets the overall mass scale, and three
other parameters that only depend on mass gaps.

For the 2 + 2 + 3 topology, we define the dimensionless
parameters {α, β, γ, δ} as

Mi = M true
i + (

α Vα + β Vβ + γ Vγ + δ Vδ

)
i × (100 GeV),

(9)

where M1 parameterizes the (hypothetical) mass of the initial
decaying particle, M4 parameterizes the (hypothetical) mass
of the lightest partner, M true

i denote the benchmark mass val-
ues that were used to generate the Monte Carlo events, and
the vectors V are defined as

Vα = {1, 1, 1, 1}, (10)

Vβ = {1,−1, 0, 0}, (11)

Vγ = {1, 1,−1,−1}, (12)

Vδ = {0, 0, 1,−1}. (13)

Thus the coordinate α parametrizes the overall mass scale.
The allowed ranges of α, β, γ and δ are chosen such that
the hierarchy of masses is preserved, and all masses remain
positive.

Similarly, for the 3 + 3 topology we define {α, β, γ } as

Mi = M true
i + (

α Vα + β Vβ + γ Vγ

)
i × (100 GeV), (14)

where

Vα = {1, 1, 1}, (15)

Vβ = {0, 1,−1}, (16)

Vγ = {2,−1,−1}. (17)

Again, α parameterizes the overall mass scale, and similar
consideration as above apply in choosing the allowed range
for these parameters.

Our results for the 2 + 2 + 3 topology are shown in Fig. 2
for benchmark spectrum 1, in Fig. 3 for benchmark spectrum
2. The results for the 3 + 3 topology is shown in Fig. 4. The
mean value and standard deviation of the distributions for
α, β, γ and δ are listed in Table 2. It is easy to see that the
conclusions obtained for the four-body decay topologies [60]
continue to hold, namely that the multidimensional phase
space method yields both more precise and more accurate
results for the overall mass scale as well as for the mass gaps.
The reasons for the mean values of the distributions obtained
by the kinematic endpoint method to be biased away from
the correct masses is similar to those discussed in Appendix
C of Ref. [60] for the four-body final states. Note also that,
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Fig. 2 Distribution of the best-fit values of α, β, γ and δ (defined in
Eq. 9) for the kinematic endpoint method (blue) and the multidimen-
sional phase space method (yellow), using the first benchmark spectrum
for the 2 + 2 + 3 topology and data samples of 100 events. The true
masses correspond to α, β, γ , and δ all being zero

Fig. 3 Distribution of the best-fit values of α, β, γ and δ (defined
in Eq. 9) for the kinematic endpoint method (blue) and the multidi-
mensional phase space method (yellow), using the second benchmark
spectrum for the 2 + 2 + 3 topology and data samples of 100 events.
The true masses correspond to α, β, γ and δ all being zero
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Fig. 4 Distribution of the best-fit values of α, β and γ (defined in
Eq. 14) for the kinematic endpoint method (blue) and the multidimen-
sional phase space method (yellow), using the benchmark spectrum for
the 3 + 3 topology and data samples of 100 events. The true masses
correspond to α, β and γ all being zero

for the 2 + 2 + 3 topology, although the α distribution for the
kinematic endpoint method of benchmark spectrum 1, which
was chosen to have lesser sensitivity on the overall scale,
seems to be broader compared to benchmark spectrum 2, this
is somewhat misleading. The lower end of the α distribution
for benchmark spectrum 2 is cut off by the constraint that all
masses in the spectrum be positive numbers, which obscures
the true spread in the distribution.

4 Topology determination

In this section we will consider how different event topolo-
gies may be distinguished from one another by using the
distribution of events in phase space. We will consider both
4-body and 5-body final states, since Ref. [60] did not con-
sider the question of topology determination. In particular,
let {Ti } be the set of event topologies that are compatible with
the number of observed particles, with one invisible particle
assumed to be produced in the last stage of the cascade. We
will now write the likelihood function as L(Ti , {Mi }|data),
making the dependence on the topology explicit. As before,
with a flat prior over topologies and spectra, the likelihood
can be related to the probability of obtaining a given distri-
bution of events from an underlying topology

L(Ti , {Mi }|data) ∝ L(data|Ti , {Mi }). (18)

We can now use the likelihood functions listed in
Appendix B, in the standard form

L(data|Ti , {Mi }) =
∏

events

�[D1] · · · �[Dm] × N ({m2
i j })

× F({m2
i j }, {Mi }). (19)

As for the analysis for mass measurements, we adopt logL as
the quality of fit variable. Maximizing over spectra as before,
statistical statements (such as exclusion with a given confi-
dence level) can then be made about a number of possible
topology hypotheses based on the data. We will not attempt
to perform a detailed analysis of this type in this work, since
the idealizations we work with, such as perfect energy res-
olution and the absence of backgrounds and combinatoric
effects, would render the conclusions unreliable.

Nevertheless, one general conclusion can be drawn imme-
diately: When a topology hypothesis T̃ contains more on-
shell particles than the “true” topology T , it can be ruled
out (for any spectrum) with a very small number of events.
Indeed, for the hypothesis T̃ , the optimization over mass
spectra will be trying to enforce an on-shell constraint among
the visible particles where no such constraint is actually
obeyed by the data. In general, there is no reason for a con-
straint that appears to be satisfied by one event to also be
satisfied by any other. Conversely, a choice for T̃ that con-
tains fewer on-shell particles than T , while it cannot be ruled
out completely, will generally result in a significantly lower
likelihood than when the correct topology hypothesis is used,
since T̃ will not provide a very good fit to the distribution of
events in the data.

Let us demonstrate this on a specific example. The 2+2+2
topology with the spectrum (500, 350, 200, 100) GeV was
used to generate Monte Carlo samples of 100 events each,
and for the topology hypotheses 2 + 2 + 2, 2 + 3, 3 + 2
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Table 2 The mean value and
standard deviation of the
distributions masses in the
spectrum as well as of the
parameters α, β etc. for the two
benchmark spectra of the 2 + 2
+ 3 topology, and for the
benchmark spectrum of the 3 +
3 topology, for data samples of
100 events

Multidimensional phase space Kinematic endpoints

2 + 2 + 3 Topology benchmark spectrum 1

mX (GeV) 500 ± 1 543± 24

mY (GeV) 400 ± 1 447 ± 26

mZ (GeV) 150 ± 1 193 ± 22

m5 (GeV) 100 ± 1 143 ± 22

α (0.2 ± 0.8) × 10−2 0.4± 0.2

β (0.04 ± 0.3) × 10−3 (−2 ± 1) × 10−2

γ (0.007 ± 1.7) × 10−3 (1 ± 2) × 10−2

δ (0.1 ± 0.8) × 10−3 (−0.3 ± 0.4) × 10−2

2 + 2 + 3 Topology benchmark spectrum 2

mX (GeV) 400 ± 4 317 ± 15

mY (GeV) 350 ± 4 270 ± 14

mZ (GeV) 300 ± 4 216 ± 15

m5 (GeV) 100 ± 5 20 ± 16

α (0.3 ± 4) × 10−2 −0.8 ± 0.2

β (−0.004 ± 0.5) × 10−3 (−1 ± 0.8) × 10−2

γ (0.8 ± 4) × 10−3 (0.4 ± 0.9) × 10−2

δ (2 ± 7) × 10−3 (−2 ± 1) × 10−2

3 + 3 Topology

mX (GeV) 496 ± 13 413 ± 16

mY (GeV) 296 ± 14 215 ± 17

m5 (GeV) 98 ± 15 16 ± 17

α −0.04 ± 0.1 −0.9 ± 0.2

β (−0.8 ± 1) × 10−2 (−0.5 ± 1.4) × 10−2

γ (−2 ± 4) × 10−3 (−1 ± 0.6) × 10−2

and 4, all possible spectra were scanned until the spec-
trum with the highest likelihood was found for each sam-
ple. Note that unlike in the analysis in Sect. 3, for an incor-
rect topology hypothesis there is no “correct” mass point
to center the scan region on, therefore we scan the spec-
tra over a larger region where each mass is varied between
zero and several TeV. The distribution of the best-fit log-
likelihood over samples for each topology hypothesis is
shown in Fig. 5. In accordance with our expectations, the
2+3 and 3+2 topologies with fewer on-shell particles result
in a poor fit, and the correct topology results in the highest
likelihoods.

It should be noted that, for certain incorrect hypotheses,
there exists a runaway direction in the space of spectra {Mi },
namely the likelihood increases as all masses go to infinity
with fixed mass gaps. This happens for instance when a direct
4-body decay topology hypothesis is used in the example
above. In addition to being completely unphysical (which is
why they are not plotted in Fig. 5), the likelihood values for
this topology hypothesis in any case turn out to be smaller
than for the other topology hypotheses. Runaway directions
do not exist for the correct topology hypothesis, and therefore

Fig. 5 For data samples of 100 events each generated with the spectrum
(500, 350, 200, 100) GeV, the distribution of log-likelihood values for
the 2+2+2, 2+3 and 3+2 topology hypotheses where the likelihood is
maximized over spectra for each sample and each topology hypothesis

the presence of a runaway direction can be used to rule out a
topology hypothesis.

Based on the above considerations, a rather general con-
clusion can be reached that when analyzing a given data
sample, the correct topology is among those hypotheses that
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Fig. 6 For data samples of 100 events each generated with the spectrum
(500, 350, 100) GeV and the 2 + 3 hypothesis, the distribution of log-
likelihood values for the 2+3 and 3+2 topology hypotheses where the
likelihood is maximized over spectra for each sample and each topology
hypothesis

have the highest number of on-shell particles and that are not
immediately ruled out. If there is only one such hypothesis
(2 + 2 + 2 in the above example), then it must be the correct
one. Things are more interesting when there are competing
hypotheses with the same number of on-shell particles.

For the final states with three visible particles and one
invisible particle, the following outcomes are therefore pos-
sible:

– The data does not rule out the 2+2+2 topology hypoth-
esis, which is then established as the correct one.

– The data is not compatible with the 2 + 2 + 2 topology
hypothesis but it is compatible with the 2 + 3 and 3 + 2
topology hypotheses. This is the only nontrivial case that
can arise with this number of final state particles, and a
statistical analysis would be needed to find the best-fit
topology hypothesis. An example of this is demonstrated
in Fig. 6, where the log-likelihood distributions are plot-
ted for the two competing hypotheses for data samples of
100 events each, generated with the 2 + 3 topology and
the spectrum (500, 350, 100) GeV. The log-likelihood
distribution clearly favors the correct topology.

– The data is only compatible with a direct 4-body decay
hypothesis, which is then established as the correct topol-
ogy.

Similarly, for the final states with four visible particles and
one invisible particle, the possible outcomes are:

– The data is compatible with the 2 + 2 + 2 + 2 topology
hypothesis, which consequently must be the correct one.

– The data rules out the 2 + 2 + 2 + 2 topology hypoth-
esis but it is compatible with the 2 + 2 + 3, 2 + 3 + 2,
and 3 + 2 + 2 topology hypotheses. Since these have
the same number of on-shell particles, a statistical anal-

ysis would need to be performed to determine the cor-
rect topology hypothesis. We have performed a numerical
study of this scenario with samples of 100 events each,
generated with the 2 + 2 + 3 topology and the spectrum
(500, 350, 200, 100) GeV. The log-likelihood distribu-
tion not only favors the correct topology but in fact the
incorrect topology hypotheses are ruled out completely
since no spectrum can be found that is consistent with
the data.

– If the data is not compatible with any of the above, then
the 3+3 topology hypothesis is the most likely fit, though
technically 4 + 2 or 2 + 4 are also potential topology
hypotheses since they have the same number of on-shell
intermediate particles. It is rare for particles in beyond
the SM scenarios to not have any 2-body or 3-body decay
channels such that the dominant decay mode is a direct 4-
body decay, but from a purely model-independent point
of view this should not be discarded off-hand and a likeli-
hood analysis should be performed as in the above exam-
ples.

– While extremely unlikely from a theoretical point of
view, there is also a possibility that none of the above
topology hypotheses provide a good fit such that a direct
5-body decay topology hypothesis may need to be con-
sidered.

5 Conclusions

With the LHC already operating close to its design energy,
it is not unreasonable to expect that even if new physics
is discovered, the signal will not have high statistics. Ear-
lier work [60] demonstrated that, for limited signal statistics,
kinematic endpoints are inefficient for mass measurements
in cascade decays with three visible particles and one invis-
ible particle, and that a determination of the phase space
boundary in its full dimensionality can lead to significant
improvement. This conclusion was borne out further with a
subsequent study with a more realistic analysis [70], using the
method of Voronoi tessellations [68,69] to find the bound-
ary of the signal region in the presence of background. In
this paper we explored additional decay topologies, includ-
ing those with four visible particles and one invisible particle,
and we have shown that the enhancement in the density of
events near the boundary of the kinematically allowed region
not only persists, but is even stronger. We have also demon-
strated the improvement in mass measurements that can be
obtained with these methods on several benchmark decay
topologies, for which polynomial methods are not applicable.
We have performed this comparison in a very idealized setup,
mainly as a proof of principle; however, there is no reason to
expect that in a more realistic analysis the results obtained
by the methods presented in this paper should degrade more
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than traditional methods based on kinematic endpoints. As
has already been done in the case of 4-body final states [70],
it should be possible to verify whether our conclusions con-
tinue to hold using a more realistic analysis. Finally, we have
explored the possibility of determining the underlying decay
topology using our methods, and we concluded that at least
in principle topology determination is achievable. The con-
struction of a more realistic analysis both for mass measure-
ments and for topology determination will be performed in
future work.
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Appendix A: Endpoint formulas

In this appendix, we list the formulas for the endpoints used
in the analysis of Sect. 3. Additional details and derivations
can be found in [12]. We work in the limit of massless visible
final state particles (except for the lightest partner) for which
simple expressions for the endpoints are available. Numerical
verification shows that including small masses has a negligi-
ble effect on the endpoint positions.

A.1. 2 + 2 + 3

The labeling of the particles is illustrated in Fig. 7. There
are eight endpoints for this topology. The positions of the
following four endpoints are spectrum independent:

max(m2
23) = max(m2

24) = (m2
Y − m2

Z )(m2
Z − m2

5)

m2
Z

, (20)

max(m2
13) = max(m2

14) = (m2
X − m2

Y )(m2
Z − m2

5)

m2
Z

, (21)

Fig. 7 The labeling of final state particles for the 2 + 2 + 3 decay
topology

max(m2
12) = (m2

X − m2
Y )(m2

Y − m2
Z )

m2
Y

, (22)

max(m2
34) = (mZ − m5)

2. (23)

The positions of the remaining four endpoints are given
by expressions that depend on the spectrum:

max(m2
1234) =⎧⎪⎪⎨

⎪⎪⎩
(m2

X−m2
Y )(m2

Y−m2
5)

m2
Y

if mY
m5

< mX
mY

(m2
Y−m2

Z )(m2
Xm

2
Z−m2

Y m
2
5)

m2
Y m

2
Z

if mY
mZ

> mX
mY

mZ
m5

(mX − m5)
2 otherwise,

(24)

max(m2
234) =

{
(m2

Y−m2
Z )(m2

Z−m2
5)

m2
Z

if mZ
m5

< mY
mZ

(mY − m5)
2 otherwise,

(25)

max(m2
134) =⎧⎪⎨

⎪⎩
(m2

X−m2
Y )(m2

Z−m2
5)

m2
Z

if mZ
m5

<

√
m2

Z+m2
X−m2

Y

mZ

(

√
m2

Z + m2
X − m2

Y − m5)
2 otherwise,

(26)

max(m2
123) = max(m2

124) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(m2
X−m2

Z )(m2
Z−m2

5)

m2
Z

if mZ
m5

> mX
mZ

(m2
X−m2

Y )(m2
Y−m2

5)

m2
Y

if mY
m5

< mX
mY

(m2
Y−m2

Z )(m2
Xm

2
Z−m2

Y m
2
5)

m2
Y m

2
Z

if mY
mZ

> mX
mY

mZ
m5

(mX − m5)
2 otherwise.

(27)

A.2. 3 + 3

The labeling of the particles is illustrated in Fig. 8. There
are six endpoints for this topology. The positions of the fol-
lowing four of the endpoints are spectrum independent:

max(m2
12) = (mX − mY )2, (28)

max(m2
34) = (mY − m5)

2, (29)

Fig. 8 The labeling of final state particles for the 3 + 3 decay topology
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max(m2
13) = max(m2

23) = max(m2
14) = max(m2

24)

= (m2
X − m2

Y )(m2
Y − m2

5)/m
2
Y , (30)

max(m2
1234) = (mX − m5)

2. (31)

The positions of the remaining two endpoints are given by
expressions that depend on the spectrum:

max(m2
123) = max(m2

124) (32)

=
⎧⎨
⎩

(mX − m5)
2 if mX

mY
> mY

m5
(m2

X−m2
Y )(m2

Y−m2
5)

m2
Y

otherwise,

max(m2
134) = max(m2

234) (33)

=
{

(mX − m5)
2 if mX

mY
< mY

m5

(m2
X − m2

Y )(m2
Y − m2

5)/m
2
Y otherwise.

Appendix B: Likelihood functions

In this appendix, we will derive analytical expressions for the
likelihood functions that we use in our analysis. We treat all
particles as spin-0 and we work in the narrow width approx-
imation for any on-shell intermediate states. For a given data
sample, we define the likelihood function as the probability
that these events were produced from a certain underlying
event topology with a spectrum {Mi } of intermediate on-shell
states. Using Bayes’ theorem with a flat prior over spectra,
one can relate this to the probability of obtaining a given
distribution of events from a given spectrum,

L({Mi }|data) ∝ L(data|{Mi }) =
∏

events

Levent({m2
i j }|{Mi }).

(34)

To capture the multidimensionality of the phase space,
we choose Levent factors to be normalized fully differential
decay widths,

Levent({m2
i j }vis.|{Mi }) = 1

�X

∫
d�X (35)

integrated over all unobservable m2
i j involving the lightest

partner.1 The differential decay width is simply the product
of the squared matrix element and the phase space volume
element (see Eq. 4):

d�X = |M|2
2MX

dPSn . (36)

1 Note that the visible m2
i j are fixed on both sides of Eq. 35.

Since we treat all particles as spin-0, the matrix element
squared only contains factors of effective couplings for each
decay stage and propagators that are simplified using the nar-
row width approximation. Therefore, Levent breaks up into
factors for each on-shell stage of the cascade decay. Note
that each decay stage involves one heavy particle, of mass
Mi , that decays to another heavy particle Mi+1 and a number
of light particles, assumed massless. The energy-momentum
conserving δ-functions and factors of 1/� arising from the
narrow width approximation for each intermediate on-shell
state are also combined with the vertices that they are attached
to. See Ref. [60] for additional calculational details.

For 2- and 3-body decay stages, the width of the decaying
particle is given by

�2 = μ2

16πMi

[
1 − r2

]
, (37)

�3 = λ2Mi

512π3

[
1 − r4 + 4r2 log(r)

]
, (38)

where μ and λ are the effective couplings of the 2- and 3-body
decay vertices (of mass dimension 1 and 0, respectively), and
r is the ratio of the heavy daughter mass to the mass of the
decaying particle in that decay stage.

With the correct normalization, the phase space factors for
the 4- or 5-body final state in terms of Lorentz invariants are
given by

dPSn = M−2
X

{
28π6�

−1/2
4 n = 4

211π9δ(�5) n = 5

}
δ(Q2)

∏
i< j

d(pi · p j ) ,

(39)

where

Q2 ≡
⎛
⎝∑
i< j

pi · p j
⎞
⎠ − M2

X − (m2
1 + · · · + m2

n−1 + m2
LP)

2
= 0

(40)

encodes overall energy conservation. Here MX is the mass of
the decaying particle, mLP is the mass of the lightest partner
particle at the end of the decay chain, and the remaining mi

are the masses of the light particles in the final state, which
we set to zero in our analysis.

Performing the integration over the unobservable m2
i j , we

bring the likelihood functions into a standard form,

L = �[D1] · · · �[Dm] × N × F (41)

where for any given decay topology, the �[D] factors encode
the kinematically accessible region, F contains all depen-
dence on the spectrum {Mi }, and N includes all remaining
dependence on the observed Lorentz invariants m2

i j as well
as on numerical factors.

123



61 Page 12 of 15 Eur. Phys. J. C (2017) 77 :61

In Tables 3 and 4 we present the likelihood functions for
all 4- and 5-body decays consisting of 2- and 3-body decay
stages. We express the results in terms of the kinematic func-
tions λn with n(n + 1)/2 arguments, defined as the deter-
minant of a (n + 2) × (n + 2) symmetric matrix [71] given
by

λn (x1, . . . , xn(n+1)/2) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x1 x2 · · · xn 1
x1 0 xn+1 xn+2 · · · 1
x2 xn+1 0 x2n · · · 1
... xn+2 x2n 0

... 1
xn(n+1)/2 1

xn xn(n+1)/2 0 1
1 1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (42)

Note that λ2 is the triangle function that appears in 2-body
decays, and λn is proportional to �n in an n-body decay. The
likelihood functions can be expressed in terms of �i ’s by
using the invariant massesm2

i j of pairs of particles, or in terms
of λn’s by using the invariant masses of larger collections of
particles as shown in Tables 3 and 4. For this reason, the
usage of the λn is superior at making the dependence on the
masses of on-shell mediators higher up in the decay chain
more explicit, and we adopt this notation in reporting our
results.

The structure of the D factors has interesting properties
as well, which we describe in more detail in Appendix C.

Appendix C: Factorization of the domain function

In this appendix, we will further study the structure of the
factors in the likelihood function encoding the kinematically
accessible region of phase space. Any cascade decay can be
broken down into a number ns of stages, each stage corre-
sponding to the presence of an on-shell intermediate particle.
Let us explore how this structure is related to the factorization
of the domain function. In particular, consider the i th stage
as a heavy particle Xi decaying to another heavy particle
Xi+1 and a number ni of SM particles. The domain func-
tion cannot depend on whether the ni particles are emitted
promptly from the decay vertex, or whether the decay pro-
ceeds as Xi → Xi+1�i , with �i being a metastable particle
that much later decays into the ni SM particles.2 In the like-
lihood function, an essential property of the domain function
is to ensure that the full cascade X1 → �1 . . . �ns Xns+1 can
proceed, where Xns+1 is assumed to be the lightest partner
particle which is stable.

2 The mass of the fictitious �i particle will of course depend on the
kinematics of the ni particles in each event.

Fig. 9 The labeling of final state particles for the 2 + 3 decay topology

This consideration gives the key to the factorization of the
domain function. There is always a “skeleton factor” corre-
sponding to ns consecutive 2-body decays, with the �i and
the lightest partner as final state particles. The skeleton factor
cannot be factorized further, and it depends on the spectrum
of the Xi . In addition there are a number of other factors that
have to do with the decays of the �i and these factors depend
only on the m2

i j of the final state SM particles, but not on the

spectrum of the Xi . Since them2
i j are actually observed in the

data, they correspond to a physical configuration of particles
and therefore these factors in the domain function can never
become negative. In other words, for computing the domain
function in the likelihood, only the skeleton factor is nontriv-
ial. The exact form of the remaining factors also depends on
the order in which the integrals over the m2

i j are performed.
For a concrete example, consider the 2 + 3 decay topology,

where the labeling of the particles is given in Fig. 9.m2
14,m2

24
and m2

34 cannot be measured and they need to be integrated
over. There are, however, only two δ-functions arising from
on-shell particles X and Y in the narrow width approxima-
tion. The phase space volume element also includes a factor
of �

−1/2
4 . Since �4 = − det M4, it is quadratic in all of

the m2
i j . After using the δ-functions to take two of the three

integrals, the remaining integral can be performed using the
identity

∫ r+

r−

dx√−ax2 + bx + c
= π√

a
, (43)

where r± are the (real) roots of the quadratic expression in the
radical. Of course, the identity Eq. 43 only holds if there exist
real roots r±, which is equivalent to �4 ≥ 0. This explains
why the argument of the domain function is the discriminant
of the quadratic expression.

If the last integral is chosen to be over m2
34, then the dis-

criminant can be factored into two factors DA and DB , where
DA is the determinant of the 3×3 matrix, the entries of which
are dot products of pairs of the four momenta pμ

1 , pμ
2 and

pμ
3 . Similarly, DB is the determinant of the 3 × 3 matrix, the

entries of which are dot products of pairs of the four momenta
pμ

1 , (pμ
2 + pμ

3 ) and pμ
Z . DB can then be recognized as the

skeleton factor, with particles 2 and 3 grouped together into a
fictitious � particle, while DA depends only on the measured
m2

i j . This structure is reflected in the D entry for the 2 + 3
topology in Table 3, with the λ3 functions corresponding to
DA and DB .
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Table 3 Likelihood functions for 4-body decays. f2(r) is defined as (1 − r2)−1 and f3(r) is defined as (1 − r4 + 4r2 log(r))−1. The λn functions
are defined in Eq. 42

3 + 2 D λ3(m2
1,m

2
12,m

2
123,m

2
2,m

2
23,m

2
3) λ3(M2

X , M2
Y ,m2

4,m
2
12,m

2
123,m

2
3)

N 16 λ2(m2
12,m

2
123,m

2
3)

−1/2

F M−4
X f3(MY /MX ) f2(m4/MY )

2 + 3 D λ3(m2
1,m

2
12,m

2
123,m

2
2,m

2
23,m

2
3) λ3(M2

X , M2
Y ,m2

4,m
2
1,m

2
123,m

2
23)

N 16 λ2(m2
1,m

2
123,m

2
23)

−1/2

F M−2
X M−2

Y f2(MY /MX ) f3(m4/MY )

2 + 2 + 2 D λ4(M2
X , M2

Y , M2
Z ,m2

4,m
2
1,m

2
12,m

2
123,m

2
2,m

2
23,m

2
3)

N 8π−1

F M−2
X f2(MY /MX ) f2(MZ/MY ) f2(m4/MZ ) λ4(M2

X , M2
Y , M2

Z ,m2
4,m

2
1,m

2
12,m

2
123,m

2
2,m

2
23,m

2
3)

−1/2

Table 4 Likelihood functions for 5-body decays. f2(r) is defined as (1 − r2)−1 and f3(r) is defined as (1 − r4 + 4r2 log(r))−1. The λn functions
are defined in Eq. 42

3 + 3 D λ3(m2
12,m

2
123,m

2
1234,m

2
3,m

2
34,m

2
4) λ3(M2

X , M2
Y ,m2

5,m
2
12,m

2
1234,m

2
34)

λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)

N 256π−1 [λ2(m2
12,m

2
1234,m

2
34)

×λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)]−1/2

F M−4
X M−2

Y f3(MY /MX ) f3(m5/MY )

3 + 2 + 2 D λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)×

λ4(M2
X , M2

Y , M2
Z ,m2

5,m
2
12,m

2
123,m

2
1234,m

2
3,m

2
34,m

2
4)

N 128π−2 λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)

−1/2

F M−4
X f3(MY /MX ) f2(MZ/MY ) f2(m5/MZ )

× λ4(M2
X , M2

Y , M2
Z ,m2

5,m
2
12,m

2
123,m

2
1234,m

2
3,m

2
34,m

2
4))

−1/2

2 + 3 + 2 D λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)×

λ4(M2
X , M2

Y , M2
Z ,m2

5,m
2
1,m

2
123,m

2
1234,m

2
23,m

2
234,m

2
4)

N 128π−2 λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)

−1/2

F M−2
X M−2

Y f2(MY /MX ) f3(MZ/MY ) f2(m5/MZ )

× λ4(M2
X , M2

Y , M2
Z ,m2

5,m
2
1,m

2
123,m

2
1234,m

2
23,m

2
234,m

2
4))

−1/2

2 + 2 + 3 D λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)×

λ4(M2
X , M2

Y , M2
Z ,m2

5,m
2
1,m

2
12,m

2
1234,m

2
2,m

2
234,m

2
34)

N 128π−2 λ4(m2
1,m

2
12,m

2
123,m

2
1234,m

2
2,m

2
23,m

2
234,m

2
3,m

2
34,m

2
4)

−1/2

F M−2
X M−2

Z f2(MY /MX ) f2(MZ/MY ) f3(m5/MZ )

× λ4(M2
X , M2

Y , M2
Z ,m2

5,m
2
1,m

2
12,m

2
1234,m

2
2,m

2
234,m

2
34))

−1/2
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