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Abstract We present new accretion solutions of a poly-
tropic perfect fluid onto an f(R)-gravity de Sitter-like black
hole. We consider two f(R)-gravity models and obtain finite-
period cyclic flows oscillating between the event and cosmo-
logical horizons as well as semi-cyclic critical flows execut-
ing a two-way motion from and back to the same horizon.
Besides the generalizations and new solutions presented in
this work, a corrigendum to Eur. Phys. J. C (2016) 76:280 is
provided.

1 Accretion of perfect fluids onto static spherically
symmetric black holes

This work is based on our previous paper [1] where we set
the general dynamical-system formalism for accretion of per-
fect fluids onto static spherically symmetric black holes. We
keep using the same notation for the thermodynamic func-
tions of the fluid and the Hamiltonian H. So, n, h, e, s, p,
T , and uμ are the baryon number density, specific enthalpy
(enthalpy per particle), energy density, specific entropy, pres-
sure, temperature, and four-velocity vector, respectively. In a
locally inertial frame, the three-dimensional speed of sound
a is given by a2 = (∂p/∂e)s . When the entropy s is con-
stant, which is the case for accretion of perfect fluids onto
static spherically symmetric black holes, this reduces to
a2 = dp/de.

1.1 Consequences of the conservation laws:
thermodynamics

The aim of this short work is two-fold: (1) Generalize the
dynamical-system formalism for accretion of perfect fluids
to metrics of the form

a e-mail: azreg@baskent.edu.tr

ds2 = −A(r)dt2 + dr2

B(r)
+ C(r)(dθ2 + sin2 θdφ2). (1)

This will allow us to generalize the properties of the accret-
ing fluid intended for future use. (2) Obtain new interesting
solutions not discussed so far in the scientistic literature.

In (1), (A, B, C) are any functions of the radial coordi-
nate r assumed to be well-defined and positive-definite in the
regions where the Killing vector ξμ = (1, 0, 0, 0) is timelike
and their ratio D ≡ A/B is positive-definite on the horizons
too. For the metric (1) to describe a black hole solution, the
equations B(r) = 0 and A(r) = 0 should have the same set
of solutions with same multiplicities. In our applications we
restrict ourselves to the cases where the global structure of
the spacetime is well-determined by (A, B, C). To keep the
analysis general, we do not assume asymptotic flatness of the
metric as we intend to apply it to the de Sitter and anti-de
Sitter-like black holes.

This metric form generalizes the one used in Refs. [1–3];
In Ref. [1] we restricted ourselves to the case A = B = f (r)
and C = r2. It is easy to show that Eqs. (5), (7), (11), (23),
(24), (25) of Ref. [1] generalize respectively to

ut = ±
√
A + Du2,

√
D Cnu = C1 �= 0, (2)

h
√
A + Du2 = C2, v2 = Du2

A + Du2 , (3)

u2 = Bv2

1 − v2 ,
AC2n2v2

1 − v2 = C2
1 , (4)

where (C1,C2) are constants of motion, u ≡ ur , and −1 <

v < 1 is the three-velocity of a fluid element as measured
by a locally static observer. The second line in (4) expresses
the law of particle conservation, ∇μ(nuμ) = 0, and C2 is the
constant of motion huμξμ [ξμ = (1, 0, 0, 0) is a timelike
Killing vector]. This constant is the inertial-equivalent gen-
eralization of the energy conservation equation muμξμ [4].
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The constant C2
1 in (4) can be written as A0C2

0n
2
0v

2
0/(1 −

v2
0) where “0” denotes any reference point (r0, v0) from the

phase portrait; this could be a CP, if there is any, spatial
infinity (r∞, v∞), or any other reference point. We can thus
write

n2

n2
0

= A0C2
0v2

0

1 − v2
0

1 − v2

AC2v2 = C2
1

1 − v2

AC2v2 . (5)

The equation of state (EoS) of the fluid may be given in the
form e = F(n) or equivalently in the form p = G(n) [1].
It has been shown [1] that (F, G), the specific enthalpy, and
the three-dimensional speed of sound satisfy

nF ′(n) − F(n) = G(n), (6)

h = F ′(n), (7)

a2 = n(ln F ′)′, (8)

where the prime denotes derivative with respect to n.
Equations (5) and (7) imply that the specific enthalpy h

depends explicitly on (A, C, v) only. There is no explicit
dependence on B. As we shall see in the next subsection, this
implies that the HamiltonianH, which defines the dynamical
system, will also depend explicitly on (A, C, v) only. This
fact will have consequences on the location of the critical
points (CP’s). If the fluid had further properties, say, being
isothermal or polytropic, h andH can be expressed explicitly
in terms of (A,C), as this is done in the following section.

Horizons rh are defined by A(rh) = 0 and B(rh) = 0
or simply by B(rh) = 0 since the equations A(rh) = 0 and
B(rh) = 0 are assumed to have the same set of solutions
with same multiplicities. The zeros of B(rh) = 0 determine
the regions in three-space where the fluid flow takes place:
These are the regions where ξμ = (1, 0, 0, 0) is timelike.

Note that the case C1 ≡ 0, corresponding either to n =
0 (2) (no fluid) or to v = 0 (4) and any n (no flow), is not
interesting. So, we assume C1 �= 0. As the fluid approaches,
or emanates from, any horizon (r → rh), A approaches 0.
Three cases emerge from (5):

1. v → ±1∓ and n may converge or diverge there (r → rh);
2. v → 0 and n diverges there. The fluid cumulates near the

horizon resulting in a divergent pressure which repulses
the fluid backwards [1];

3. |v| assumes any value between 0 and 1 there. This yields
a divergent n as r → rh . Since 0 < |v| < 1 there is
no reason that the fluid cumulates near the horizon: The
flow continues until all fluid particles have crossed the
horizon. We rule out this case for it is not physical. This
conclusion, due to the law of particle conservation, is
general and it does not depend on the fluid characteristics.

Since a non-perfect simple fluid (containing a single particle
species) also obeys the law of particle conservation (4), these
conclusions remain valid for real fluids too.

1.2 Dynamical system: critical points

If the fluid had a uniform pressure, that is, if the fluid were
not subject to acceleration, the specific enthalpy h reduces
to the particle mass m and the first equation in (3) reduces
to muμξμ = C2 along the fluidlines. This is the well know
energy conservation law which stems from the fact that the
fluid flow is in this case geodesic. Now, if the pressure
throughout the fluid is not uniform, acceleration develops
through the fluid and the fluid flow becomes non-geodesic;
the energy conservation equation muμξμ = cst, which is
no longer valid, generalizes to its relativistic equivalent [4]
huμξμ = C2 as expressed in the first equation in (3).

Let the HamiltonianH of the dynamical system be propor-
tional to C2

2 (4), which is a constant of motion. Substituting
the first equation in (4) into the first equation in (3) yields

H(r, v) = h(r, v)2A(r)

1 − v2 . (9)

with H given by (9), the dynamical system reads

ṙ = H,v, v̇ = −H,r . (10)

(here the dot denotes the t̄ derivative where t̄ is the time
variable of the Hamiltonian dynamical system). In (10) it is
understood that r is kept constant when performing the partial
differentiation with respect to v in H,v and that v is kept con-
stant when performing the partial differentiation with respect
to r inH,r . The critical points (CPs) of the dynamical system
are the points (rc, vc) where the rhs’s in (10) are zero. To take
advantage of the calculations made in [1] we introduce the
radial coordinate ρ and the notation f defined by

ρ2(r) ≡ C(r), f (ρ) ≡ A(r). (11)

The Hamiltonian takes the form

H(ρ, v) = h(ρ, v)2 f (ρ)

1 − v2 . (12)

The derivative H(ρ, v),ρ has been evaluated in Ref. [1] by
[Eq. (40) of Ref. [1]]:

H,ρ = h2

1 − v2

[
d f

dρ
− 2a2 f

d ln(
√

f ρ2)

dρ

]
. (13)
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Using

H,r = dρ

dr
H,ρ = h2

1 − v2

[
d f

dr
− 2a2 f

d ln(
√

f ρ2)

dr

]

= h2

1 − v2

[
dA

dr
− 2a2A

d ln(
√
AC)

dr

]

,

we obtain

ṙ = 2h2A

v(1 − v2)2 (v2 − a2), (14)

v̇ = − h2

1 − v2

[
dA

dr
− 2a2A

d ln(
√
AC)

dr

]

. (15)

Introducing the notation gc = g(r)|r=rc and gc,rc = g,r |r=rc
where g is any function of r , the following equations provide
a set of CPs that are solutions to ṙ = 0 and v̇ = 0:

v2
c = a2

c and

a2
c = CcAc,rc

Cc Ac,rc + 2ACc,rc
= C2A,r

(C2A),r

∣∣∣
r=rc

, (16)

where ac is the three-dimensional speed of sound evaluated
at the CP. The first equation states that at a CP the three-
velocity of the fluid equals the speed of sound. The second
equation determines rc once the EoS, e = F(n) or p =
G(n) (6), is known.

From the set of Eq. (16) we see that the metric function
B does not enter explicitly in the determination of the CP’s;
however, it does that implicitly via the successive dependence
of h on n, of n on v, and of v on D.

Other sets of CPs, solutions to ṙ = 0 and v̇ = 0, may exist
too. For instance, we may have (1) Ac = 0 and Ac,rc = 0
which, by (14) and (15), yield ṙ = 0 and v̇ = 0 without
having to impose the constraint v2

c = a2
c at the CP. This

corresponds to a double-root horizon of an extremal black
hole. When this is the case, the accretion becomes transonic
well before the fluid reaches the CP, which is the horizon
itself (recall that the three-velocity v, as the fluid approaches
the horizon, tends to −1). However, extremal black holes
are unstable and whatever accretes onto the hole modifies its
mass making it non-extremal so that Ac,rc = 0 no longer
holds. We may also have (2) h = 0 at some point where
ξμ = (1, 0, 0, 0) is timelike, which may hold only for non-
ordinary (dark, phantom, or else) accreting matter.

2 Specific perfect fluids

2.1 Hamiltonian system for test isothermal perfect fluids

The isothermal EoS is of the form p = ke = kF(n) with
G(n) = kF(n) where k, the so-called state parameter, obeys
the constraints 0 < k ≤ 1. The differential equation (6) reads

nF ′(n) − F(n) = kF(n), (17)

yielding

e = F = e0

nk+1
0

nk+1, h = (k + 1)e0

n0

(
n2

n2
0

)k/2

, (18)

where we have used (7). Using this and (5) in (9) we obtain

H(r, v) = A(r)1−k

C(r)2kv2k(1 − v2)1−k
, (19)

where all the constant factors have been absorbed into the
redefinition of the time t̄ and the Hamiltonian H.

2.2 Hamiltonian system for test polytropic perfect fluids

The polytropic equation of state is

p = G(n) = Knγ , (20)

where K and γ > 1 are constants. Inserting (20) into the
differential equation (6), it is easy to determine the specific
enthalpy by integration [1]

h = m + Kγ nγ−1

γ − 1
, (21)

where we have introduced the baryonic mass m. Introducing
the constant

Y ≡ Kγ (C1n0)
γ−1

m(γ − 1)
= const. > 0, (22)

then using (5), h takes the form

h = m

[

1 + Y

(
1 − v2

AC2v2

)(γ−1)/2
]

. (23)

Finally, the Hamiltonian (9) reduces to

H = A

1 − v2

[

1 + Y

(
1 − v2

AC2v2

)(γ−1)/2
]2

, (24)

where m2 has been absorbed into a re-definition of (t̄,H).
The three-dimensional speed of sound is obtained from (8)

a2 = (γ − 1)X

m(γ − 1) + X
(X ≡ Kγ nγ−1), (25)

Since γ > 1, this implies a2 < γ − 1 and, particularly,
v2
c < γ − 1 if there are CPs to the Hamiltonian system.

Equation (25) bears a striking similarity with Eq. (2.249) on
page 119 of Ref. [4].
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2.2.1 Corrigendum

Using the second Equation in (4) and (22), we rewrite X (25)
as

X = m(γ − 1)Y

(
1 − v2

AC2v2

)(γ−1)/2

. (26)

Substituting into (25), we arrive at

a2 = Y (γ − 1 − a2)

(
1 − v2

AC2v2

)(γ−1)/2

. (27)

This equation along with the second line in (16) take the
following expressions at the CPs

v2
c = Y (γ − 1 − v2

c )

(
1 − v2

c

AcC2
c v

2
c

)(γ−1)/2

, (28)

v2
c = rc Ac,rc

rc Ac,rc + 4Ac
. (29)

For a given value of the positive constant Y , the resolution
of this system of equations in (rc, vc) provides all the CPs, if
there are any.

In Ref. [1] we worked with A = B = f and C = r2

reducing (28) to

v2
c = Y (γ − 1 − v2

c )

(
1 − v2

c

r4
c fcv2

c

)(γ−1)/2

, (30)

which is the correct expression of Eq. (112) of Ref. [1]. In
both Eqs. (111) and (112) of Sec. VI of Ref. [1], one should
replace the constant factor

nc
Y

(
r5
c fc,rc

4

)1/2

by 1. The presence of this extra factor did not affect the
results, solutions, and conclusions made in Ref. [1]; how-
ever, some new interesting solutions have been missed in its
Sec. VI on polytropic fluids. Besides the results and conclu-
sions we have discussed so far in the two first sections of this
work, we aim (1) to re-derive the same solutions derived in
Sec. VI of Ref. [1], using the correct expression (30), and (2)
to construct new solutions.

3 Accretion of polytropic test fluids

3.1 f(R)-gravity model of Ref. [5]

In Ref. [1], we considered three models of f(R) gravity [5–
7]. For the model of Ref. [5] the black hole solution is of the
form A = B = f and C = r2 with

f ≡ 1 − 2M

r
+ βr − 	r2

3
. (31)

Following the notation of Ref. [1], we employ in this work the
symbol “ f ” for the metric component, −gtt , and the symbol
“f” for the function f(R) defining the f(R)-gravity model.

The solutions shown in Fig. 5 of Ref. [1], which depict the
accretion of a polytropic perfect fluid onto an anti-de Sitter-
like f(R) black hole (31), are re-derived using the same values
of the parameters: M = 1, β = 0.05, 	 = −0.04, γ = 1/2,
and Y = −1/8. The re-derived solutions using the correct
expressions (28) and (29) are plotted in Fig. 1 of this work.

The first thing we note is that the re-derived solution cor-
responding to γ = 5.5/3, right panel of Fig. 1, has no CPs.
Apart from this, the re-derived solutions have the same char-
acteristics as those shown in Fig. 5 of Ref. [1].

The solutions depicting the accretion of a polytropic per-
fect fluid onto a de Sitter-like f(R) black hole (31), which
are shown in Fig. 2 of this work, have been constructed using
the same values of the parameters used in Fig. 6 of Ref. [1]:
M = 1, β = 0.05, 	 = 0.04, γ = 1.7, and Y = 1/8.
The magenta and blue solutions were discovered in Ref. [1].
The new solutions are the semi-cyclic critical black plots of
Fig. 2. The first semi-cyclic solution represents a supersonic
accretion from the cosmological horizon, where the initial
three-velocity is almost −1, then it becomes subsonic pass-
ing the CP, and it vanishes on the event horizon. The accretion
is followed by a flowout back to the cosmological horizon
reversing all the details. The second semi-cyclic solution is a
flowout from the event horizon with an initial three-velocity
in the vicinity of 1, which decreases gradually until it is
sonic at the CP then zero at the cosmological horizon. This
flowout is then followed by an accretion back to the event
horizon.

Notice that on the horizons, rh = reh (event horizon) or
rh = rch (cosmological horizon), the pressure of the fluid
diverges as [1]

p ∝ |r − rh |
−γ

2(γ−1) (1 < γ < 2). (32)

if there v = 0. This explains why the fluid, once it reaches any
horizon with vanishing three-velocity, it is repulsed backward
under the effect of its own pressure.

As the value of the Hamiltonian exceeds the critical value
Hc ≡ H(rc, vc), cyclic flows between the two horizons form.
These flows are sandwiched by two separate branches corre-
sponding to supersonic accretion and flowout, as depicted by
the magenta and blue plots of Fig. 2. The separation between
these supersonic branches increases with the value of the
Hamiltonian resulting in faster accretion and flowout while
the cyclic flow tends to become more and more nonrelativis-
tic.
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rh rc
r

0.9

0.2

vc

vc

0.2

0.9

v

rh 3.5
r

0.2

0.2

0.7

v

Fig. 1 Left panel is a contour plot of H (24) for an anti-de Sitter-
like f(R) black hole (31) with M = 1, β = 0.05, 	 = −0.04,
γ = 1/2, Y = −1/8. The parameters are rh � 1.76955, rc � 3.68101,
vc � 0.498889. Black plot the solution curve through the CPs (rc, vc)
and (rc,−vc) for which H = Hc � 0.487469. Red plot the solution
curve for which H = Hc − 0.09. Magenta plot the solution curve for
which H = Hc + 0.09. Right panel is a contour plot of H (24) for

an anti-de Sitter-like f(R) black hole (31) with M = 1, β = 0.05,
	 = −0.04, γ = 5.5/3, Y = 1/8. The horizon is at rh � 1.76955
and there are no CPs. Continuous black plot the solution curve cor-
responding to H = 0.94447. Dashed black plot the solution curve
corresponding to H = 0.443809. For the clarity of the plot, we have
partially removed the branches v < 0

reh rc rch
r

0.9

vc

vc

0.9

v

reh rc rch
r

0.9

vc

vc

0.9

v

reh rc rch
r

0.9

vc

vc

0.9

v

Fig. 2 Contour plot of H (24) for a de Sitter-like f(R) black hole (31)
with M = 1, β = 0.05, 	 = 0.04, γ = 1.7, Y = 1/8. The parame-
ters are reh � 1.91048, rch � 9.8282, rc � 4.66942, vc � 0.19387.
Black plot the solution curve through the CPs (rc, vc) and (rc,−vc)

for which H = Hc � 0.59691. This solution is new and it was not

discovered in Ref. [1]. Magenta plot the solution curve corresponding
to H = Hc + 0.005. Blue plot the solution curve corresponding to
H = Hc + 0.05. The solutions depicted by the magenta and blue plots
are not new and were discovered in Ref. [1]

3.2 f(R)-gravity model of Ref. [6]

For the f(R) model of Ref. [6] we constructed the constant-
curvature black hole solution [1]

f (r) = 1 − 2M

r
+ Q2

[1 + f ′(R0)]r2 − R0

12
r2, (33)

where

f(R) = −M2 c1(R/M2)n

c2(R/M2)n + 1
. (34)

Here n > 0, (c1, c2) are proportional constants [6]

c1

c2
≡ q2 ≈ 6


	


m
= 6

0.76

0.24
= 19, (35)

and the mass scale

M2 = (8315 Mpc)−2
(


mh2

0.13

)
.

At the present epoch [6]

R0

M2 ≡ q1 ≈ 12


m
− 9 = 41. (36)
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reh rc rch
r

0.9

vc

vc

0.9

v

reh rc rch
r

0.9

vc

vc

0.9

v

Fig. 3 Contour plot of H (24) for a de Sitter-like f(R) black hole with
f(R) given by Hu–Sawicki formula (34). We worked with M = 1,
Q = 0.01, R0 = 0.16, γ = 1.7, Y = 1/8, q1 = 41, q2 = 19,
and c1 and c2 are given by (37) taking the lower sign correspond-
ing to the physical solution |f ′(R0)| � 1. Left plot Critical flow

corresponding to H = Hc � 0.35067. Here f ′(R0) � 0.0372803,
reh � 2.12854, rch � 7.3975, rc � 4.03815, vc � 0.223489. This
solution is new and it was not discovered in Ref. [1]. Right plot: Corre-
sponds to H = Hc + 0.01. This solution is not new and was discovered
in Ref. [1]

Taking n = 2, we found [1]

c1 = q2c2, c2 = − 1

q3/2
1 (

√
q1 ± √

2q2)
. (37)

The physical solution corresponds to |f ′(R0)| � 1. Using
the correct Eqs. (30) and (29), which takes the form

v2
c = (1 + f ′(R0))(R0r3

c − 12M)rc + 12Q2

3[(1 + f ′(R0))(R0r3
c − 8rc + 12M)rc − 4Q2] , (38)

we construct the new solutions, shown in Fig. 3, using the
same values of the parameters used in Fig. 7 of Ref. [1]:
M = 1, Q = 0.01, R0 = 0.16, γ = 1.7, Y = 1/8, q1 = 41,
q2 = 19, and c1 and c2 are given by (37) taking the lower sign
corresponding to the physical solution |f ′(R0)| � 1. These
new solutions have the same characteristics of those depicted
in Fig. 2. Only the semi-cyclic critical black plots represent
new solutions: The solution depicted by the magenta plot of
Fig. 3 is not new and was discovered in Ref. [1].

4 Conclusion

In this addendum we have first generalized the dynamical-
system procedure describing the accretion/flowout of per-
fect fluids to all black holes endowed with spherical symme-
try. This is needed for many future investigations [8]. In our
dynamical-system procedure we took the radial coordinate
and the three-velocity as dynamical variables of the Hamil-
tonian, which is proportional to the square of the constant of
motion huμξμ [ξμ = (1, 0, 0, 0) is a timelike Killing vec-
tor]. This constant is the relativisitc equivalent generalization
of the energy conservation equation muμξμ [4].

We have shown that the de Sitter-like black holes, of dif-
ferent f(R)-gravity models, present cyclic non-critical flows
and semi-cyclic critical flows all characterized by a vanishing
three-velocity on either horizon or a luminal three-velocity
there: no situations where the fluid reaches, or emanates from,
either horizon with intermediate three-velocity occur. This is
due to the law of particle conservation and it is not related to
the nature of the fluid. This conclusion remains valid for real
fluids too as they approach any horizon from within a region
where ξμ = (1, 0, 0, 0) is timelike.
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