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Abstract The Einstein static (ES) universe has played a
major role in various emergent scenarios recently proposed
in order to cure the problem of the initial singularity of the
standard model of cosmology. In the model we address, we
study the existence and stability of an ES universe in the
context of f (R, T ) modified theories of gravity. Consider-
ing specific forms of the f (R, T ) function, we seek for the
existence of solutions representing ES state. Using dynami-
cal system techniques along with numerical analysis, we find
two classes of solutions: the first one is always unstable of
the saddle type, while the second is always stable so that
its dynamical behavior corresponds to a center equilibrium
point. The importance of the second class of solutions is due
to the significant role they play in constructing non-singular
emergent models in which the universe could have experi-
enced past-eternally a series of infinite oscillations about such
an initial static state after which it enters, through a suitable
physical mechanism, to an inflationary era. Considering spe-
cific forms for the functionality of f (R, T ), we show that this
theory is capable of providing cosmological solutions which
admit emergent universe (EU) scenarios. We also investigate
homogeneous scalar perturbations for the mentioned mod-
els. The stability regions of the solutions are parametrized
by a linear equation of state (EoS) parameter and other free
parameters that will be introduced for the models. Our results
suggest that modifications in f (R, T ) gravity would lead to
stable solutions which are unstable in f (R) gravity model.

1 Introduction

In 1917, Einstein put forward an important exact space-
time which is recognized as the first relativistic cosmological
model, i.e., the ES universe; a static Friedmann–Robertson–
Walker (FRW) model with positive spatial curvature sourced
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by a perfect fluid and a cosmological constant [1,2]. It was
static because it seemed natural to assume that the real uni-
verse is static at that time, i.e., qualitatively unchanging in its
large scale structure.1 However, though this initially appeared
to be a reasonable model of a static universe, it was later
shown that the ES universe was unstable under small homo-
geneous and isotropic perturbations around the equilibrium
state [4]. Since then, the ES model has been widely real-
ized to be unstable with respect to gravitational collapse or
expansion. It has also been shown that the ES universe is
always neutrally stable under small inhomogeneous vector
and tensor perturbations and also against adiabatic scalar
density inhomogeneities as long as the sound speed satisfies2

c2
s > 1/5, and unstable otherwise [8]. Moreover, stability of

the ES universe against Bianchi type-IX spatially homoge-
neous perturbations has been studied for various types of
matter fields [9] and it is found that the ES universe is unsta-
ble against such perturbations.

One of the most fundamental and ancient questions in
standard cosmology is whether the universe has begun from
a definite origin or whether it is past-eternal. In the past
decades, this question has led to serious discussions based
upon knowledge of the general theory of relativity (GR) and
modern cosmology. The recent accumulation of high reso-
lution cosmological observations is compatible with the so
called standard model of cosmology which includes a num-
ber of interesting features. In addition to predicting that the
universe is passing through an accelerated phase of expan-
sion [10–17], this model also admits an initial singularity that
most of the physicists refer to as the big-bang singularity.
Indeed, under general physical circumstances on the mat-
ter content of the universe, the GR equations imply that the
present expanding phase must be preceded by a singular state
of the universe where the physical quantities such as energy

1 For a historical review we advise the reader to see [3].
2 Subsequent investigations have shown that the ES universe maximizes
the entropy for an equation of state with the mentioned value for the
sound speed [5–7].
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density and space-time curvature diverge and the classical
framework of GR breaks down [18]. In order to remedy this
shortcoming, a huge amount of work and effort have been
recently devoted to the construction of cosmological mod-
els which are non-singular and/or past-eternal. Work along
the former model has revealed that non-singular bouncing
cosmologies could appear in various scenarios with matter
fields violating positive energy conditions like in the quintom
bounce [19–26], the ghost condensate bounce [27–30], and
the Galileon bounce [31,32] models or in the modified grav-
ity theories such as string inspired gravity [33–38], Horava
gravity [39–41], non-relativistic gravity [42], gravity in the
presence of torsion [43–47], nonlocal gravity [48–54], brane
world scenarios [55,56], and loop quantum cosmology [57–
61] (see also [62,63] for a recent review). Based on the latter
model, the search for singularity free cosmological models
within the framework of GR has led to the development of the
so-called EU scenario [64,65]. In this scenario, the universe
is initially in a past-eternal ES state with spatially positive
curvature and then eventually evolves to a subsequent infla-
tionary phase. This cosmological model has several remark-
able features: there is no initial singularity or “beginning of
time”; the universe is ever existing and it tends to a static
universe in past infinity rather than originating from a big-
bang singularity. The universe is isotropic and homogeneous
at large scales and may contain exotic matter [66–69]. There
is also no horizon problem, nor is there a quantum gravity
regime (as the model claims) since the scale of curvature
always considerably exceeds the Planck scale, so that the
space-time may be treated as a classical entity.

Though the main component for constructing emergent
scenarios is the ES solution, the original model does not
appear to be successful in solving the singularity problem,
since there is no stable ES solution in classical GR. In other
words, owing to the existence of perturbations, such as quan-
tum fluctuations [70], it is too difficult for the universe to set-
tle down for a long time in such an initial static state [4–8].
However, it is a general belief that in its earliest stages, the
universe is presumably under extreme physical conditions,
so that new effects, such as those coming from quantization
of gravity, modifications of GR theory or even other new
physics, may become significant. As a matter of fact, dealing
with the cosmological equations of modified gravity theories
may leave us with many new static solutions, whose stabil-
ity properties would crucially depend on the details of the
theory. Therefore, it is expected that the outcomes are sub-
stantially different from those of the classical ES solution
within the GR framework. Thus, it is reasonable to extend
the study of the ES universe beyond Einstein gravity. In this
regard, stability of the ES universe has been examined in
various cosmological settings among which we quote static
cosmological models constructed in brane world models [71–
82], modified gravity theories [83–103], scalar-fluid theo-

ries [104], and loop quantum gravity [105–110]. Work along
this line has been carried out by considering different types
of matter such as the effects of vacuum energy [111], non-
constant pressure [112–117] and a non-interacting mixture
of isotropic radiation and a ghost scalar field [118]. The first
study of the ES universe and its stability in f (R) theory of
gravity can be found in [119,120]. In the latter work, it is
shown that in contrast to classical GR, the modified ES uni-
verse can be stabilized against homogeneous perturbations
in the context of two well-known forms of f (R) with a posi-
tive cosmological constant and matter content described by a
barotropic perfect fluid with equation of state (EoS) p = wρ.
However, subsequent work on the ES universe within the con-
text of generic f (R) models has shown that Einstein static
solutions are always unstable against homogeneous or inho-
mogeneous perturbations [121].

Recently, a kind of modified theory of gravity has been
developed, f (R, T ) gravity, which was first introduced in
[122]. This new proposal for modifying gravity has been
widely studied within various contexts such as thermody-
namics [123–126], energy conditions [127–129], cosmologi-
cal solutions from dynamical system point of view [130,131],
anisotropic cosmology [132–134], wormhole solution [135],
scalar perturbations [136], cosmology of non-interacting
Chaplygin gas [137,138], and some other studies such as
f (R, T ) gravity in higher dimensions [139–142], the effects
of matter–curvature coupling on the distribution of mat-
ter configuration for a self-gravitating spherical body [143]
and dark matter effects in spiral galaxies [144]. This theory
extends f (R) gravity by including the trace of the energy-
momentum tensor (EMT), in addition to the Ricci curvature
scalar. The motivation of including the trace of EMT may
come from the effects of some exotic fluid, consequences of
some unknown gravitational interactions or even quantum
effects (conformal anomaly) [145]. Motivated by the above
discussion, in the present work we investigate the existence
of static solutions and their stability in the framework of
f (R, T ) theory of gravity. This paper is organized as fol-
lows: in Sect. 2 we present the field equations of f (R, T )

gravity and some related definitions and also give a few dis-
cussions on the conservation of EMT. In Sect. 3, the ES
solution and its stability is investigated for two classes of
models. First we have class I, which belongs to the f (R, T )

models that respect the conservation of EMT and will be
studied in Sect. 3.1. The second class introduces the models
in which the conservation of EMT is relaxed and it will be
presented in Sect. 3.2 for a pressure-less matter and Sect.3.3
for a barotropic perfect fluid. For the latter case, we find that,
depending on the EoS parameter and other model parame-
ters, a stable ES solution exists from which an EU scenario
could arise. In Sect. 4, we investigate the stability of the
ES universe against homogeneous scalar perturbations and
show that the results are consistent with those we shall find
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in Sects. 3.1 and 3.2. Finally, in Sect. 5, we summarize our
results.

2 Field equations of f (R, T ) gravity

In this section we present the equations of motion for f (R, T )

theories of gravity in the presence of radiation and the cold
dark matter as the matter contents. This modified gravity
model is governed by the action

S =
∫ √−gd4x

[
1

2χ2 f
(
R, T (r, c)

)
+ L (total)

]
,

L (total) ≡ L (r) + L (c), (1)

where χ2 = 8πG, being the gravitational coupling constant,
L(total) being the Lagrangian of the total matter; and R, T (r, c)

and L (total) are the Ricci curvature scalar, the trace of EMT
of radiation and cold dark matter (T (r, c)

μν ≡ T (r)
μν + T (c)

μν ) and
the Lagrangian of whole matter fields, respectively. We take
these two types of matter as the only sources for the gravita-
tional interaction. It is worth noticing that the equations we
shall derive in the present section will be employed in Sects.
3.1 and 3.2. However, in Sect. 3.3, we rewrite some of them
for a single perfect fluid with linear EoS parameter, p = wρ.
The superscripts (r, c) stand for the radiation and pressure-
less matter fields and g is the determinant of the metric. We
work in the units in which c = 1. The energy-momentum
tensor T (r, c)

μν is defined as

T (r, c)
μν ≡ − 2√−g

δ
[√−g(L (r) + L (c))

]
δgμν

, (2)

where L (r) and L (c) are the Lagrangians of the radiation and
the cold dark matter. The field equations for f (R, T ) gravity
can be derived via varying action (1) with respect to the metric
field and are given as [122]

F(R, T )Rμν − 1

2
f (R, T )gμν + (

gμν� − �μ�ν

)
F(R, T )

= (χ2 − F(R, T ))Tμν − F(R, T )�μν, (3)

where

�μν ≡ gαβ δTαβ

δgμν
, (4)

and for simplicity we have defined the following functions
for derivatives of T and R:

F(R, T ) ≡ ∂ f (R, T )

∂T
and F(R, T ) ≡ ∂ f (R, T )

∂R
.

(5)

Note that, since T (r) = 0, only T (c) can appear in the
function f (R, T ). Therefore, the superscript (c) will be
dropped hereafter unless it is needed. We assume that the
universe is filled with a perfect fluid that evolves in a spatially
non-flat Friedmann–Lemaître–Robertson–Walker (FLRW)
space-time whose line element can be parametrized as

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2d�2
)

. (6)

Substituting the above metric into the field equations (3) and
taking the radiation and dark matter as the matter sources,
we get

3H2F(R, T ) + 1

2
( f (R, T ) − F(R, T )R)

+ 3Ḟ(R, T )H + 3
kF(R, T )

a2

= (χ2 + F(R, T ))ρ(c) + χ2ρ(r) (7)

and

2F(R, T )Ḣ + F̈(R, T ) − Ḟ(R, T ) − 2
kF(R, T )

a2 H

= −(χ2 + F(R, T ))ρ(c) − 4

3
χ2ρ(r), (8)

where ˙ ≡ d/dt . To avoid mathematical complexities and
other difficulties we devote the rest of our work to a simple
form for the functionality of f (R, T ):

f (R, T ) = R + h(T ), (9)

whence the field equations (7) and (8) for a closed universe
(k = 1) can be rewritten as

3H2 = −(χ2 + h′(T ))T + χ2ρ(r) − h(T )

2
− 3

a2 (10)

and

2Ḣ = (χ2 + h′(T ))T − 4

3
χ2ρ(r) + 2

a2 , (11)

where prime denotes differentiation with respect to the argu-
ment and H is the Hubble parameter.

For later applications, we investigate two situations. We
first consider the case(s) in which the conservation of EMT is
not respected and then proceed with studying those cases for
which EMT conservation holds. To this aim, we write down
the field equations (3) for the choice of the f (R, T ) function
given by (9), as follows:

Rμν − 1

2
(R + h(T )) gμν = (χ2 + h′(T ))Tμν. (12)
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Applying the Bianchi identity to Eq. (12) leads to the follow-
ing covariant equation between the function h′(T ), the EMT
and its trace:

(χ2 + h′)∇μT (total)
μν + 1

2
h′∇μT + T (total)

μν ∇μh′ = 0, (13)

where we have dropped the argument of h′(T ) and we have
considered p(c) = 0. Notice that in the last third terms of
Eq. (13), only T (c) would appear since the function h and its
derivative are non-zero only for the cold dark matter. How-
ever, In the first term we still have the term χ2 �μ T (r)

μν for
the radiation part. Therefore, equation (13) can be consid-
ered as the sum of two terms; those that are related to the
radiation and other terms which are related to the cold dark
matter, which totally must be set to zero. Nevertheless, a
simple choice is

(χ2 + h′)∇μT (c)
μν + 1

2
h′∇μT + T (c)

μν ∇μh′ = 0, (14)

∇μT (r)
μν = 0, (15)

which means that the radiation and the cold dark matter would
evolve independently such that the radiation does follow the
conservation of EMT, i.e., ρ̇(r) + 4Hρ(r) = 0. It can then
easily be seen that the radiation density would depend on the
scale factor as ρ(r) ∝ a−4. However, the evolution of the
cold dark matter density would follow the solution of Eq.
(14) rather than the usual case in the standard cosmology
i.e., ρ(c) ∝ a−3. For the line element (6), Eq. (14) takes the
following form:

(
χ2 + 3

2
h′ + h′′T

)
Ṫ + 3HT (χ2 + h′) = 0, (16)

where we have used T = −ρ for the cold dark matter. Thus,
having determined the functionality of h(T ) for models that
do not respect the conservation of EMT (i.e., ∇μT (c)

μν �= 0),
it is the above equation that governs the behavior of the cold
dark matter density in terms of the scale factor. For example,
if we set

f (R, T ) = R + nχ2T, (17)

we obtain

ρ(c) = ρ
(c)
0 a−3γ , γ = 2 + 2n

2 + 3n
. (18)

On the other hand, we will consider models that obey the
conservation of EMT, namely, ∇μT (c)

μν = 0 and ∇μT (r)
μν = 0.

It is easy to check that applying the condition ∇μT (c)
μν = 0 in

Eq. (14) gives the following simple constraint equation for
the cold dark matter3:

ḣ′(T ) = 3

2
Hh′(T ), (19)

where the argument of the function h has been restored for
clarification. Finally, after some straightforward algebra, we
get a specific form for h(T ) as

h(T ) = C1
√|T | + C2, (20)

where C1 and C2 are constants of integration. As can be
seen, conservation of EMT imposes a strong restriction on
the functionality of the function h(T ).

3 The Einstein static solution, existence and stability

Our attempt here is to bring forward three classes of solu-
tions that can be served as the ES universe models. We
deal with this issue using solution (20) in Sect. 3.1, as the
only conserved case. We then proceed to investigate the non-
conserved case (17) in Sect. 3.2. In these two subsections,
radiation and cold dark matter are taken as the whole mat-
ter content of the universe. Finally, Sect. 3.3 is devoted to
the ES solution for a perfect fluid with linear EoS parameter
w = p/ρ and thus some required equations will be rewrit-
ten from Sect. 2. To illustrate the results obtained we shall
present some diagrams.

3.1 Class I: Conserved EMT, case i:
f (R, T ) = R + C1

√|T |, w = 0

In this case, Eqs. (10), (11), and (19) lead to the equations

3H2 = χ2ρ(c) + χ2ρ(r) − h(T ) − 3

a2 (21)

and

2Ḣ = −χ2ρ(c) − 4

3
χ2πGρ(r) + 1

2
h(T ) + 2

a2 . (22)

Combining Eqs. (21) and (22) leaves us with the following
equation for the acceleration of the universe:

ä = − ȧ2 + 1

2a
− a

(
χ2

6
ρ(r) + 1

4
h(T )

)
, (23)

where for this case we have T (c) = −ρ(c). The ES solution
is given by the conditions ȧ = 0, ä = 0 and ρ̇ = 0. Using
these conditions, Eq. (23) gives

3 See [130,131] for more details.
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− 1

2a
− a

(
χ2

6
ρ(r) + 1

4
h(T )

)
= 0. (24)

Now, given the functionality of ρ(r) and ρ(c) in terms of the
scale factor together with determining h(T ), Eq. (24) can be
solved for the scale factor of the ES universe. Substituting
for h(T ) = C1

√|T | (here, we set C2 = 0 as a cosmological
constant) and ρ(r) into Eq. (24), we get

− 1

2a
−

(
χ2

6
ρ

(r)
0 a−3 + m

χ2

4
ρ

(c)
0 a−1/2

)
= 0, (25)

where we have set C1 ≡ mχ2
√

ρ
(c)
0 . Rewriting Eq. (25) in

terms of the cosmological parameters we have

− 1

2a
− H2

0

2

(
�

(r)
0 a−3 + 3m

2
�

(c)
0 a−1/2

)
= 0, (26)

where H0 is the Hubble constant and �
(r)
0 and �

(c)
0 , are

present values for density parameters of radiation and cold
dark matter, respectively. Since �

(r)
0 � �

(c)
0 at the present

moment, Eq. (26) can be approximately solved for the radius
of curvature of the ES universe, as

a(con)
ES 	

(
2

3m�
(c)
0 H2

0

)2

, (27)

where the superscript “con” is used for the related parameters
of the conserved case and the solution is valid only form < 0.
Next, we proceed to examine the stability of the solution
(27). To this aim, using the Raychaudhuri equation (23), we
introduce phase space variables x = a and y = ȧ to establish
the autonomous system of equations as

ẋ = y, (28)

ẏ = − y2 + 1

2x
− H2

0

2

(
�

(r)
0 x−3 + 3m

2
�

(c)
0 x−1/2

)
. (29)

In terms of these variables, the ES solution corresponds to a
critical point of the above dynamical system which is given as
x = a(con)

ES and y = 0. The stability analysis of the solution
can easily be performed by finding the eigenvalues of the
Jacobian matrix (Ji j = ∂q̇i/∂q j ) evaluated at the critical
point. We then get, after some calculations,

λ
(con)
1,2 = ±1

8

(
3m�

(c)
0 H2

0

)2 = ± 1

2a(con)
ES

. (30)

This means that the fixed point (x = a(con)
ES , y = 0) is a

saddle point which is referred to as an unstable one. In such
cases, depending on the initial values of the system, some
trajectories in the phase space would approach the fixed point

and some others would get away from it. The phase space
portrait for two different values m = −1.7 and m = −2.6 is
drawn in Fig. 1. The red solid circle denotes the equilibrium
point (x = a(con)

ES , y = 0). It is seen that the smaller values
for m leads to smaller radius for ES universe. Note that, in
order to show the behavior of trajectories in the phase space
more accurately, we have set H2

0 �
(c)
0 = 1. Therefore, this

class of solutions does not admit a stable ES universe.

3.2 Class II: Non-conserved EMT, case ii:
f (R, T ) = R + nχ2T , w = 0

In this case, using Eqs. (10) and (11) for the non-conserved
case and setting h(T ) = nχ2T (where n is a dimensionless
parameter) we obtain the following Raychaudhuri equation in
terms of the Hubble constant and matter density parameters:

ä = −1 + ȧ2

2a
− H2

0

2

(
�

(r)
0 a−3 − 3n

2
�

(c)
0 a−3γ+1

)
. (31)

Using the fact that �
(r)
0 � �

(c)
0 together with setting ä =

ȧ = 0, the above equation can easily be solved for the scale
factor. The solution is given as

a(n−con)
ES =

(
3nH2

0 �
(c)
0

2

)(2+3n)/2

, (32)

where the superscript “n-con” denotes the non-conserved
case. Note that this solution is only valid for n > 0. Intro-
ducing the dynamical system variables x = a and y = ȧ, the
Raychaudhuri equation (31) can be recast as

ẏ = − y2 + 1

2x
− H2

0

2

(
�

(r)
0 x−3 − 3n

2
�

(c)
0 x−3γ+1

)
. (33)

This equation together with equation ẋ = y construct a
dynamical system with the following eigenvalues:

λ
(n−con)
1,2 = ±i

(3nH2
0 �

(c)
0 /2)−(2+3n)/2

√
2 + 3n

. (34)

This solution shows that the fixed point (x = a(n−con)
ES , y =

0) is a center equilibrium point. The trajectories of the system
are closed curves or cycles winding around the fixed point
(see Fig. 2). The evolution of the scale factor versus time
has also been depicted in the left panel of Fig. 3. The scale
factor shows an oscillatory behavior which directly pictures
the imaginary nature of the eigenvalues of the dynamical
system (33). The right panel indicates the trajectory in the
(ȧ, a) plane. The plots of Fig. 3 are drawn for the initial
values ai = 1, ȧi = 0 and n = 0.66. This study shows
that, when the condition on conservation of EMT is relaxed,
f (R, T ) gravity may contain a stable ES solution.
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Fig. 1 The phase space portrait
for the conserved case
h(T ) = C1

√|T | in (a, ȧ) plane.
The red solid circle represents
the unstable static solution given
at the point (a(con)

ES , 0)

0 a 1

1

a

1 h T m 2 T
1
2

m 1.7
2 1

0 a 1

1

a

1 h T m 2 T
1
2

m 2.6
2 1

Fig. 2 The phase space portrait
in (a, ȧ) plane for the
non-conserved case,
h(T ) = nχ2T . The red solid
circle represents the stable static
solution

0 a 1

1

a

1 h T n 2T
n 0.5

2 1

0 a 1

1

a

1 h T n 2T
n 0.9

2 1
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Fig. 3 Left panel the behavior
of the scale factor with respect
to time for Class II solutions.
Right panel the trajectory of the
ES universe in the (ȧ, a) plane
for the same case. The initial
values ȧi = 0 and ai = 1 have
been chosen and we have set
n = 0.66

20 t 200.96

a t

1

0.01 a t 0.01
0.96

a t

1

3.3 Case iii: f (R, T ) = R + αχ2T β , w �= 0, 1/3

For a single barotropic perfect fluid with p = wρ and choos-
ing f (R, T ) = R + αχ2h(T ), the constraint equation (13)
reduces to

(
1 + α

2
(3 − w)h′ + α(1 + w)Th′′) Ṫ

+ 3H(1 + w)(1 + αh′)T = 0. (35)

In this case the Friedmann equations can be obtained as fol-
lows:

3H2 =χ2
{[

1+(1+w)αh′] T

3w − 1
− αh

2

}
− 3

a2 , (36)

2Ḣ = −χ2 w + 1

3w − 1
(1 + αh′)T + 2

a2 . (37)

Eliminating the spatial curvature term, we arrive at an
equation in terms of the Hubble parameter and the trace
terms

6Ḣ = −χ2
(

3w + 1

3w − 1
T + α

w + 1

3w − 1
Th′ + αh

)
− 6H2.

(38)

Note that in Eqs. (35)–(38) the prime denotes the derivative
with respect to the trace and the argument of the function
h(T ) has been dropped. By determining the function h(T ),
Eqs. (35) and (38) make an autonomous system of differential
equations for which applying the conditions ρ̇ = ȧ = Ḣ = 0
gives the related critical points. Taking the power law form
h(T ) = T β yields the following values for the scale factor
and EMT trace at equilibrium point

T (bar)
ES = −T1/(1−β), (39)

a(bar)
ES =

⎧⎨
⎩

6(3w − 1)

χ2T
1

1−β
(
2+αTβ (1 − 3w+2(1+w)β)

)
⎫⎬
⎭

1/2

,

(40)

T = α (1 − β − w(3 + β))

1 + 3w
, (41)

where “bar” denotes the barotropic perfect fluid. The eigen-
values of the system (35) and (38) are obtained as

λ
(bar)
1,2 = ± X

Y
,

X = {(1 + w)(1 − 9w2)(β − 1)

× [2(1 − 3w) − (1 + 2w + 9w2)β + 2(1 + w)(1 + 3w)β2]
(1 + w(2β − 3))T1/(1−β)}1/2,

Y = (3w − 1)[2(1 − 3w) − (1 + 2w + 9w2)β

+ 2(1 + w)(1 + 3w)β2], (42)

where we have set χ2 = 1. The eigenvalues (42) imply that
the critical point corresponding to (39) and (40) is a saddle
one which is an unstable equilibrium point. However, if the
expression under curly brackets is set to be negative, the
numerator X would be pure imaginary and as a result we
have a center equilibrium point. In Fig. 4, we have sketched
the region in the parameter space (β,w) that satisfies the
condition X2 < 0 (see the shaded zone), for two values
α = ±1. Hence, for specific values of β and EoS parameters,
a stable ES solution could exist.

It is now interesting to examine whether the ES universe
presented above could give rise to an EU scenario. To achieve
this, we need to check the solutions we have found for case
iii with more scrutiny.

Let us be more precise. In dealing with Eq. (38), depend-
ing on the value of the β parameter, different roots can be
specified that the physical validity of each root (which corre-
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Fig. 4 The allowed regions for
EoS and β parameters for which
the ES solution is stable. The
left figure is drawn for α = 1
and the right one is plotted for
α = −1. In the left figure, red
dot denotes the situation of the
model f (R, T ) = R + nχ2T
with n = 1. Note that, for this
specific case, the range n < 0 is
not allowed

Stable

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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1

0

1

w

1

sponds to a scale factor of the ES universe) must be verified.
Therefore, there can generally exist different fixed points,
which correspond to physically acceptable values for TES

and aES. We note that the corresponding values of TES for
the fixed points must be in such a way that the positivity of
energy density is preserved, i.e., ρES > 0. Let us now check
whether the ES universe presented by case iii is capable of
providing an EU scenario. Setting α = −1 and β = 5 we
observe that Eq. (38) admits five roots; the first one corre-
sponds to a vanishing value (as a trivial solution) for the trace
of EMT which is not physical. The second and third roots are
given by TES = ±[(1 + 3w)/4(1 + 2w)]1/4 and the next two
are complex conjugates of these roots. Substituting for the
negative root into Eq. (36) leads to the following value for
the scale factor at equilibrium point:

aES = 27/4

χ

[
(1 + 2w)1/4(−1 + w + 6w2)

(1 + 3w)1/4(1 + 8w + 7w2)

]1/2

,

TES = −
[

1 + 3w

4(1 + 2w)

]1/4

, w < −1, − 1

3
< w < −1

7
,

(43)

for which the physical conditions ρES > 0 and aES > 0 will
be satisfied within the specified interval for the EoS parame-
ter. Calculations show that the eigenvalues for this fixed point
read

λ1,2 = ±
[

2
√

2(1 + w)(1 + 3w)5/4(1 + 7w)

(1 + 2w)1/4(−1 + 3w)(47 + w(184 + 105w))

]1/2

,

(44)

with the following stability properties:

− 1

105
(92 + √

3529) < w < −1, or

− 1

3
< w <

1

105
(−92 + √

3529), or − 1

7
< w <

1

3
,

a center equilibrium point, (45)

and

w < − 1

105
(92 + √

3529), or − 1 < w < −1

2
,

or − 1

105
(−92 + √

3529) < w < −1

7
, or w >

1

3
,

an unstable point. (46)

Comparing the ranges of physical validity of w, as given
by the solution (43), with the ones specified in (45) and
(46) indicates that the nature of the fixed point depends cru-
cially on the value that the EoS parameter assumes. Such a
behavior could be helpful for implementing a cosmological
scenario in which, assuming a slowly varying EoS param-
eter for a short time interval, the universe that has been
living in a stable past-eternal static state (a center equilib-
rium point) could eventually enter into a phase where the
stability of the solution is broken leading to an inflation-
ary era (an unstable point). To better illustrate the situation,
we investigate two possible cases for a time varying EoS
parameter. Let us take w(t) = −1.365 + t/410 for which
the evolution of the scale factor of the universe is plotted
in the left panel of Fig. 5. It is seen that the universe has
started its evolution from an ES state with matter content
that the EoS of which is that of a phantom-like matter. As
time passes, the purely imaginary eigenvalue of the dynam-
ical system changes to a real value where the center equi-
librium point turns into an unstable point. As a result, the
universe goes out of the oscillatory phase and enters an infla-
tionary regime. The right panel shows the dynamics of the
scale factor for a slowly varying EoS parameter given as,
w(t) = 0.28 − t/500. We observe that, having experienced
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Fig. 5 The time behavior of the
scale factor in
f (R, T ) = R + χ2αT β , with
α = −1 and β = 5. In the left
panel we have assumed a slowly
varying EoS parameter,
w(t) = −1.365 + t/410 with
initial conditions Hi = 0 and
Ti = −0.828. The right panel
shows the time behavior of the
scale factor for
w(t) = 0.3 − t/601 with initial
conditions Hi = 0 and
Ti = −0.743 50 100 150
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an ES phase, the universe with a radiation-like matter content
eventually evolves from such a static phase to an inflation-
ary stage therefore providing an EU scenario for the present
f (R, T ) model.

4 Evolution of the scale factor perturbations in ES
universe in the f (R, T ) gravity background

In the present section, we consider linear homogeneous scalar
perturbations about the ES universe and investigate the con-
ditions on its stability against such perturbations. We will
therefore extract the governing equation for the evolution of
the scale factor perturbations up to the first order. In order
to show the consistency of the achieved results, we compare
them to the solutions presented in Sects. 3.1 and 3.2. Let
us begin with the expressions for perturbed scale factor and
energy density, which owing to the homogeneity depend only
on time4

a(t) = a(1 + δa(t)), ρ(t) = ρ(1 + δρ(t)). (47)

Introducing the above relations into the field equation (3), we
seek the equation that governs the evolution of scale factor
perturbation. We further note that the perturbed field equation
is linearized and the unperturbed terms will be eliminated to
finally have only first order terms. This shall be done using
the following background equations of motion:

f (R, T ) = 2
χ2 + (1 + w)F

3w − 1
T, (48)

F(R, T ) = a2 (1 + w)(χ2 + F)

2(3w − 1)
T, (49)

4 Note that all unperturbed quantities are estimated about the equilib-
rium state at which a = aES and ρ = ρES and we have dropped the
subscript ES for convenience.

so that, in each equation, substituting F = 0 yields the cor-
responding f (R) gravity model and to obtain GR equations,
one must set F = 1. Using the expressions of Eq. (47), we
obtain the perturbations for the Ricci scalar and trace of EMT:

δR = 6

(
δa′′ − 2

δa

a2

)
, (50)

δT = (3w − 1)ρδρ = T δρ. (51)

Substituting Eqs. (47), (50), and (51) into the field equations
(3) leads to the perturbed field equations in FLRW back-
ground, the tt-component of which reads

δρ = Aδa + Bδa′′, (52)

A = 6(1 + w)
[−(χ2 + F) + 4a−2F,R

]
2χ2 + (3 − w)F + TF,T

,

B = −12(1 + w)F,R

2χ2 + (3 − w)F + TF,T
.

The above equation can be used to eliminate δρ terms that
appear in the spatial component of the perturbed field equa-
tions. A straightforward but lengthy calculation gives the
following evolutionary equation for the scale factor pertur-
bation:

Aδa(t) + Bδa′′(t) + Cδa(4)(t) = 0, (53)

A = 1 + w

3w − 1
(χ2 + F)T − 24

a4 F,R

+ A

[
2

a2 T F,T − 1

2
TF − χ2 w

3w − 1
T

]
,

B = −2F + 24

a4 F,R − AT F,T

+ B

[
2

a2 T F,T − 1

2
TF − χ2 w

3w − 1
T

]
,

C = −6F,R − BT F,T , X (R, T ),T ≡ ∂X/∂T,

Y (R, T ),R ≡ ∂Y/∂R.
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Fig. 6 The stable regions in the 2D spaces constructed out of the coupling constants m, n and the EoS parameter w, for the models with
h(T ) = mχ2

√
T and h(T ) = nχ2T , respectively. Red lines show the solutions corresponding to w = 0 in each model

Equation (53) is the most general equation for the scale factor
perturbation around the ES state and to exploit its predictions
an underlying model must be determined.

Next, we discuss differential equation (53) for GR and
two cases which are considered in Sects. 3.1 and 3.2. For GR
we have F = 1 and F = 0, so that Eq. (53) reduces to the
following equation:

2δa′′ − ρ(1 + w)(1 + 3w)δa = 0. (54)

This result and the corresponding solution have also been
reported in [146]. Because of the fourth order nature of Eq.
(53), we take the following ansatz as the solution:

δa(t) = C1eω1t + C2e−ω1t + C3eω2t + C4e−ω2t , (55)

whereby the frequencies ω1 and ω2 read

ωi =
[

−B ± √B2 − 4AC
2C

] 1
2

, i = 1, 2. (56)

We therefore observe that depending on different types of
f (R, T ) models and the free parameters exploited, the ES
universe could be stable or unstable against homogeneous
perturbations. The models that we have considered in Sects.
3.1 and 3.2 are in the form f (R, T ) = R + h(T ) for which
we have B = −2 and C = 0. Thus, for these two models, the
differential equation governing the scale factor perturbations

is similar to the GR case but with different frequency, given
as

ω = ω1 = ω2 = √
A/2, C2 = C3 = 0. (57)

Therefore, the criterion for a stable solution would beA < 0,
otherwise, the perturbation in scale factor will diverge. Some
algebraic calculations for the model f (R, T ) = R+mχ2

√
T

reveal that

A = 2(1 + w)(−2 + m + 6w)(−1 + 2mw + 9w2)

(1 − 3w)(4 − 3m − 12w + mw)
χ2ρ.

(58)

The above expression for conserved case with w = 0 reduces
to 2(m − 2)/(3m − 4) from which we see that the conserved
case amounts to an unstable ES solution since A > 0 for
all valid values of the parameter m, i.e., for m < 0. For the
non-conserved model with f (R, T ) = R + nχ2T , we get

A = (w + 1)(n + 1)

[
1 + 3n(3w − 1) + 6w

3 − n(3 − w)

]
χ2ρ, (59)

which for the special case w = 0 reduces to (1 − 2n)(1 +
n)/(1 − n). We then conclude that the condition for stability
i.e., A < 0 is satisfied for 1/2 < n < 1. This interval for n
parameter respects the condition on physical validity of the
radius of the ES universe, as required by Eq. (32). In Fig. 6,
stable regions for both models have been drawn. The solution
corresponding to w = 0 is indicated by a red line.
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5 Concluding remarks

In this work we have studied the existence and stability of
the ES universe in f (R, T ) modified gravity theories. In
these theories, the Lagrangian of f (R) gravity is extended
to include the trace of EMT, which in turn would allow for
remarkable outcomes in the gravitational interactions. Hav-
ing employed a homogeneous and isotropic FRLW metric
with spatially positive curvature,5 we examined the stabil-
ity of the ES solution with the help of dynamical system
approach. The f (R, T ) function has been chosen as a linear
combination of the Ricci curvature scalar and an arbitrary
function of EMT trace, denoted as h(T ). Two main classes
of models we have established here, include: f (R, T ) gravity
models which respect the conservation of EMT and those that
do not. In the former class, the conservation of EMT results in
h(T ) = C1

√|T |+C2, for a pressure-less fluid. For this case,
considering as the matter contents a mixture of radiation and
cold dark matter, an ES solution can be found. However, the
study of the trajectories of the related dynamical system near
the critical point suggests that the ES solution is unstable
(of the saddle type) for all valid values of the coefficient C1.
Therefore, this class of models cannot serve as a stable ES
solution, so that, like in the GR case [64,65], fine-tuning is
required if the ES state is to be the initial state of the universe
for a past-eternal inflationary cosmology. In the latter class,
by relaxing the condition on EMT conservation and apply-
ing Bianchi identity, we have obtained a covariant relation
between derivatives of h(T ), EMT and its trace. This case
has been investigated under two subclasses. In the first one,
choosing h(T ) = nχ2T , we obtained an ES solution which is
stable for n > 0 in the sense that its dynamical behavior cor-
responds to a center equilibrium point. In the second one, we
have considered a perfect fluid with linear EoS (w = p/ρ) as
the matter content. Choosing the function h(T ) = αχ2T β ,
we showed that a stable ES universe could indeed exist, in
the same sense as the previous case, depending on the values
of the parameters w, α and β. Therefore, the second class
of solutions suggest that the universe in f (R, T ) modified
gravity can remain at a stable state past-eternally, and may go
through a series of infinite non-singular oscillations around
this state. We then conclude that, in contrast to f (R) grav-
ity, in which unstable ES solutions do generally exist [121],
f (R, T ) modified gravity could potentially admit stable ES
solutions for some specific forms of f (R, T ) function.

Finally, as we close this paper, there remain a few points
that beg some additional elucidation. First of all, the stable
ES solutions we have found raise this question that, in order

5 This non-zero curvature will become insignificant in the late times and
the positivity authorizes the universe to enter an inflationary stage in
the early times through which the hot big-bang epoch initiates through
a reheating stage [64,65].

to have a successful cosmological scenario, the regime of
infinite cycles around the center equilibrium points must be
able to eventually break and then enters the current expand-
ing phase of the universe [82,105–109]. This purpose can be
achieved by varying one of the model parameters, namely
the EoS parameter w and the dimensionless parameter n, so
that the system could undergo a bifurcation which results in
changing the topological structure of the phase space (see
e.g., [102,103]). Typical mechanisms in the context of GR
with a minimally coupled scalar field along with a barotropic
fluid as the matter content of the universe has been men-
tioned in [8,147]. It is shown that expansion away from the
ES state to an inflationary scenario could be triggered by a
change in the pressure of matter. The existence and nature
of ES solutions within the framework of semiclassical loop
quantum cosmology (LQC) has been investigated in [110].
This work employed a minimally coupled scalar field φ with
a self-interacting potential V (φ) so that as φ → −∞, the
scalar field potential tends to a constant value. In the station-
ary phase the scalar field rolls from −∞ at a constant speed
(φ̇ = 0) toward positive values, but as it reaches the non-flat
region of the potential, the inflation epoch begins.6 One may
also ask whether, though completely stable in the classical
regime, the ES universe could be unstable quantum mechan-
ically. On the other hand, as a new way of leaving the static
period and beginning the inflationary regime, an emergent
universe can be created from nothing by a tunneling process
[147,153,154]. In [155], the universe is considered as a non-
equilibrium thermodynamical system with dissipative phe-
nomena due to particle creation mechanism and it is shown
that the EU scenario is a consequence of particle creation pro-
cess. Work along this line has been carried out in the context
of brane world scenarios [156] and inhomogeneous space-
times [157]. Another possibility has been recently reported
in the context of two measure theories (TMT) where the scale
invariance is spontaneously broken due to the intrinsic fea-
tures of the TMT dynamics. This allows for a non-singular
EU solution describing an initial phase of evolution that pre-
cedes the inflationary phase [158–160]. The presence of such
a pre-inflationary phase in the EU scenario has observable
consequences, namely on the anisotropies within the CMB
spectrum at large scales, see e.g., [161–163]. Utilizing the
recently developed state-finder parameters, the behavior of
different stages of the evolution of the EU model has been
studied and it is shown that the universe starts from an asymp-
totic ES state and goes to the �CDM model [66] (for a sys-
tematic analysis of EU scenario, its transition to slow-roll
inflation through a period of super-inflationary regime, see

6 It is worth mentioning that a period of super-inflation, previous to
the standard inflationary regime, is related to any mechanism which
attempts to solve the problem of cosmological singularity in a semi-
classical description of space-time [148–152].
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[164–166] and the references therein). In the current study,
we observed that the equilibrium point for case iii could be
stable or unstable depending on the value of w parameter. We
then assumed that this parameter changes for a short period
of time during which the center equilibrium point converts
to an unstable point or correspondingly the phase of the uni-
verse changes from an infinite number of oscillations about
the ES state to an inflationary regime. Therefore, f (R, T )

models presented here can provide a setting in which an ES
universe is connected to an asymptotic EU scenario. Sec-
ondly, in order to be sure that the universe can stay at the
static state past-eternally, therefore allowing for a success-
ful implementation of the emergent scenario, the ES solu-
tion must be stable against all types of perturbations. In this
regard, we have performed homogeneous and linear scalar
perturbations in the scale factor and energy density and it
is found that the ES universe is stable against these type of
perturbations under a variety of the obtained conditions. It is
also of interest to extend our results to include the inhomoge-
neous perturbations around the ES state which indeed could
provide a richer structure for stability/instability analysis of
Einstein cosmos in f (R, T ) modified gravity theory. Work
along these lines is currently under way.
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