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Abstract The motivation of the present work is to recon-
struct a dark energy model through the dimensionless dark
energy function X (z), which is the dark energy density in
units of its present value. In this paper, we have shown that a
scalar field φ having a phenomenologically chosen X (z) can
give rise to a transition from a decelerated to an accelerated
phase of expansion for the universe. We have examined the
possibility of constraining various cosmological parameters
(such as the deceleration parameter and the effective equa-
tion of state parameter) by comparing our theoretical model
with the latest Type Ia Supernova (SN Ia), Baryon Acous-
tic Oscillations (BAO) and Cosmic Microwave Background
(CMB) radiation observations. Using the joint analysis of
the SN Ia+BAO/CMB dataset, we have also reconstructed
the scalar potential from the parametrized X (z). The relevant
potential is found, a polynomial in φ. From our analysis, it
has been found that the present model favors the standard
�CDM model within 1σ confidence level.

1 Introduction

The various cosmological observations such as Type Ia
Supernovae [1,2], cosmic microwave background (CMB)
radiation [3–9], large scale structure [10,11], baryon acous-
tic oscillations (BAO) [12], and weak lensing [13] have sup-
ported that the expansion of the current universe is acceler-
ating. All of these observations also strongly indicate that
the alleged acceleration is rather a recent phenomenon and
the universe was decelerating in the past. Two representa-
tive approaches have been proposed to account for the late-
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time cosmic acceleration. The first approach is to assume
the existence of “dark energy” (DE) in the framework of
general relativity. The second approach is to consider the
modification of gravity on the large scale (for reviews on
the issues of DE and the modified theories of gravitation,
see, for example, [14–22]). In this work, we will concentrate
only on the first approach and consider DE to be responsible
for this accelerated phenomenon. There are some excellent
review articles where various DE models have been com-
prehensively discussed [23–26]. The simplest candidate of
DE is the cosmological constant � whose energy density
remains constant with time and its equation of state (EoS)
parameter is ω� = −1. However, the models based upon
cosmological constant suffer from the fine tuning and the cos-
mological coincidence problems [27,28]. Scalar field models
with generic features can alleviate these problems and pro-
vide the late-time evolution of the universe (see Ref. [24] for
a review). Scalar field models are very popular as the sim-
plest generalization of the cosmological constant is provided
by a scalar field, dubbed the quintessence field, which can
drive the acceleration with some suitably chosen potentials.
In this case, one needs some degree of fine tuning of the ini-
tial conditions to account for the accelerated expansion of the
universe and none of the potentials really have proper theo-
retical support from field theory explaining their origin (for a
review, see [29]). In the last decade, an enormous number of
DE models were explored to explain the origin of this late-
time acceleration of the universe and none of these models
have very strong observational evidence [24]. Therefore, the
search is on for suitable DE models and the present study
concerns one of them.

In Ref. [30], Ellis and Madsen had discussed a recon-
struction method to find the scalar field potential. Recently,
this method finds a very wide application in current research
in cosmology. However, there are two types of reconstruc-
tion, namely, parametric and non-parametric. The parametric
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reconstruction method is an attempt to build up a model by
assuming a specific evolution scenario for a model parameter
and then estimate the values of the parameters from different
observational datasets. On the other hand, the non-parametric
reconstruction method does not require any specific assump-
tion for the parameters and finds the nature of cosmic evolu-
tion directly from observational dataset.

In the context of DE, the reconstruction method was
first discussed in [31], where Starobinsky determined the
scalar field potential from the observational dataset from the
behavior of density perturbations in dust-like matter. Some
other earlier works on reconstruction have been discussed in
[32,33] where the dataset of cosmological distance measure-
ment has been used. In practice, a large number of dynami-
cal models have been proposed for DE in which the proper-
ties of DE component are generally summarized as a perfect
fluid with a time-dependent EoS parameter ωφ(z). In building
up the DE model by the parametric reconstruction method,
efforts are normally made through the DE EoS parameter. In
the literature, there are many examples where the authors had
proposed different redshift parametrizations of ωφ to fit with
observational data [34–37] (for review, see also Refs. [38–
41]). However, it has been found that the parametrization of
the energy density ρφ(z) (which depends on its EoS param-
eter through an integral) provides tighter constraints than
ωφ(z) from the same observational dataset (for details, see
Refs. [42–44]). Recently, many investigations have been per-
formed to find the actual functional form of ωφ directly from
the available datasets [45–48]. However, the problem with
this method is that the parameters of interest usually contain
noisy data. The present work uses the idea of parametrizing
the DE density, where we have presented a parametric recon-
struction of the DE function X (z) (which is basically the DE
density in units of its present value) to study the essential
properties of DE. The basic properties of this chosen X (z)
has been discussed in detail in the next section. The functional
form of X (z) depends on the model parameters which have
been constrained from the observational datasets. The con-
straints on the model parameters are obtained by using vari-
ous observational datasets (namely, SN Ia, BAO and CMB)
and a χ2 minimization technique. With the estimated values
of model parameters, we have then reconstructed the deceler-
ation parameter and the EoS parameter at the 1σ and 2σ con-
fidence levels. Furthermore, we have also tried to reconstruct
the scalar potential V (φ) directly from the dark energy func-
tion X (z). Clearly, the present study enables us to construct
the scalar field potential without assuming its functional
form. This is one of the main objectives of the present work.
We have found that the results obtained in this work are con-
sistent with the recent observations and the model does not
deviate very far from the �CDM model at the present epoch.

The outline of the paper is as follows. In the next section,
we present the basic formalism of a flat FRW cosmology

along with the definitions of different cosmological param-
eters. We then solve the field equations for this toy model
using a specific choice of the dark energy function X (z).
The observational datasets and methodology are discussed
in Sect. 3. The main results of this analysis are summarized
in Sect. 4. Finally, in the last section, we present our main
conclusions.

2 Field equations and their solutions

The action for a scalar field φ and the Einstein–Hilbert term
is described as

S =
∫

d4x
√−g

(
R

2κ2 − 1

2
∂μφ∂μφ − V (φ)

)
, (1)

where g is the determinant of the metric gμν and R is the
scalar curvature. In this work, we have chosen natural units
in which κ2 = 8πG = 1. We have assumed the spa-
tially flat Friedmann–Lemaître–Robertson–Walker (FLRW)
space-time

ds2 = dt2 − a2(t)
∑

i=1,2,3

(dxi )2. (2)

Here, a is the scale factor of the universe (taken to be a = 1
at the present epoch). In the above background, the corre-
sponding Einstein field equations can be obtained:

3H2 = ρm + 1

2
φ̇2 + V (φ) (3)

2Ḣ + 3H2 = −1

2
φ̇2 + V (φ) (4)

where H = ȧ
a is the Hubble parameter, ρm is the energy den-

sity of the matter field and φ is the scalar field with poten-
tial V (φ). Here and throughout the paper, an overhead dot
implies differentiation with respect to the cosmic time t .

From Eqs. (3) and (4), one can note that the energy density
ρφ and pressure pφ of the scalar field φ are given by

ρφ = 1

2
φ̇2 + V (φ), (5)

pφ = 1

2
φ̇2 − V (φ). (6)

Also, the conservation equation for the scalar field φ takes
the form

ρ̇φ + 3H(ρφ + pφ) = 0. (7)
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From these equations, one can now easily arrive at the matter
conservation equation as

ρ̇m + 3Hρm = 0, (8)

which can easily be integrated to yield

ρm = ρm0a
−3 (9)

where ρm0 is an integrating constant which denotes the
present value of the matter energy density. From Eq. (7),
the corresponding EoS parameter can be written as

ωφ(z) = pφ

ρφ

= −1 − (1 + z)

3X (z)

dX (z)

dz
, (10)

so that

X (z) = exp

[
3
∫ z

0
(1 + ωφ(z′))dln(1 + z′)

]
(11)

where X (z) = ρφ(z)
ρφ0

, ρφ0 denotes the present value of ρφ(z)

and z is the redshift parameter which is given by z = 1
a − 1.

It is evident from Eq. (10) that the EoS parameter becomes
the cosmological constant (ωφ = −1) when X (z) = con-
stant. Clearly, the quantity X (z), instead of ωφ(z), is a very
good probe to investigate the nature of dark energy. In Refs.
[42,44], the authors argued that one can obtain more infor-
mation by reconstructing ρφ(z) rather than ωφ(z) from the
observational data.

Using Eqs. (3), (9), and (17), the Hubble parameter for
this model can be written as

H(z) = H0

√[
�m0(1 + z)3 + �φ0X (z)

]
(12)

where H0 is the present value of H(z), �m0 = ρm0

3H2
0

and

�φ0 = ρφ0

3H2
0

= (1−�m0) are the present value of the density

parameters of matter and scalar field, respectively.
Next, we have used this H to find the behavior of the

deceleration parameter q, which is defined as

q = − ä

aH2 = −
(

1 + Ḣ

H2

)
(13)

where Ḣ = −(1 + z)H dH
dz .

Using Eqs. (12) and (13), we have obtained the expressions
for the deceleration parameter q (in terms of the redshift z):

q(z) = −1 +
(1 + z)

[
3�m0(1 + z)2 + (1 − �m0)

dX (z)
dz

]

2
[
�m0(1 + z)3 + (1 − �m0)X (z)

] .

(14)

Combining Eqs. (5) and (6), one can obtain an expression for
the scalar field φ(z) as
(

dφ

dz

)2

= 3H2
0 (1 − �m0)

(1 + z)H2(z)

dX (z)

dz

⇒ φ(z) = φ0 +
∫
z

√
3H2

0 (1 − �m0)

(1 + z′)H2(z′)
dX (z′)

dz′
dz′ (15)

where φ0 is an integration constant.
Similarly, using Eqs. (5) and (6), one can reconstruct the

potential for the scalar field as

V (z) = 3H2
0 (1 − �m0)

[
X (z) − (1 + z)

6

dX (z)

dz

]
. (16)

Therefore, we can obtain the expression for the potential
V (φ) as a function of φ, by solving Eqs. (15) and (16) if
the values of the model parameters and the functional form
of X (z) are given.

Now, out of Eqs. (3), (4), (7), and (8), only three are inde-
pendent as any one of them can be derived from the Einstein
field equations with the help of the other three in view of
the Bianchi identities. So, we have four unknown parameters
(namely, H , ρm , φ and V (φ)) to solve for. Hence, in order
to solve the system completely, we need an additional input.
For the present work, we have considered a simple assump-
tion regarding the functional form for the evolution of X (z)
given by

X (z) = (1 + z)αeβz (17)

where α and β are arbitrary constants to be fixed by obser-
vations. For this choice of X (z), the EoS parameter ωφ(z)
becomes

ωφ(z) = −1 + α

3
+ β

3
(1 + z), (18)

which is similar to the well-known linear redshift parametriza-
tion of the EoS parameter ωφ(z) given by [34,35]

ωφ(z) = ω0 + ω1z (19)

for ω0 = ωφ(z = 0) = −1 + α
3 + β

3 and ω1 = β
3 .

This parametrization is well behaved at low redshifts, but
it diverges at high redshift. However, the above choice of
ωφ(z) has been widely used in the context of dark energy
(as it is a late-time phenomenon), due to its simplicity. When
α = 0 and β = 0, the EoS parameter (18) reduces to the
standard �CDM model as well. Therefore, the simplicity of
the functional form of X (z) (or, equivalently, ωφ(z)) makes it
very attractive to study. In other words, the choice (17) can be
thought of as the parametrization of the DE density instead
of ωφ(z). If desired cosmological scenario is achieved with
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this choice of X (z), then some clues about the nature of DE
may be obtained.

For this specific choice, Eq. (12) can be written as

H(z) = H0

√[
�m0(1 + z)3 + �φ0(1 + z)αeβz

]
(20)

The effective EoS parameter can be expressed in terms of H
and its derivative with respect to z as

ωeff(z) = pφ

ρm + ρφ

⇒ ωeff(z) = −2Ḣ + 3H2

3H2 = −1 + 2(1 + z)

3H(z)

dH(z)

dz
(21)

and, for the present model, the expression is

ωeff(z) = − (1 − �m0)(3 − α − β − βz)eβz(1+z)α

3eβz(1+z)α − 3�m0((1 + z)3 − eβz(1+z)α)
.

(22)

In this case, q(z), V (z), and φ(z) evolve as

q(z) = −1

+
[
3�m0(1 + z)3 + (1 − �m0)eβz{α(1 + z)α + β(1 + z)α+1}]

2
[
�m0(1 + z)3 + (1 − �m0)(1 + z)αeβz

] ,

(23)

φ(z) = φ0 +
∫
z

√
(1 − �m0)eβz′(1 + z′)α[α + β(1 + z′)]
�m0(1 + z′)3 + (1 − �m0)eβz′(1 + z′)α

× dz′

(1 + z′)
, (24)

V (z) = H2
0 (�m0 − 1)

2
eβz(1 + z)α[α + β(1 + z) − 6].

(25)

Before reconstructing the functional form for V (φ) for given
values of the model parameters (e.g., α and β), we first obtain
the allowed ranges for these parameters from the observa-
tional datasets. In the next section, we shall attempt to esti-
mate the values of α and β using available observational
datasets, so that the said model can explain the evolution
history of the universe more precisely.

3 Data analysis methods

Here, we have explained the method employed to constrain
the theoretical models by using the recent observational
datasets from Type Ia Supernova (SN Ia), Baryon Acous-
tic Oscillations (BAO) and Cosmic Microwave Background

(CMB) radiation data surveying. We have used the χ2 min-
imum test with these datasets and found the best-fit values
of arbitrary parameters for 1σ and 2σ confidence levels (as
discussed in Sect. 4). In the following subsections, the χ2

analysis used for those datasets is described.

3.1 SN Ia

Firstly, we have used recently released Union2.1 compilation
data [49] of 580 data points which has been widely used in
recent times to constraint different dark energy models. The
χ2 function for the SN Ia dataset is given by [50]

χ2
SNIa = P − Q2

R
(26)

where P , Q and R are defined as follows:

P =
580∑
i=1

[μobs(zi ) − μth(zi )]2

σ 2
μ(zi )

, (27)

Q =
580∑
i=1

[μobs(zi ) − μth(zi )]
σ 2

μ(zi )
, (28)

and

R =
580∑
i=1

1

σ 2
μ(zi )

(29)

where μobs represents the observed distance modulus while
μth = 5log10[(1 + z)

∫ z
0

H0
H(z)dz]+25−5log10H0, is the cor-

responding theoretical one. Also, the quantity σμ represents
the statistical uncertainty in the distance modulus.

Alternatively, χ2
SNIa can be written (in terms of covariance

matrix) as

χ2
SNIa = XTC−1X

where X is a vector of differences Xi = μth(zi ) − μobs(zi ),
and C−1 is the inverse Union 2.1 compilation covariance
matrix. It deserves mention that for large sample sets, one
can use either Eq. (26) or (30) without any loss of generality.

3.2 BAO/CMB

Next, we have considered BAO [51–53] and CMB [54] mea-
surement dataset to obtain the BAO/CMB constraints on the
model parameters. In Ref. [55], the authors have obtained the
BAO/CMB constrains on the model parameters by consider-
ing only two BAO measurements, whereas here we have con-
sidered six BAO data points (see Table 1). For BAO dataset,
the results from the WiggleZ Survey [53], SDSS DR7 Galaxy
sample [52] and 6dF Galaxy Survey [51] datasets have been
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Table 1 Values of dA(z�)
DV (ZBAO)

for different values of zBAO. Here, dA(z) = ∫ z
0

dz′
H(z′) is the co-moving angular-diameter distance, z� ≈ 1091 is the

decoupling time and DV (z) = [dA(z)2 z
H(z) ]

1
3 is the dilation scale [57]

zBAO 0.106 0.2 0.35 0.44 0.6 0.73

dA(z�)
DV (ZBAO)

30.95 ± 1.46 17.55 ± 0.60 10.11 ± 0.37 8.44 ± 0.67 6.69 ± 0.33 5.45 ± 0.31

used. On the other hand, the CMB measurement considered is
derived from the WMAP7 observations [54]. The discussion
as regards the BAO/CMB dataset has also been presented in
a very similar way in [56], but the details of methodology for
obtaining the BAO/CMB constraints on model parameters
is available in Ref. [57]. For this dataset, the χ2 function is
defined as [57]

χ2
BAO/CMB = XTC−1X (30)

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dA(z�)
DV (0.106)

− 30.95
dA(z�)
DV (0.2)

− 17.55
dA(z�)

DV (0.35)
− 10.11

dA(z�)
DV (0.44)

− 8.44
dA(z�)
DV (0.6)

− 6.69
dA(z�)

DV (0.73)
− 5.45

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

and

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738

−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751

−0.164945 −2.45499 9.55916 −0.128187 −0.410404 −0.447574

−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437

−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441

−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this work, we have also considered the CMB shift
parameter data (which is derived from Planck observation
[58]) and have examined its impact on the present dark energy
constraints. For this dataset, the details of the methodol-
ogy for obtaining the constraints on model parameters are
described in Ref. [58]).

Hence, the total χ2 for the combined dataset
(SNIa+BAO/CMB) is given by

χ2
tot = χ2

SNIa + χ2
BAO/CMB. (32)

For the combination of SN Ia and BAO/CMB datasets, one
can now obtain the best-fit values of parameters by minimiz-
ing χ2

tot. Then one can use the maximum likelihood method

and take the total likelihood function Ltot = e− χ2
tot
2 as the

products of these individual likelihood functions of each
dataset, i.e., Ltot = LSN × LBAO/CMB. The best-fit parame-
ter values b∗ are those that maximize the likelihood function
Ltot(b∗), or equivalently minimize χ2

tot(b
∗) = −2lnLtot(b∗).

The contours of 1σ and 2σ constraints correspond to the
sets of cosmological parameters (centered on b∗) bounded
by χ2

tot(b) = χ2
tot(b

∗) + 2.3 and χ2
tot(b) = χ2

tot(b
∗) + 6.17,

respectively. For the present model, we have minimized the
χ2 function with respect to the model parameters {α, β} to
obtain their best-fit values. In order to do so, we have fixed
�m0 to some constant value.

4 Results of data analysis

Following theχ2 analysis (as presented in Sect. 3), in this sec-
tion, we have obtained the constraints on the model parame-
ters α and β for the combined dataset (SN Ia+BAO/CMB).
In this work, we have obtained the confidence region ellipses
in the α−β parameter space by fixing �m0 to 0.26, 0.27 and
0.28 for the combined dataset. The 1σ and 2σ confidence

level contours in α − β plane is shown in Fig. 1 for SN
Ia+BAO/CMB dataset. It has also been found from Fig. 1
that current constraints favor a �CDM model within 1σ con-
fidence limit (as shown by red dot). The best-fit values of α

and β are presented in Table 2.
The marginalized likelihoods for the present model is

shown in Fig. 2. It is evident from the likelihood plots that the
likelihood functions are well fitted to a Gaussian distribution
function for SN Ia+BAO/CMB dataset. For a comprehensive
analysis, we have also used �m0 and H0 as free parameters
along with α and β. The result of corresponding statistical
analysis is presented in Table 3. It is clear from Tables 2 and
3 that the best-fit value of �m0 turns out to be 0.28 which was
one of the choices in Table 2, and the corresponding values
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0.4 0.2 0.0 0.2 0.4

0.05

0.00

0.05

0.10

0.15

0.20

α

β
SN Ia BAO CMB data

Fig. 1 Plot of 1σ (light gray) and 2σ (gray) confidence contours on
α − β parameter space for SN Ia+BAO/CMB dataset. In this plot,
black dot represents the best-fit value of the pair (α, β) arising from the
analysis of SN Ia+BAO/CMB dataset. Also, the red dot represents the
standard �CDM model (as ωφ = −1 for α = 0 and β = 0). The plot
is for �m0 = 0.27

Table 2 Best-fit values of the model parameters α and β (within 1σ

confidence level) for the analysis of SN Ia+BAO/CMB dataset with
different choices of �m0. Here, χ2

m represents the minimum value of
χ2

Data �m0 α β χ2
m

SN Ia+BAO/CMB 0.26 0.03 0.07 564.81

0.27 −0.02 0.05 564.79

0.28 −0.08 0.03 564.80

of α and β does not differ by very large values. However,
the values of the parameters (H0 and �m0) obtained in the
present work are slightly lower than the values obtained by
the Planck analysis, which puts the limit on the parameters as,
H0 = 67.3 ± 1.2 km s−1 Mpc−1 and �m0 = 0.315 ± 0.017
with 1σ errors [59].

In addition to this, we have also obtained the constraints
on model parameters using the combination of SN Ia, BAO
and the CMB shift parameter (which is derived from Planck
observation [58]) datasets to study the properties of our model
extensively. For the SN Ia+BAO+CMB (Planck) dataset, the
1σ and 2σ confidence level contours in α−β plane is shown
in Fig. 3. The results of corresponding data analysis are sum-
marized in Tables 4 and 5. It has been found from Figs. 1 and
3 that the constraints obtained on the parameter values by the
SN Ia+BAO+CMB (Planck) dataset are very tight as com-
pared to the constraints obtained from the SN Ia+BAO/CMB
(WMAP7) dataset. However, the change in the best-fit values
of the model parameters (α and β) for the two datasets is very
small. Also, the best-fit values of H0 and �m0 obtained in
this case are very close to the values obtained by the Planck

2.0 1.5 1.0 0.5 0.0 0.5
0.0

0.2

0.4

0.6

0.8

1.0

α

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

β

Li
ke

lih
oo

d

SN Ia BAO CMB data

SN Ia BAO CMB data

Fig. 2 The marginalized likelihood functions of the present model are
shown for SN Ia+BAO/CMB dataset. Both plots are for �m0 = 0.27

Table 3 Best-fit values of H0, �m0, α and β (within 1σ confidence
level) for the analysis of SN Ia+BAO/CMB dataset

Data H0 �m0 α β χ2
m

SN Ia+BAO/CMB 66.02 0.28 −0.03 0.05 564.78

analysis [59]. We have found from Fig. 3 that the present con-
straints obtained from SNIa+BAO+CMB (Planck) dataset
favor a standard �CDM model within 2σ confidence limit as
shown by the red dot, whereas for SN Ia+BAO/CMB dataset,
the �CDM model was favored with 1σ confidence limit as
is evident from Fig. 1.

In the upper panel of Fig. 4, the evolution of the deceler-
ation parameter q(z) is shown within 1σ and 2σ confidence
regions around the best-fit curve for the combined dataset. It
is clear from Fig. 4 that q(z) shows a smooth transition from
a decelerated (q > 0, at high z) to an accelerated (q < 0,
at low z) phase of expansion of the universe at the transi-
tion redshift zt = 0.75 for the best-fit model (as shown by
central dark line). It deserves mention here that the value of
zt obtained in the present work is very close to the value
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Fig. 3 This figure shows the 1σ (light gray) and 2σ (gray) confi-
dence contours on α−β parameter space using the SN Ia+BAO+CMB
(Planck) dataset. In this plot, the black dot represents the best-fit value
of the pair (α, β), whereas the red dot represents the standard �CDM
model (α = 0 and β = 0). The plot is for �m0 = 0.3

Table 4 Best-fit values of the model parametersα andβ (within 1σ con-
fidence level) for the analysis of SN Ia+BAO+CMB (Planck) dataset
by considering different values of �m0

Data �m0 α β χ2
m

SN Ia+BAO+CMB (Planck) 0.3 −0.04 0.03 564.49

0.315 −0.05 0.03 564.32

obtained for various dark energy models by Magana et al.
[38]. They have found that the universe has a transition from
a decelerated phase to an accelerated phase at zt ∼ 0.75,
zt ∼ 0.7, zt ∼ 1 and zt ∼ 0.7 for the Polynomial, BA,
FSLL I and FSLL II parametrizations of ωφ(z), respectively
(see [38] and the references therein). Also, the present value
of q (say, q0) obtained in this work for the best-fit model
is −0.58. Hence, the values of zt and q0 obtained in the
present work are very close to the value obtained for the
standard �CDM model (zt ≈ 0.74 and q0 ≈ −0.59), as
indicated by the red dashed line in the upper panel of Fig. 4.
Recently Ishida et al. [55] used a kink-like expression for
q(z) to study the expansion history of the universe. They
have obtained zt = 0.84+0.13

−0.17 and zt = 0.88+0.12
−0.10 (at 2σ

confidence level) for SDSS+2dfGRS BAO+Gold182 and
SDSS+2dfGRS BAO+SNLS datasets, respectively. So, our
analysis (zt = 0.75 ± 0.02, at 2σ level) provides better con-
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Fig. 4 a Upper panel the evolution of q(z) as a function of z. The
dashed line represents �CDM model with ��0 = 0.725 and �m0 =
0.275. b Lower panel the evolution of ωeff (z) as a function of z. Both
plots are for the best-fit values of the pair (α, β) arising from the analysis
of SN Ia+BAO/CMB dataset and �m0 = 0.27 (see Table 2). The 1σ

and 2σ confidence regions have been shown and the central dark line
represents the best-fit curve

straint on zt as compared to the results of Ishida et al. [55].
Next, we have shown the reconstructed evolution history of
the effective EoS parameter ωeff(z) in the lower panel of
Fig. 4 for this model using SN Ia+BAO/CMB dataset. The
lower panel of Fig. 4 reveals that ωeff(z) was very close to
zero at high z and attains negative value (−1 < ωeff < − 1

3 ,
within 2σ limit) at low z, and thus does not suffer from the
problem of ‘future singularity’. These results are also in good
agreement with the observational data. We have also recon-
structed the EoS parameter ωφ(z) for the scalar field in the
inset diagram of the lower panel of Fig. 4. For the best-fit

Table 5 Best-fit values of H0, �m0, α and β (within 1σ confidence level) for the analysis of SN Ia+BAO+CMB (Planck) dataset

Data H0 �m0 α β χ2
m

SN Ia+BAO+CMB (Planck) 66.83 0.294 −0.05 0.04 565.79
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Fig. 5 a Upper panel the plot of the scalar potential V (z) (in units
of 3H2

0 ) as a function of z with 1σ and 2σ confidence regions. The
central dark line is the best-fit curve. b Lower panel the evolution of
the reconstructed potential (in units of 3H2

0 ) with the scalar field φ by
considering φ0 = 0.1. Both plots are for the best-fit values of (α, β) for
the SNIa+BAO/CMB dataset and �m0 = 0.27

model, the present value of ωφ(z) turns out to be −0.99+0.04
−0.03

(with 1σ errors) and −0.99+0.08
−0.07 (with 2σ errors), which

is definitely within the constraint range [60,61]. Moreover,
our results are also in good agreement with other previous
works [38–41], where the authors have considered different
parameterizations of ωφ(z) and obtained ωφ(z = 0) ≈ −1 at
1σ confidence level for the analysis of various observational
datasets.

The upper panel of Fig. 5 shows the evolution of the poten-
tial V (z) as a function of z. The best fit of the potential, as
indicated by the central line, remains almost constant in the
range 0 < z < 3. For the sake of completeness, using the
parametric relations [φ(z), V (z)] given by Eqs. (24) and (25),
we have also obtained the form of the dark energy potential
V (φ) by a numerical method for some given values of the
model parameters. The evolution of V (φ) is shown in the
lower panel of Fig. 5 and it has been found that V (φ) sharply
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Fig. 6 Upper panel the evolution of X (z) with 1σ and 2σ confidence
regions. Lower panel plot of ρm(z) (dashed curve) and ρφ(z) (with 1σ

and 2σ confidence regions) as a function of z for this toy model with
�m0 = 0.27 (in units of 3H2

0 ). In each panel, the central dark line is
the best-fit curve

increases with φ for the choice of X (z) given by Eq. (17).
For this plot, we have considered α = −0.02, β = 0.05,
�m0 = 0.27 and φ0 = 0.1. In this case, the potential V (φ)

can be explicitly expressed in terms of φ as

V (φ)

3H2
0

≈ 2579.13φ5 − 2554.97φ4

+ 998.06φ3 − 189.63φ2 + 17.57φ + 0.1, (33)

a polynomial in φ.
The upper panel of Fig. 6 shows the evolution of X (z)

as a function of z at the 1σ and 2σ confidence levels. It
can be seen from Fig. 6 that X (z) behaves like cosmological
constant (i.e., X (z) = 1) at the present epoch, but deviation
from this is clearly visible at high redshift. The variation of
energy densities ρm and ρφ with the redshift z are also shown
in the lower panel of Fig. 6, which shows that ρφ dominates
over ρm at the present epoch. This result is in accordance
with observational predictions.
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5 Conclusion

In this paper, we have focused on a quintessence model in
which the scalar field is considered as a candidate of dark
energy. It has been shown that, for a spatially flat FRW uni-
verse, we can construct a presently accelerating model of the
universe with the history of a deceleration in the past by con-
sidering a specific choice of the dimensionless dark energy
function X (z). The motivation behind this particular choice
of X (z) has been discussed in detail in Sect. 2 and for this
specific ansatz, we have solved the field equations and have
obtained the expressions for different cosmological param-
eters, such as H(z), q(z) and ωeff(z). As mentioned earlier
that the model parameters (α and β) are a good indicator of
deviation of the present model from cosmological constant
as for α = 0 and β = 0 the model mimics the �CDM model.
We have also constrained the model parameters using the SN
Ia+BAO/CMB (WMAP7) and SN Ia+BAO+CMB (Planck)
datasets to study the different properties of this model exten-
sively. It is evident from Table 2 that the best-fit values of α

and β are very close to zero. So, our analysis indicates that the
reconstructed ωφ(z) is very close to the �CDM value at the
present epoch. In summary, using SN Ia+BAO/CMB dataset
jointly, we have then reconstructed various parameters (e.g.,
q(z), ωeff(z) and ωφ(z)) as well as the quintessence poten-
tial V (φ) directly from the chosen X (z), which describes
the properties of the dark energy. The resulting cosmological
scenarios are found to be very interesting. It has been found
that the evolution ofq(z) in this model shows a smooth transi-
tion from a decelerated to an accelerated phase of expansion
of the universe at late times. As discussed in Sect. 4, it has
been found that our reconstructed results of q(z) and ωφ(z)
are in good agreement with the previous works [38–41]. For
completeness of the work, we have also derived the form of
the effective scalar field potential V (φ), in terms of φ, for this
model and the resulting potential is found to be a polynomial
in φ.

From the present investigation, it can be concluded that
the SN Ia+BAO/CMB dataset although supports the con-
cordance �CDM model at the 1σ confidence level, but
it favors the scalar field dark energy model as well. In
other words, it is well worth emphasizing that the obser-
vational datasets are not yet good enough to strongly distin-
guish present dark energy model from the �CDM model
at present. With the progress of the observational tech-
niques as well as the data analysis methods in the future, we
hope that the parameters in X (z) can be constrained more
precisely, which will improve our understanding about the
nature of dark energy. The present analysis is one prelim-
inary step toward that direction. In the future, we plan to
test this parametric form of X (z) in scalar–tensor theories of
gravity.

Acknowledgements A.A.M. acknowledges UGC, Govt. of India, for
financial support through a Maulana Azad National Fellowship. This
work was partially supported by the JSPS Grant-in-Aid for Young Sci-
entists (B) # 25800136 and the research-funds presented by Fukushima
University (K.B.). S.D. wishes to thank IUCAA, Pune, for an associate-
ship program. The authors are also thankful to the anonymous referee
whose useful suggestions have improved the quality of the paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. S. Perlmutter et al., Supernova Cosmology Project Collaboration.
Astrophys. J. 517, 565 (1999)

2. A.G. Riess et al., Supernova Search Team Collaboration. Astron.
J. 116, 1009 (1998)

3. P.A.R. Ade et al., [Planck Collaboration], arXiv:1502.01589 [astro-
ph.CO]

4. P.A.R. Ade et al., [Planck Collaboration], arXiv:1502.02114 [astro-
ph.CO]

5. P.A.R. Ade et al., [BICEP2 Collaboration], Phys. Rev. Lett., 112,
241101 (2014). arXiv:1403.3985 [astro-ph.CO]

6. P.A.R. Ade et al., [BICEP2 and Planck Collaborations], Phys. Rev.
Lett. 114, 101301 (2015). arXiv:1502.00612 [astro-ph.CO]

7. P.A.R. Ade et al., [BICEP2 and Keck Array Collaborations], Phys.
Rev. Lett. 116, 031302 (2016). arXiv:1510.09217 [astro-ph.CO]

8. E. Komatsu et al., [WMAP Collaboration], Astrophys. J. Suppl.
192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]

9. G. Hinshaw et al., [WMAP Collaboration], Astrophys. J. Suppl.
208, 19 (2013). arXiv:1212.5226 [astro-ph.CO]

10. M. Tegmark et al., SDSS Collaboration. Phys. Rev. D 69, 103501
(2004). arXiv:astro-ph/0310723

11. U. Seljak et al., SDSS Collaboration. Phys. Rev. D 71, 103515
(2005). arXiv:astro-ph/0407372

12. D.J. Eisenstein et al., SDSS Collaboration. Astrophys. J. 633, 560
(2005). arXiv:astro-ph/0501171

13. B. Jain, A. Taylor, Phys. Rev. Lett. 91, 141302 (2003).
arXiv:astro-ph/0306046

14. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).
arXiv:1011.0544 [gr-qc]

15. S. Nojiri, S.D. Odintsov, eConf C, 0602061, 06 (2006) (Int. J.
Geom. Methods Mod. Phys. 4, 115 (2007). arXiv:hep-th/0601213

16. S. Capozziello, V. Faraoni,BeyondEinsteinGravity (Springer, Dor-
drecht, 2010)

17. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)
18. A. de la Cruz-Dombriz, D. Sáez-Gómez, Entropy 14, 1717 (2012)
19. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys.

Space Sci. 342, 155 (2012)
20. A. Joyce, B. Jain, J. Khoury, M. Trodden, Phys. Rep. 568, 1 (2015)
21. K. Koyama, arXiv:1504.04623 [astro-ph.CO]
22. K. Bamba, S.D. Odintsov, Symmetry 7(1), 220 (2015).

arXiv:1503.00442 [hep-th]
23. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)
24. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15,

1753 (2006)
25. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)
26. J. Martin, Mod. Phys. Lett. A 23, 1252 (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1502.02114
http://arxiv.org/abs/1403.3985
http://arxiv.org/abs/1502.00612
http://arxiv.org/abs/1510.09217
http://arxiv.org/abs/1001.4538
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/astro-ph/0310723
http://arxiv.org/abs/astro-ph/0407372
http://arxiv.org/abs/astro-ph/0501171
http://arxiv.org/abs/astro-ph/0306046
http://arxiv.org/abs/1011.0544
http://arxiv.org/abs/hep-th/0601213
http://arxiv.org/abs/1504.04623
http://arxiv.org/abs/1503.00442


29 Page 10 of 10 Eur. Phys. J. C (2017) 77 :29

27. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)
28. P.J. Steinhardt et al., Phys. Rev. Lett. 59, 123504 (1999)
29. V. Sahni, Lect. Notes Phys. 653, 141 (2004).

arXiv: astro-ph/0403324
30. G.F.R. Ellis, M.S. Madsen, Class. Quantum Grav. 8, 667 (1991)
31. A.A. Starobinsky, JETP Lett. 68, 757 (1998)
32. T.D. Saini, S. Raychaudhury, V. Sahni, A.A. Starobinsky, Phys.

Rev. Lett. 85, 1162 (2000)
33. D. Huterer, M.S. Turner, Phys. Rev. D 64, 123527 (2001)
34. D. Huterer, M.S. Turner, Phys. Rev. D 60, 081301 (1999)
35. J. Weller, A. Albrecht, Phys. Rev. Lett. 86, 1939 (2001)
36. M. Chevallier, D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001)
37. E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003)
38. J. Magana et al., JCAP 017, 1410 (2014). arXiv:1407.1632 [astro-

ph.CO]
39. K. Shi et al., Res. Astron. Astrophys. 11, 1403 (2011)
40. A.A. Mamon, S. Das, Eur. Phys. J. C 75, 244 (2015).

arXiv:1503.06280 [gr-qc]
41. A.A. Mamon, S. Das, Eur. Phys. J. C 76, 135 (2016)
42. Y. Wang, P.M. Garnavich, Astrophys. J. 552, 445 (2001)
43. I. Maor, R. Brustein, J. McMahon, P.J. Steinhardt, Phys. Rev. D

65, 123003 (2002)
44. Y. Wang, K. Freese, Phys. Lett. B 632, 449 (2006)

45. M. Sahlen, A.R. Liddle, D. Parkinson, Phys. Rev. D 72, 083511
(2005)

46. M. Sahlen, A.R. Liddle, D. Parkinson, Phys. Rev. D 75, 023502
(2007)

47. T. Holsclaw et al., Phys. Rev. D 84, 083501 (2011)
48. R.G. Crittenden et al., JCAP 02, 048 (2012)
49. N. Suzuki et al., Astrophy. J. 746, 85 (2012). arXiv:1105.3470

[astro-ph.CO]
50. S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 72, 123519 (2005)
51. F. Beutler et al., Mon. Not. R. Astron. Soc. 416, 3017 (2011)
52. W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148 (2010)
53. C. Blake et al., Mon. Not. R. Astron. Soc. 418, 1707 (2011)
54. N. Jarosik et al., Astrophys. J. Suppl. 192, 14 (2011)
55. E.E.O. Ishida, R.R.R. Reis, A.V. Toribio, I. Waga, Astropart. Phys.

28, 547 (2008)
56. A.A. Mamon, S. Das, Int. J. Mod. Phys. D 25, 1650032 (2016)
57. R. Goistri et al., JCAP 03, 027 (2012)
58. Y. Wang, S. Wang, Phys. Rev. D 88, 043522 (2013)
59. P.A.R. Ade et al., 571, A16 (2014)
60. W.M. Wood-Vasey et al., Astrophys. J. 666, 694 (2007)
61. T.M. Davis et al., Astrophys. J. 666, 716 (2007)

123

http://arxiv.org/abs/astro-ph/0403324
http://arxiv.org/abs/1407.1632
http://arxiv.org/abs/1503.06280
http://arxiv.org/abs/1105.3470

	Constraints on reconstructed dark energy model from SN Ia  and BAO/CMB observations
	Abstract 
	1 Introduction
	2 Field equations and their solutions
	3 Data analysis methods
	3.1 SN Ia
	3.2 BAO/CMB

	4 Results of data analysis
	5 Conclusion
	Acknowledgements
	References




