
Eur. Phys. J. C (2016) 76:702
DOI 10.1140/epjc/s10052-016-4555-1

Regular Article - Theoretical Physics

Holographic free energy and thermodynamic geometry

Debabrata Ghorai1,a, Sunandan Gangopadhyay2,3,4,b

1 S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098, India
2 Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741246, India
3 Department of Physics, West Bengal State University, Barasat 700126, India
4 Inter University Centre for Astronomy and Astrophysics, Pune 411007, India

Received: 1 October 2016 / Accepted: 5 December 2016 / Published online: 21 December 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We obtain the free energy and thermodynamic
geometry of holographic superconductors in 2 + 1 dimen-
sions. The gravitational theory in the bulk dual to this 2 + 1-
dimensional strongly coupled theory lives in the 3+1 dimen-
sions and is that of a charged AdS black hole together with a
massive charged scalar field. The matching method is applied
to obtain the nature of the fields near the horizon using
which the holographic free energy is computed through the
gauge/gravity duality. The critical temperature is obtained
for a set of values of the matching point of the near horizon
and the boundary behaviour of the fields in the probe limit
approximation which neglects the back reaction of the matter
fields on the background spacetime geometry. The thermo-
dynamic geometry is then computed from the free energy of
the boundary theory. From the divergence of the thermody-
namic scalar curvature, the critical temperature is obtained
once again. We then compare this result for the critical tem-
perature with that obtained from the matching method.

1 Introduction

There has been an immense amount of interest in study-
ing strongly coupled systems using one of the most fas-
cinating developments in modern theoretical physics, the
gauge/gravity correspondence. The correspondence [1–4]
gives an exact duality between a gravity theory living in a
(d + 1)-dimensional AdS spacetime with a field theory hav-
ing conformal invariance sitting on the d-dimensional bound-
ary of this spacetime. In recent years, it was first demonstrated
in [5] that the formation of a scalar field condensate near the
horizon of a black hole is possible below a certain critical
temperature for a charged AdS black hole coupled mini-
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mally to a complex scalar field. The gauge/gravity duality
then implies that the scalar operator dual to the scalar field
in the bulk acquires a non-zero vacuum expectation value
in the boundary field theory. This is what is known as the
holographic superconductor phase transition [6–8]. There-
after, a lot of work has been done to study the properties
of the holographic Fermi liquid [9,10], holographic insula-
tor/superconductor phase transition [11], transport properties
of holographic superconductor both in the probe limit and
away from the probe limit, that is, including the effects of
back reaction of matter fields on the background spacetime
[12–18].

Another interesting development that has taken place
recently is the association of a geometrical structure with
thermodynamic systems in equilibrium. This was first real-
ized through the work in [19–21]. It was shown that one can
get a Riemannian metric with an Euclidean signature from
the equilibrium state of a thermodynamic system. The Rie-
mannian scalar curvature can then be computed and captures
the details of interactions of the thermodynamic system. It
turns out that this framework based on a geometrical structure
gives a handle to study critical phenomena [21].

In this paper, we set out to study the properties of 2 + 1-
dimensional holographic superconductors using the formal-
ism of the thermodynamic geometry. We employ the match-
ing method [16,22] to obtain the behaviour of the matter
fields near the horizon of the black hole. This in turn is used to
compute the critical temperature and the condensation opera-
tor. We obtain the critical temperature for a set of values of the
matching point where the near horizon and boundary values
of the fields are matched. The analysis is based on the probe
limit approximation (which neglects the back reaction of the
matter fields on the background spacetime geometry) and is
carried out for two sets of boundary conditions for the con-
densation operator, namely ψ− �= 0, ψ+ = 0 and ψ+ �= 0,
ψ− = 0. The choice ψ+ = 0 essentially implies that ψ− is
dual to the expectation value of the condensation operator at
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the boundary. The requirement ψ+ = 0 is necessary because
we want to turn the condensate on without it being sourced.
We then proceed to compute the free energy of this 2 + 1-
dimensional holographic superconductor. The trick here is to
relate the free energy of the theory on the boundary to the
value of the on-shell action of the Abelian Higgs sector of
the full Euclidean action with proper boundary terms [23,24].
From this, we compute the thermodynamic metric using the
formalism of [21]. The computation is once again carried
out for both sets of boundary conditions for the condensation
operator as mentioned earlier. The scalar curvature is com-
puted next and the temperature at which the scalar curvature
diverges is said to be the critical temperature in this approach.
This temperature is then compared with that obtained from
the matching method. The analysis gives us yet another way
of comparing the results with those obtained from other ana-
lytical techniques, namely, the Sturm–Liouville eigenvalue
method [25–30] and the matching method [15,16,22,31].

This paper is organized as follows. In Sect. 2, we pro-
vide the basic set up for the holographic superconductors in
the background of a 3 + 1-dimensional electrically charged
black hole in anti-de Sitter spacetime. In Sect. 3, using the
probe limit approximation, we compute the critical temper-
ature using the matching method, where the matching has
been carried out at several points between the boundary and
the horizon. In Sect. 4, we analytically obtain free energy
expression in terms of the chemical potential and the charge
density. In Sect. 5, we calculate the thermodynamic metric
and the scalar curvature. We conclude finally in Sect. 6.

2 Basic set up

The model for a holographic superconductor needs a complex
scalar field coupled to a U (1) gauge field in anti-de Sitter
spacetime. In 3 + 1 dimensions, the action for this reads

S =
∫

d4x
√−g

×
[

1

2κ2 (R−2�)− 1

4
FμνFμν −(Dμψ)∗Dμψ − m2ψ∗ψ

]

(1)

where � = − 3
L2 is the cosmological constant, κ2 = 8πG,

G being the Newton universal gravitational constant, Aμ

and ψ represent the gauge field and scalar fields, Fμν =
∂μAν − ∂ν Aμ; (μ, ν = 0, 1, 2, 3, 4) is the field strength ten-
sor, Dμψ = ∂μψ − iq Aμψ is the covariant derivative.

Assuming that the plane-symmetric black hole metric can
be put in the form

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dx2 + dy2) (2)

where f (r) = r2(1 − r3+
r3 ) and r+ is the horizon radius and

making the ansatz for the gauge field and the scalar field to
be [6]

Aμ = (φ(r), 0, 0, 0), ψ = ψ(r), (3)

leads to the following equations of motion for the matter
fields [30]:

φ′′(r) + 2

r
φ′(r) − 2q2ψ2(r)φ(r)

f (r)
= 0 (4)

ψ ′′(r) +
(

2

r
+ f ′(r)

f (r)

)
ψ ′(r) +

(
q2φ2(r)

f (r)2 − m2

f (r)

)
ψ(r)

= 0 (5)

where prime denotes derivative with respect to r . Since we
shall carry out our analysis in the probe limit, we are allowed
to set q = 1 [13].

The Hawking temperature of this black hole is

Th = f ′(r+)

4π
= 3

4π
r+. (6)

This is interpreted as the temperature of the conformal field
theory on the boundary.

For the matter fields to be regular, one requires φ(r+) = 0
and ψ(r+) to be finite at the horizon.

Near the boundary of the bulk, the matter fields obey [16]

φb(r) = μ − ρ

r
, (7)

ψb(r) = ψ−
r
− + ψ+

r
+ (8)

where the conformal dimension 
± is given by


± = 3 ± √
9 + 4m2

2
. (9)

The parameters μ and ρ are interpreted to be dual to the
chemical potential and charge density of the conformal field
theory on the boundary.

At this point, we make the change of coordinates z = 1
r .

Under this transformation, the metric (2) takes the form

ds2 = 1

z2

(
−F(z)dt2 + dz2

F(z)
+ dx2 + dy2

)
,

f (z) = 1

z2

(
1 − z3

z3
h

)
= 1

z2 F(z) (10)

where F(z) = (1 − z3

z3
h
) and zh = 1

r+ .
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The Hawking temperature becomes Th = 3
4π zh

and the field

equations (4) and (5) become1

φ′′(z) − 2ψ2(z)

z2F(z)
φ(z) = 0 (11)

ψ ′′(z) +
(
F ′(z)
F(z)

− 2

z

)
ψ ′(z) +

(
φ2(z)

F2(z)
− m2

z2F(z)

)
ψ(z)

= 0 (12)

where prime now denotes derivative with respect to z. In
the next section we shall employ the matching method in
the interval (0, zh) to obtain the critical temperature below
which the scalar field condensation takes place. The bound-
ary condition φ(r+) = 0 in z-coordinate translates to φ(z =
zh) = 0. The asymptotic behaviour of the fields read

φb(z) = μ − ρz, (13)

ψb(z) = ψ−z
− + ψ+z
+ . (14)

3 Critical temperature from matching method

To apply the matching method, we require the fields to be
finite at the horizon. The Taylor series expansions of these
fields near the horizon read

φh(z) = φ(zh) + φ′(zh)(z − zh) + φ′′(zh)
2

(z − zh)
2 + . . . ,

(15)

ψh(z) = ψ(zh) + ψ ′(zh)(z − zh) + ψ ′′(zh)
2

(z − zh)
2 + . . .

(16)

To compute the undetermined coefficients, we use the bound-
ary condition φ(zh) = 0 along with f (zh) = 0 and Eqs. (11)
and (12). This yields2

φ′′(zh) = − 2

3zh
φ′(zh)ψ2(zh), (17)

ψ ′(zh) = − m2

3zh
ψ(zh);

ψ ′′(zh) = ψ(zh)

18z2
h

[m4 + 6m2 − z4φ′2(zh)]. (18)

In the rest of our analysis, we shall set m2 = −2, which in
turn implies 
− = 1 and 
+ = 2. This is consistent with

1 There is an error in the factor of 1
2 written down in front of the matter

part of the action in [24] as it does not lead to the equation of motion
(11) for the field φ with the correct numerical factor.
2 There are errors in sign in the undetermined coefficients in [24]. Also
factors of zh are missing.

the Breitenlohner–Freedman bound [32,33]. Hence the near
horizon expansions of these fields up to O(z2) read

φh(z) = φ′(zh)
[
(z − zh) − ψ2(zh)

3zh
(z − zh)

2
]

, (19)

ψh(z) = ψ(zh)

[
1+ 2

3zh
(z−zh)− (8+z4

hφ
′2(zh))

36z2
h

(z−zh)
2

]
.

(20)

The matching method involves matching the near horizon
expression of the fields with the asymptotic solution of these
field at any arbitrary point between the horizon and the
boundary, say z = zh

2 . In our analysis, we shall match the
solution at z = zh

λ
, where λ lies between [1,∞]. We shall

later on set specific values of λ. The matching conditions are

φh

( zh
λ

)
= φb

( zh
λ

)
, φ′

h

( zh
λ

)
= φ′

b

( zh
λ

)
, (21)

ψh

( zh
λ

)
= ψb

( zh
λ

)
, ψ ′

h

( zh
λ

)
= ψ ′

b

( zh
λ

)
. (22)

From Eq. (21), we obtain the following relations:

ψ2(zh) = 3λ

1 − λ2

(
μ

zhφ′(zh)
+ 1

)
, (23)

ρ = λ

zh(λ + 1)

[
2μ + zhφ

′(zh)
(

1 − 1

λ

)]
. (24)

Similarly, from Eq. (22), we get

ψ−/+ =
[

1 − (λ − 1)

3λ

(3λ
 + 2)


(λ − 1) + 2

] (
λ

zh

)


ψ(zh),

(25)

φ′2(zh) = 1

z4
h

[
12λ

(λ − 1)

λ
 − 2(1 − 
)


(λ − 1) + 2
− 8

]

⇒ φ′(zh) = −χ(λ,
)

z2
h

(26)

where

χ(λ,
) =
√

12λ

(λ − 1)

λ
 − 2(1 − 
)


(λ − 1) + 2
− 8. (27)

In Eq. (25), ψ− is for 
 = 
− = 1 and ψ+ is for 
 =

+ = 2. Note that we consider the negative sign before the
square root of φ′(zh) because φ′(zh) is the electric field due
to the charge of the black hole.

Substituting φ′(zh) from Eq. (26) in Eqs. (23) and (24),
we obtain

ψ(zh) =
√

3λ

λ2 − 1

(
μzh

χ(λ,
)
− 1

)
, (28)

ρ = λ

zh(λ + 1)

[
2μ − χ(λ,
)

zh

(
1 − 1

λ

)]
. (29)

Using Eqs. (23)–(26) and T = 3
4π zh

, we obtain the conden-
sation operator and the critical temperature in terms of the
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chemical potential and the charge density

〈O〉 = γ(μ)T


c

(
1 − T

Tc

)1/2

; Tc = ξ(μ)μ, (30)

〈O〉 = γ(ρ)T


c

(
1 − T

Tc

)1/2

; Tc = ξ(ρ)
√

ρ (31)

where

γ(μ) =
√

3λ2

λ2 − 1

[
1 − (λ − 1)

3λ

(3λ
 + 2)


(λ − 1) + 2

] (
4πλ

3

)


,

ξ(μ) = 3

4πχ(λ,
)
, (32)

γ(ρ) =
√

3λ

λ − 1

[
1 − (λ − 1)

3λ

(3λ
 + 2)


(λ − 1) + 2

] (
4πλ

3

)


,

ξ(ρ) = 3

4π
√

χ(λ,
)
. (33)

Equations (30)–(33) present the general expressions relat-
ing the condensation operator and the critical temperature
in terms of the parameter λ. We shall now study the above
equations for two different boundary conditions, namely,
ψ− �= 0, ψ+ = 0 and ψ+ �= 0, ψ− = 0. Let us first
consider the case ψ− = 〈O〉, ψ+ = 0. As mentioned earlier
setting ψ+ = 0 implies that the condensate ψ− forms in the
absence of the source term ψ+. For simplicity, we choose the
matching point to be the middle point between the horizon
and the boundary, that is, z = zh

2 , which implies setting λ = 2
in the above expressions. This gives χ = √

8 for the value of

 = 
− = 1. Hence the relation between the condensation
operator and the critical temperature reads

〈O−〉(μ) = 80π

27
Tc

(
1 − T

Tc

)1/2

, Tc = 0.084μ, (34)

〈O−〉(ρ) = 40π
√

6

27
Tc

(
1 − T

Tc

)1/2

, Tc = 0.142
√

ρ.

(35)

We also carry out our calculations for other values of the
matching point by choosing different values of λ. For exam-
ple, z = 0.10zh (that is, λ = 10), we obtain Tc = 0.169

√
ρ,

which agrees fairly well with the numerical result Tc =
0.225

√
ρ [15]. For the other case, that is, ψ+ = 〈O〉, ψ− =

0, we once again choose the matching point to be the middle
point between the horizon and the boundary, that is, z = zh

2 .
This gives χ = √

28. Hence the relation between the con-
densation operator and the critical temperature reads

〈O+〉(μ) = 160π2

27
T 2
c

(
1 − T

Tc

)1/2

, Tc = 0.0451μ,

(36)

〈O+〉(ρ) = 80π2
√

6

27
T 2
c

(
1 − T

Tc

)1/2

, Tc = 0.104
√

ρ.

(37)

As before we carry out our analysis for other values of the
matching point by choosing different values of λ. For exam-
ple, z = 0.33zh (that is, λ = 3), we obtain Tc = 0.119

√
ρ,

which is in very good agreement with the numerical Tc =
0.118

√
ρ [6]. The analytical results for different values of λ

are presented in Tables 1 and 2. We therefore observe that
the results from the matching method depends crucially on
the matching point. We would like to mention that there is a
priori no way to determine a suitable matching point. This is
a lacuna of this method in contrast to the more analytically
sound Sturm–Liouville approach [15,27].

4 Free energy of the holographic superconductor

We now proceed to compute the free energy at a finite temper-
ature of the field theory living on the boundary of the 3 + 1-
bulk theory. To do this the holographic approach is used in
relating the free energy (�) of the boundary field theory to
the product of the temperature (T ) and the on-shell value of
the Abelian Higgs sector of the Euclidean action (SE) [23].

To proceed further, we first write down the action for the
action for the Abelian Higgs sector

SM =
∫

d4x
√−g

[
−1

4
FμνFμν − (Dμψ)∗Dμψ − m2ψ∗ψ

]
.

(38)

Using the ansatz, m2 = −2 and q = 1, we get

SM =
∫

d4x

[
φ′2(z)

2
− F(z)ψ ′2(z)

z2 + φ2(z)ψ2(z)

z2F(z)
+ 2ψ2(z)

z4

]
.

(39)

Applying the boundary condition (φ(zh) = 0) and the equa-
tions of motion (11), (12), we obtain the on-shell value of the
action SE to be

So =
∫

d3x

[
−1

2
φ(z)φ′(z) |z=0 + F(z)ψ(z)ψ ′(z)

z2 |z=0

−
∫ zh

0
dz

φ2(z)ψ2(z)

z2F(z)

]
. (40)

Substituting the asymptotic behaviour of φ(z) and ψ(z) in
the above action, we get

So =
∫

d3x

[
μρ

2
+ 3ψ+ψ− +

(
ψ2−
z

)
|z=0

−
∫ zh

0
dz

φ2(z)ψ2(z)

z2(1 − z3/z3
h)

]
. (41)

123
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Note that the term (
ψ2−
z ) |z=0 diverges and therefore one needs

to add a counter term at the boundary to cancel this diver-
gence. For the boundary condition ψ− = 0, ψ+ �= 0, the
counter term comes from the counter action [23,24]

Sc = −
∫

d3x(
√−hψ2(z)) |z=0 (42)

where h is the determinant of the induced metric on the AdS
boundary. Using the asymptotic behaviour of ψ(z) (Eq. 14)
and evaluating this term, we obtain

Sc = −
∫

d3x

[
2ψ+ψ− +

(
ψ2−
z

)
|z=0

]
. (43)

The free energy of the 2 + 1-boundary field theory can
now be obtained by adding So and Sc. This yields

� = −T (So + Sc)

= βT V2

[
−μρ

2
− ψ+ψ− + I

]

= βT V2

[
−μρ

2
+ I

]
(44)

where in the second equality we have set
∫

d3x = βV2, V2

being the volume of the 2-dimensional space of the boundary
and in the last equality we have used the fact that ψ− = 0.
The integral I reads

I =
∫ zh

0
dz

φ2(z)ψ2(z)

z2(1 − z3/z3
h)

=
∫ zh/λ

0
dz

φ2
b(z)ψ

2
b (z)

z2(1 − z3/z3
h)

+
∫ zh

zh/λ
dz

φ2
h(z)ψ

2
h (z)

z2(1 − z3/z3
h)

≡ I1 + I2. (45)

For the other boundary condition, namely, ψ+ = 0, ψ− �= 0,
the counter action reads [23,24,34]

Sc = −
∫

d3x
(√−hzψ(z)ψ ′(z)

)
|z=0

= −
∫

d3x

[
3ψ+ψ− +

(
ψ2−
z

)
|z=0

]
. (46)

This cancels the divergence term of the on-shell action (41)
and yields

� = βT V2

[
−μρ

2
+ I

]
. (47)

To evaluate the integral, we rewrite the matter field in the
following form:

ψ(zh) = χ1

√
μzh
χ

− 1, ψ−/+ = χ2
ψ(zh)

z
h
(48)

where χ1 =
√

3λ2

λ2−1
and χ2 = λ


[
1 − (λ−1)

3λ
3λ
+2


(λ−1)+2

]
.

Now using the substitution z = zhl, we obtain

I1 =
∫ zh/λ

0
dz

φ2
b(z)ψ

2
b (z)

z2(1 − z3/z3
h)

=
∫ zh/λ

0
dz

(μ − ρz)2ψ2−/+z2


z2(1 − z3/z3
h)

= ψ2−/+z2
−1
h [μ2A1 + ρ2z2

hA2 − 2μρzhA3]

= χ2
2
ψ2(zh)

zh

[
B1μ

2 + B2
μ

zh
+ B3

1

z2
h

]

= χ2
1 χ2

2

[
C1μ

3 + C2
μ2

zh
+ C3

μ

z2
h

+ C4
1

z3
h

]
(49)

where the constants are given by the following relations:

A1 =
∫ 1/λ

0

l2
−2dl

(1 − l3)
; A2 =

∫ 1/λ

0

l2
dl

(1 − l3)
;

A3 =
∫ 1/λ

0

l2
−1dl

(1 − l3)
,

B1 = A1 + 4A2λ
2

(1 + λ)2 − 4A3λ

(1 + λ)
,

B2 = 2χA3(λ − 1)

(1 + λ)
− 4χA2(1 − 1/λ)

(1 + 1/λ)2 ,

B3 = A2χ
2(λ − 1)2

(λ + 1)2 ,

C1 = B1

χ
; C2 = B2

χ
−B1; C3 = B3

χ
−B2; C4 = −B3.

(50)

The evaluation of the integral I2 can be done in a similar way
and yields

I2 =
∫ zh

zh/λ
dz

φ2
h(z)ψ

2
h (z)

z2(1 − z3/z3
h)

= φ′2(zh)ψ2(zh)zh

[
A4 +

(
4

3
− 2ψ2(zh)

3

)
A5

+
(

ψ4(zh)

9
+ 4

9
− 8 + χ2

18
− 8ψ2(zh)

9

)
A6 +

(
4ψ4(zh)

27
− 2ψ2(zh)

3

(
4

9
− 8 + χ2

18

)
− 8 + χ2

27

)
A7

+
(

(8 + χ2)2

362 +
(

4

9
− 8 + χ2

18

)
ψ4(zh)

9
+ 2(8 + χ2)ψ2(zh)

81

)
A8 + (8 + χ2)2ψ4(zh)

9(36)2 A10

+
(−(8 + χ2)ψ4(zh)

243
− 2(8 + χ2)2ψ2(zh)

3(36)2

)
A9

]
(51)
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where the constants An (n = 4, 5, 6, 7, 8, 9, 10) are given
by the following relations:

An =
∫ 1

1/λ

(l − 1)n−2dl

l2(1 − l3)
. (52)

After simplification of the above expression, we get

I2 = φ′2(zh)ψ2(zh)zh[B4 + B5ψ
2(zh) + B6ψ

4(zh)]
= φ′2(zh)ψ2(zh)zh[C5 + C6μzh + C7μ

2z2
h]

= χ2
1 χ2

3

[
D1μ

3 + D2
μ2

zh
+ D3

μ

z2
h

+ D4
1

z3
h

]
(53)

where the constants in the above expression are given by the
following relations:

B4 = A4 + 4

3
A5 +

(
4

9
− 8 + χ2

18

)

A6 − 8 + χ2

27
A7 + (8 + χ2)2

362 A8,

B5 = −2

3
A5 − 8

9
A6 − 2

3

(
4

9
− 8 + χ2

18

)

A7 + 16 + 2χ2

81
A8 − 2

3

(8 + χ2)2

362 A9,

B6 = 1

9
A6 + 4

27
A7 +

(
4

9
− 8 + χ2

18

)

A8

9
− 8 + χ2

243
A9 + (8 + χ2)2

362

A10

9
,

C5 = B4 − χ2
1 B5 + χ4

1 B6 ;
C6 = χ2

1

χ
B5 − 2χ4

1

χ
B6, C7 = χ4

1

χ2 B6,

D1 = C7

χ
, D2 = C6

χ
− C7;

D3 = C5

χ
− C6, D4 = −C5. (54)

Adding I1 and I2, we finally get

I = E1μ
3 + E2

μ2

zh
+ E3

μ

z2
h

+ E4
1

z3
h

(55)

where

E1 = χ2
1 χ2

2C1 + χ2
1 χ2

3 D1, E2 = χ2
1 χ2

2C2 + χ2
1 χ2

3 D2,

E3 = χ2
1 χ2

2C3 + χ2
1 χ2

3 D3, E4 = χ2
1 χ2

2C4 + χ2
1 χ2

3 D4.

(56)

Hence the analytical expression for the free energy in terms
of the chemical potential reads

�

V2
= − λ

λ + 1

μ2

zh
+ (λ − 1)χ

2(λ + 1)

μ

z2
h

+ I

≡ G1μ
3 + G2μ

2T + G3μT 2 + G4T
3 (57)

where

G1 = E1, G2 =
(
E2 − λ

λ + 1

)
4π

3
,

G3 =
(
E3 − (λ − 1)χ

2(λ + 1)

)
16π2

9
, G4 = 64π3

27
E4. (58)

This expression for the free energy can also be written in
terms of the charge density as

�

V2
= H1

ρ3

T 3 + H2
ρ2

T
+ H3ρT + H4T

3 (59)

where

H1 = G1

8

(
1 + 1

λ

)3 (
3

4π

)3

,

H2 = G2

4

(
1 + 1

λ

)2 (
3

4π

)2

+3χG1

8

(
1 + 1

λ

)2 (
1 − 1

λ

) (
3

4π

)
,

H3 = G3

2

(
1 + 1

λ

) (
3

4π

)
+ χG2

2

(
1 − 1

λ2

)

+3χ2G1

8

(
1 + 1

λ

) (
1 − 1

λ

)2 (
4π

3

)
,

H4 = χG3

2

(
1 − 1

λ

) (
4π

3

)
+ χ2G2

4

(
1 − 1

λ

)2 (
4π

3

)2

+χ3G1

8

(
1 − 1

λ

)3 (
4π

3

)3

+ G4.

(60)

In the next section, we shall make use of these results to
investigate the thermodynamic geometry of this model in the
grand canonical ensemble.

5 Thermodynamic geometry

With the above results in hand, we now proceed to investigate
the thermodynamic geometry of this holographic supercon-
ductor. The thermodynamic metric is defined as [19,20]

gi j = − 1

T

∂2ω(T, ρ)

∂xi∂x j
= − 1

T

∂2ω(T, μ)

∂xi∂x j
(61)

where ω = �
V2

, x1 = T and x2 = ρ or μ. Hence the
components of the metric in terms of μ read

gTT = −
[
2G3

μ

T
+ 6G4

]
,

gTμ = gμT = −
[
2G2

μ

T
+ 2G3

]
,

gμμ = −
[
6G1

μ

T
+ 2G2

]
, (62)
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Table 1 For 
 = 
+ = 2, the
critical temperature
Tc = ξ(ρ)

√
ρ with numerical

value ξ(ρ) = 0.118 [6]

Value of λ Matching point From matching method From divergence of R
ξ(μ) ξ(ρ) ξ(μ) ξ(ρ)

5 0.20 zh 0.076 0.134 0.126 0.152

3 0.33 zh 0.060 0.119 0.099 0.118

2 0.50 zh 0.045 0.104 0.084 0.104
3
2 0.66 zh 0.033 0.089 0.080 0.101
5
4 0.80 zh 0.024 0.076 0.084 0.102

Table 2 For 
 = 
− = 1, the
critical temperature
Tc = ξ(ρ)

√
ρ with numerical

value ξ(ρ) = 0.225 [15]

Value of λ Matching point From matching method From divergence of R
ξ(μ) ξ(ρ) ξ(μ) ξ(ρ)

5 0.20 zh 0.113 0.164 0.334 0.709

3 0.33 zh 0.102 0.156 0.475 0.340

2 0.50 zh 0.084 0.142 0.359 0.345
3
2 0.66 zh 0.065 0.124 0.355 0.284
5
4 0.80 zh 0.047 0.106 0.375 0.233

and in terms of ρ they read

gTT = −
[

12H1
ρ3

T 6 + 2H2
ρ2

T 4 + 6H4

]
,

gTρ = gρT =
[

9H1
ρ2

T 5
+ 2H2

ρ

T 3 − H3
1

T

]
,

gρρ = −
[

6H1
ρ

T 4 + 2H2
1

T 2

]
. (63)

The scalar curvature of a general metric

ds2
th = g11(dx

1)2 + 2g12dx1dx2 + g22(dx
2)2 (64)

is given by [21]

R = −1√
g

[
∂

∂x1

(
g12

g11
√
g

∂g11

∂x2 − 1√
g

∂g22

∂x1

)

+ ∂

∂x2

(
2√
g

∂g22

∂x2 − 1√
g

∂g11

∂x2 − g12

g11
√
g

∂g11

∂x1

)]
.

(65)

To look for any singularity in R, one has to see whether the
denominator of the right hand side of Eq. (65) vanishes. The
condition of the divergence of R is detgi j = 0. For the metric
(62), this gives

4

[
(3G2G4 − G2

3) + (9G1G4 − G2G3)
μ

T

+ (3G1G3 − G2
2)

μ2

T 2

]
= 0, (66)

and for the metric (63), this gives
[
−9H2

1
ρ4

T 10 + 18H1H3
ρ2

T 6 + (36H1H4 + 4H2H3)
ρ

T 4

+ (12H2H4 − H2
3 )

1

T 2

]
= 0. (67)

The temperature for which the scalar curvature vanishes can
be obtained by solving these equations. We obtain this critical
temperature for the two different boundary conditions ψ− �=
0, ψ+ = 0 and ψ+ �= 0, ψ− = 0 for a set of values of λ and
compare them with the results which have been obtained from
the matching method. The Tables 1 and 2 give the results for

 = 
+ and 
 = 
− obtained from the matching method
and the thermodynamic geometry for a set of values of the
matching point for these two different boundary conditions,
respectively.

Considering the boundary condition ψ+ �= 0, ψ− = 0
(which implies 
 = 
+ = 2) and setting λ = 2, the above
equations yield Tc = 0.084μ. This does not agree with the
result in [24]. For λ = 3 (that is, z = 0.33zh), we obtain
Tc = 0.118

√
ρ from the divergence of the scalar curvature.

This turns out to agree very well with the numerical value
Tc = 0.118

√
ρ [6].

6 Conclusions

We now summarize our findings. We obtain the value of
the critical temperature and the condensation operator of a
holographic superconductor living in a 2 + 1 dimensions for
two different sets of boundary conditions of the condensa-
tion operator using the formalism of thermodynamic geom-
etry. The results are compared with those obtained from the
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matching method. The matching point is taken to be any-
where between the horizon and the boundary and the results
are obtained for a set of values of the matching point. The
near horizon expressions obtained by the matching method
plays a crucial role in obtaining the free energy of the holo-
graphic superconductor. This in turn is used to compute the
thermodynamic geometry. It is observed that the results for
the critical temperature (in terms of the charge density) from
the two approaches, namely, the thermodynamic geometry
approach and the matching method are exactly equal with
the numerical value Tc = 0.118

√
ρ when the matching point

for the near horizon and the boundary behaviour of the fields
is taken to be the z = zh/3 between the horizon and the
boundary for the ψ+ �= 0, ψ− = 0 case.
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