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Abstract In the bounce inflation scenario, the inflation is
singularity-free, while the advantages of inflation are pre-
served. We analytically calculate the power spectrum of its
primordial gravitational waves (GWs), and show a universal
result including the physics of the bounce phase. The spec-
trum acquires a cutoff at large scale, while the oscillation
around the cutoff scale is quite drastic, which is determined
by the details of bounce. Our work highlights that the pri-
mordial GWs at large scale may encode the physics of the
bounce ever happened at about ∼60 efolds before inflation.

1 Introduction

Inflation [1–4] is the paradigm of the early universe. How-
ever, it is confronted with the so-called “initial singularity
problem”, since the inflation itself is past-incomplete [5].
The solution to this problem must involve something occur-
ring before inflation. One possibility is the so-called bounce
inflation scenario [6–8], see also [9–16], in which initially
the universe is contracting, and after the bounce, the infla-
tion starts.

Recently, the Planck collaboration [17,18] have observed
the power deficit of the CMB TT-mode spectrum at large
scale. This inspired theorists to think over the physics of
the pre-inflation, about ∼60 efolds before the inflation dur-
ing which the evolutions of largest scale perturbations are
involved, e.g., [19]. It is interesting that the pre-inflationary
physics suggested by the large-scale power deficit might be
relevant with the initial singularity problem. The bounce uni-
verse, as the solution to this problem, has a long history of
study; see [20,21] for reviews. In Refs. [6–10], it has been
discovered that in the bounce inflation scenario the large-
scale anomalies of CMB TT spectrum may be explained nat-
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urally. This achievement makes the bounce inflation acquire
increasing attention.

Primordial GWs are also a product of inflation. Recently,
lots of experiments aiming at detecting GWs have been
implemented or will be implemented, which will bring us
a new epoch to understand the physics of inflation scenario;
see e.g., [22]. There are also other designs to explain the
large-scale power deficit of the scalar perturbation spectrum,
the suppression is attributed to the rapid rolling of the scalar
field. However, the primordial GWs are independent of the
dynamics of the scalar field, which thus may be used to iden-
tify the physics of the pre-inflationary background.

Recently, the nonsingular bounce without modifying
gravity has been implemented, which may be ghost-free,
e.g., [23–28], with possible embedding into supergravity
[29,30]. Thus the features of the primordial GWs at large
scale might tell us if such a bounce has ever happened at
about ∼60 efolds before inflation. Moreover, it might also
help us to speculate the property of the cyclic universe [31–
39] with such a nonsingular bounce.

In this paper, we analytically calculate the bounce infla-
tionary GWs. The resulting spectrum is written with the
recursive Bogoliubov coefficients including the physics of
the bounce phase. We also show that our analytic result is
completely consistent with the numerical plotting for a real-
istic model of bounce inflation.

2 Overview of bounce inflation scenario

In the bounce inflation scenario, inflation is singularity-free,
while the advantages of inflation are preserved, which simply
and naturally explains the universe we live in.

The idea of bounce inflation showed itself first in Refs. [6–
8], which explained the large-scale suppression of a scalar
perturbation spectrum observed by WMAP. Based on the
quintom bounce [40], Ref. [41] investigated the evolution of
the primordial perturbations in detail, and recently, Qiu and
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Wang [15] and Wan et al. [16] have constructed a realistic
model of bounce inflation without instabilities by applying
the higher-derivative operator.

The bounce inflation also has been implemented in the
positively curved background [11,12], or by modifying grav-
ity [9,13]. The matching of the perturbation through the
bounce with the modified gravity was discussed in [38].

Recently, Liu et al. [10] have found that the bounce infla-
tion brings about not only the large-scale power deficit of
CMB, but also a large hemispherical power asymmetry, as
implied by Planck. Current bounds on the primordial GWs
have been used to constrain the bounce inflation [14]. How-
ever, Refs. [14] used a step-like parameterization of the pri-
mordial GW spectrum, based on [6–8], which is only a
rough estimate missing the effect of the bounce. Recently, the
detecting of primordial GWs has been under way, which will
possibly tell us more on inflation and its origin. Therefore, it
is significant to have a full study for the bounce inflationary
GWs.

3 Bounce inflationary GWs: analytical result

Tensor perturbation γi j satisfies γi i = 0 and ∂iγi j = 0. Its
action is

S(2)
γ =

∫
dηd3x

a2

8

[(
dγi j

dη

)2

− ( �∇γi j )
2

]
, (1)

where η = ∫
dt/a and M2

P = 1.
The Fourier series of γi j is

hi j (η, x) =
∫

d3k

(2π)3 e
−ik·x ∑

λ=+,×
ĥλ(η,k)ε

(λ)
i j (k), (2)

in which ĥλ(η,k) = hλ(η, k)aλ(k) + h∗
λ(η,−k)a†

λ(−k),

polarization tensors ε
(λ)
i j (k) satisfy k jε

(λ)
i j (k) = 0, ε(λ)

i i (k) =
0, and ε

(λ)
i j (k)ε

∗(λ′)
i j (k) = δλλ′ , ε

∗(λ)
i j (k) = ε

(λ)
i j (−k), the

annihilation and creation operators aλ(k) and a†
λ(k

′) satisfy

[aλ(k), a†
λ′(k′)] = δλλ′δ(3)(k − k′). The equation of motion

for u(η, k) is (Fig. 1)

d2u

dη2 +
(
k2 − a′′

a

)
u = 0, (3)

where u(η, k) = ahλ(η,k)
2 . The spectrum of primordial GWs

is

PT = k3

2π2

∑
λ=+,×

|hλ|2 = 4k3

π2 · 1

a2
|u|2 , aH/k � 1. (4)

Fig. 1 The illustration of the bounce inflation scenario. The ηB− is
the beginning time of bounce phase, at which HB− = aHB− < 0 and
ḢB− = 0. ηB is the so-called bounce point, at which H = 0. ηB+ is the
end time of bounce phase, at which HB+ = aHB+ > 0 and ḢB+ = 0.
After ηB+, inflation started

3.1 The contracting phase

The contracting phase is the evolution with H < 0 and Ḣ <

0. It ends at ηB− when Ḣ = 0. Hereafter, Ḣ > 0, the bounce
starts.

The background can be parameterized as

ac(η) = aB−
(

η − η̃B−
ηB− − η̃B−

) 1
εc−1

, (5)

where η̃B− = ηB−−[(εc−1)HB−]−1, noting the continuities
of a and H at ηB−, and εc = −Ḣ/H2 and HB− is the
comoving Hubble parameter at ηB−. The initial state is the
Minkowski vacuum

uk = 1√
2k

eikη. (6)

Thus the solution of Eq. (3) is

uk =
√

π |η − η̃B−|
2

c1,1H
(1)
ν1

(k|η − η̃B−|) , (7)

where ν1 = εc−3
2(εc−1)

.

3.2 The bounce phase

The bounce phase is the evolution with Ḣ > 0. The Hubble
parameter is parameterized as [15,41]

H = α(t − tB), (8)

with αM2
P 	 1. Thus we have

a 
 aBe
1
2 α(t−tB )2 
 aB

[
1 + α

2
(t − tB)2

]
, (9)

where a = aB at t = tB . Equation (8) indicates that
the bounce phase is actually a superinflation phase with H
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rapidly increasing. In Ref. [9], it was argued that this phase
results in the large-scale power deficit in CMB. However, we
will show that in a bounce inflation scenario this power deficit
is actually attributed to the contraction before the bounce.

The continuities of a and H at ηB− and ηB+ suggest

HB+ = HB− + αa2
B�ηB . (10)

We have HB+ = αa2
B�ηB
2 for HB+ 
 −HB−. HB+ is actu-

ally the comoving Hubble parameter at the beginning time of
the inflation. α and �ηB = ηB+−ηB− encode the physics of
the bounce phase. Actually, since a 
 aB during the bounce,
we can find η − ηB = a−1

B (t − tB). Thus Eq. (3) becomes

u′′
k + (k2 − αa2

B)uk = 0. (11)

Its solution is

uk = c2,1e
l(η−ηB ) + c2,2e

−l(η−ηB ), (12)

where l ≡
√

αa2
B − k2.

3.3 The inflationary phase

The universe will inflate after ηB+. The background is param-
eterized as

ainf(η) = aB+
(

η − η̃B+
ηB+ − η̃B+

) 1
εinf −1

. (13)

Here, η̃B+ = ηB+ − [(εinf − 1)HB+]−1, noting the continu-
ities of a andH at ηB+, and εinf = −Ḣ/H2. HB+ = HB+/a
sets the scale of inflation after the bounce, H = HB+.

Thus the solution of Eq. (3) is

uk =
√

π |η − η̃B+|
2

[
c3,1H

(1)
ν2

(k|η − η̃B+|)+
× c3,2H

(2)
ν2

(k|η − η̃B+|)
]
, (14)

where ν2 = εinf−3
2(εinf−1)

.

3.4 The spectrum of primordial GWs

According to (4), if εinf = 0 we find

PT = 2H2
B+

π2 |c31 − c32|2 = Pin f
T |c31 − c32|2, (15)

where Pin f
T = 2H2

B+
π2 is the standard result of the slow-roll

inflation.
The perturbation γi j and its time derivative should be con-

tinuous through the match surface. This suggests that we

could write the coefficients recursively as
(
c3,1

c3,2

)
= M(3,2) × M(2,1) ×

(
c1,1

c1,2

)
, (16)

where the matric M(2,1) is

M(2,1)
11 = e−ly1

√
πx1

8l

{
k

[
−H (1)

ν1−1(kx1) + H (1)
ν1+1(kx1)

]

+ 2

[
−ν1

x1
+ l + αa2

B y1

]
H (1)

ν1
(kx1)

}
,

M(2,1)
12 = e−ly1

√
πx1

8l

{
k

[
−H (2)

ν1−1(kx1) + H (2)
ν1+1(kx1)

]

+ 2

[
−ν1

x1
+ l + αa2

B y1

]
H (2)

ν1
(kx1)

}
,

M(2,1)
21 = ely1

√
πx1

8l

{
k

[
H (1)

ν1−1(kx1) − H (1)
ν1+1(kx1)

]

+ 2

[
−ν1

x1
+ l − αa2

B y1

]
H (1)

ν1
(kx1)

}
,

M(2,1)
22 = ely1

√
πx1

8l

{
k

[
H (2)

ν1−1(kx1) − H (2)
ν1+1(kx1)

]

+ 2

[
−ν1

x1
+ l − αa2

B y1

]
H (2)

ν1
(kx1)

}
,

and M(3,2) is

M(3,2)
11 = i

√
πx2

4
ely2

{
k

[
H (2)

ν2−1(kx2) − H (2)
ν2+1(kx2)

]

+ 2

[
ν2

x2
+ l − αa2

B y2

]
H (2)

ν2
(kx2)

}
,

M(3,2)
12 = i

√
πx2

4
e−ly2

{
k

[
H (2)

ν2−1(kx2) − H (2)
ν2+1(kx2)

]

+ 2

[
ν2

x2
− l − αa2

B y2

]
H (2)

ν2
(kx2)

}
,

−M(3,2)
21 = i

√
πx2

4
ely2

{
k

[
H (1)

ν2−1(kx2) − H (1)
ν2+1(kx2)

]

+ 2

[
ν2

x2
+ l − αa2

B y2

]
H (1)

ν2
(kx2)

}
,

−M(3,2)
22 = i

√
πx2

4
e−ly2

{
k

[
H (1)

ν2−1(kx2) − H (1)
ν2+1(kx2)

]

+ 2

[
ν2

x2
− l − αa2

B y2

]
H (1)

ν2
(kx2)

}
,

with the definitions x1 = |ηB− − η̃B−|, y1 = (ηB− − ηB),
x2 = |ηB+ − η̃B+| and y2 = (ηB+ − ηB).

The effects of pre-inflationary phases are encoded in
M(3,2) and M(2,1). Here, we set the slow-roll parameter of
inflation εinf 
 0, thus PT is only relevant with the param-
eters, α, �ηB , and εc, noting that εc ≥ 3 must be satisfied
to avoid the cosmic anisotropy problem [42]. We plot PT
in Figs. 2 and 3 by altering the values of different parame-
ters. We see that, for k > HB+, PT ∼ k0 with a damped
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Fig. 2 PT in Eq. (15) for different εc. We set �η = 0.2/HB+ and
α = 1.8 × 10−3H2

B+

Fig. 3 PT in Eq. (15) for different α in units of H2
B+. We set εc = 10

and �η = 0.2/HB+

oscillation, and it is blue shifted for small k modes. We may
analytically estimate it as follows.

For large k-modes, i.e. k > HB+,

|c3,1 − c3,2|2 ≈ 1 −
(
HB+
k

− αa2
B�ηB

2k

)
sin

(
2k

HB+

)

−
(
HB+
k

− αa2
B�ηB

2k

)

× sin

(
2k

HB+
+ 2k�ηB

)
, (17)

which implies PT is flat and oscillating rapidly with the max-
imal amplitude at k 
 HB+, just as showed in Figs. 2 and 3.
However, if the bounce phase lasts short enough, i.e. �ηB ∼
0, (17) will be reduced to

|c3,1 − c3,2|2 ≈ 1 − 2HB+
k

sin

(
2k

HB+

)
. (18)

For small k-modes, i.e. k < HB+,

|c3,1 − c3,2|2 ≈ 2
2

1−εc

π
�2

(
1

2
− 1

εc − 1

)

(εc − 1)
2

εc−1 f (�ηB)(
k

HB+

) 2εc
εc−1 ∼

(
k

HB+

) 2εc
εc−1

, (19)

which suggests that PT ∼ ( k
HB+ )2 is strongly blue for εc �

1, and PT ∼ ( k
HB+ )3 for εc 
 3. The result is consistent with

that found in [19]. In (19),

f (�ηB) =
[(

1− l2�ηB

2HB+

)
cosh(l�ηB)+ l

2

(
1

HB+
−�ηB

+ l2

4HB+
�η2

B

)
sinh(l�ηB)

]2

. (20)

However, if �ηB ∼ 0, f (�ηB) ∼ 1, and (19) will be reduced
to

|c3,1 − c3,2|2 ≈ 2
2

1−εc

π
�2

(
1

2
− 1

εc − 1

)

× (εc − 1)
2

εc−1

(
k

HB+

) 2εc
εc−1

. (21)

4 A realistic model of bounce inflation

4.1 Qiu–Wang model

How to implement the bounce before inflation is still a signif-
icant issue. Recently, Qiu and Wang have proposed a realistic
bounce inflation model without instabilities [15]. We briefly
review it as follows.

The Lagrangian is

L =
[

1 − 2γ1

(1 + 2κ1φ2)2

]
X + γ2X2

(1 + 2κ2φ2)2

− γ3X

(1 + 2κ2φ2)2 �φ − V (φ), (22)

where X = −∂μφ∂μφ/2 and

V (φ) = −V0e
cφ

[
1 − tanh

(
φ

λ1

)]

+�4
(

1 − φ2

v2

)2 [
1 + tanh

(
φ

λ2

)]
, (23)

and MP = 1, and the values of parameters γ1, γ2, γ3, κ1,
κ2, λ1, λ2, V0, c, �, and v will determine the occurrence of
bounce and inflation.
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Fig. 4 Plots of potential V (φ) in (23), and the evolution of scalar field with respect to the physical time

The potential is plotted in the upper panels of Fig. 4. When
φ 	 −λ1, 1/

√
κ1, 1/

√
κ2, (22) is

Lc = −∂μφ∂μφ

2
+ V0e

cφ, (24)

which will bring the ekpyrotic contraction with εc = c2/2 >

3. The bounce after the ekpyrotic contraction was also studied
in [43]. When φ � −λ1, 1/

√
κ1, 1/

√
κ2, Eq. (22) reduces

to that of slow-roll inflation,

Linf = −∂μφ∂μφ

2
− �4

(
1 − φ2

v2

)2

. (25)

When |φ| 
 0, Eq. (22) becomes ghost-like. However, there
may be no instabilities, as has been confirmed in [15]; see
also [44].

We plot the evolution of background in Figs. 5 and 6. The
evolution of φ is plotted in Fig. 4. Initially, we require φ 	
−λ1, 1/

√
κ1, 1/

√
κ2, and φ rolls down along its ekpyrotic-

like potential and the universe is contracting. When t = tB−,
the ekpyrotic contraction ends, and φ climbs up along its
potential, which is essential so that inflation can occur sub-
sequently, as showed originally in [6–8]. When φ arrives at
φ 
 0, the bounce will occur. Hereafter, φ continues to climb
up to the potential hill, and then rolls slowly, and slow-roll

Fig. 5 The evolution of a and H = ȧ/a in the bounce inflation sce-
nario, based on the model in Ref. [15], which will be showed in detail
in Sect. 4

inflation starts. Reheating will occur around φ 
 10, where
φ oscillates and decays.

4.2 The spectrum of primordial GWs: numerical result

Here, with the background of Qiu–Wang model, which have
been plotted in Figs. 5 and 6, we will numerically solve the
perturbation equation (3) and plot the spectrum of the pri-
mordial GWs.
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Fig. 6 The evolution of the Hubble parameter. We set the values of
the parameters as γ1 = 0.6, γ2 = 5, γ3 = 103, κ1 = 15, κ2 = 10,
λ1 = 0.1, λ2 = 0.1, V0 = 0.7, c = √

20, � = 1.5 × 10−2, and v = 10

It is convenient for us to write the perturbation equation
with respect to the physical time

d2hk
dt2 + 3H(t)

dhk
dt

+ k2

a2(t)
hk = 0, (26)

and considering uk = ahk
2 , we have

d2uk
dt2 + H(t)

duk
dt

+
[

k2

a2(t)
uk − H2(t) − ä

a

]
uk = 0.

(27)

Initially we have

uk = 1√
2k

e−ik
∫ dt

a , u̇k = −i

√
k

2

1

a
e−ik

∫ dt
a , (28)

which suggest

hk = 2√
2ka

e−ik
∫ dt

a , ḣk =−2

√
2

k

(
H(t)

a
+ ik

a2

)
e−ik

∫ dt
a .

(29)

We numerically plot PT in Figs. 7 and 11, which is com-
pletely consistent with our analytical result (15). Figure 11
tells us that the bounce phase must be short, otherwise the
numerical curve will not overlap with the analytical one.
However, Eq. (15) is actually universal, that is, independent
of whether the bounce is short or not.

In addition, it should be mentioned that after the bounce, a
period with φ̇2 domination will appear; see Fig. 6. This brief
period has been often used to argue the suppression of a power
spectrum, e.g., [16]. However, in bounce inflation scenario,
such a period is actually only relevant with the oscillating of
the spectrum, while the contraction before the bounce results
in the suppression of a spectrum at large scale, as seen in
Eqs. (17) and (19).

Fig. 7 The numeric GWs spectrum in the Qiu–Wang model is com-
pared with our analytical result (15). We set εc 
 10, α ∼ 1.8 ×
10−3H2

B+, and �ηB ∼ 0.2/HB+

5 Discussion

Bounce inflation is successful in solving the initial singularity
problem of inflation and is also competitive for explaining
the power deficit in CMB at large scale. This might provide
us with an opportunity to comprehend the origin of inflation
thoroughly. There are also other designs to explain the power
deficit, such as [45–48], but these do not involve the initial
singularity problem. The primordial GWs straightly encodes
the evolution property of spacetime, thus it is interesting to
have a detailed study of it.

We analytically calculated the bounce inflationary GWs.
The resulting spectrum is written with the recursive Bogoli-
ubov coefficients including the physics of the bounce phase.
The spectrum acquires a large-scale cutoff due to the con-
traction, while the oscillation around the cutoff scale is quite
drastic, which is determined by the details of the bounce. We
also show that our analytic result is completely consistent
with the numerical plotting for a realistic model of bounce
inflation.

In original Refs. [6–8], the perturbation spectrum was cal-
culated without considering the bounce phase, which is con-
troversial, since conventionally it is thought that the bounce
should affect the spectrum. However, we find that if the
bounce phase lasts shortly enough, the effect of the bounce
on the primordial GWs may be negligible, and the calculation
without considering the bounce phase is robust.

We should point out that what we applied is the pertur-
bation equation without modifying gravity, which may be
implemented only when the null energy condition is bro-
ken. However, the physics of the bounce phase is unknown,
it is obvious that the high-curvature corrections of gravity
may also result in the occurrence of bounce, e.g., the Gauss–
Bonnet correction [49–52], and non-local gravity [53,54],
which will inevitably modify the perturbation equation. We
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find that the corresponding corrections will aggravate the
oscillating behavior around the cutoff scale HB+, however,
the spectrum in the regime of k 	 HB− and k � HB+ is
hardly affected. We will come back to this issue in upcoming
work.

In addition, as has been mentioned, the bounce inflation
may also explain a large dipole power asymmetry in CMB at
low l. However, the asymmetry might also appear in CMB
B-mode polarization [55,56]. Moreover, during the bounce,
there might be a large parity violation [57]. It is interesting
to have a reestimate for the relevant issues.

A series of experiments aiming at detecting GWs have
been implemented or will be implemented. Our work sug-
gests that searching primordial GWs at large scale might tell
us if the bounce has ever happened before inflation.
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Appendix A: The effects of uk continuum and hk contin-
uum on spectrum

When we do calculations, it is convenience to write hk as
uk/2a(η), since the evolution of uk satisfies a Bessel equa-
tion. However, the real GW mode is hk , not uk . Thus which
of uk or hk is continuous on the matching surface might be
a question that needs to be clarified. Our result (15) is based
on the continuum of hk , for which we will argue as follows.

We define the phase ‘i’ and ‘i + 1’ as the conjoint phases,
both are matched at η0. The perturbations in different phases
satisfy

(
hi
h

′
i

)
=

⎛
⎝

1
ai

0

− a
′
i

a2
i

1
ai

⎞
⎠

(
ui
u

′
i

)
, (A1)

and

(
hi+1

h
′
i+1

)
=

⎛
⎝

1
ai+1

0

− a
′
i+1

a2
i+1

1
ai+1

⎞
⎠

(
ui+1

u
′
i+1

)
, (A2)

where the prefactor 2 is neglected. The the continuum of hk
and ḣk at the matching surface η0 suggest
(
hi
h

′
i

)
=

(
hi+1

h
′
i+1

)
. (A3)

Fig. 8 The results are obtained by considering the continuity of
hk (green curve) and uk (blue curve), with εc 
 10, α ∼ 1.8 ×
10−3H2

B+, and �ηB ∼ 0.2/HB+

Fig. 9 The numeric result in Sect. 4 is compared with the analytical
result, which is calculated by considering the continuity of uk , with
εc 
 10

Thus we have

(
ui+1

u
′
i+1

)
=

⎛
⎝

1
ai+1

0

− a
′
i+1

a2
i+1

1
ai+1

⎞
⎠

−1 ⎛
⎝

1
ai

0

− a
′
i

a2
i

1
ai

⎞
⎠

(
ui
u

′
i

)
. (A4)

Finally,

ui+1 = ai+1

ai
ui , u

′
i+1 =

(
a

′
i+1

ai
− ai+1a

′
i

a2
i

+ ai+1

ai

)
u

′
i .

(A5)

Generally, ai+1 = ai at the matching surface. Thus if a
′
i+1 =

a
′
i , the continuum of u is equal to that of h.

In Sect. 3.4, a
′
i+1 = a

′
i is ensured. We plot PT with the

continuum of u and h, respectively, in Fig. 8, which are com-
pletely identical. However, in Appendix B, the bounce phase
is neglected, and we have a

′
(ηB+) 
 −a

′
(ηB−), which indi-

cates that a
′

is not continuous. We analytically calculate PT
with the continuum of u, and plot it in Fig. 9. It is found that
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the analytical result obtained cannot match with the numeric
curve accurately.

Appendix B: Is the effect of the bounce phase negligible?

In the original idea of bounce inflation [6–8], the primor-
dial GW spectrum was calculated by straightly jointing the
perturbation solution in the contracting phase to that in the
expanding phase. It is interesting to estimate if the effect of
bounce phase is negligible.

We do not consider the bounce phase, which implies
�η = 0 and HB+ = HB− = HB . The spectrum of pri-
mordial GWs is still Eq. (15). However, c3,1 and c3,2 should
be determined by straightly matching the solutions (7) and
(14). The perturbation γi j and its time derivative should be
continuous through the match surface. Thus we have
(
c3,1

c3,2

)
= N (3,1) ×

(
c1,1

c1,2

)
(B1)

with the matrix N (3,1),

N (3,1)
11 = iπk

√
x1x2

8

{ [
H (1)

ν1+1(kx1) − H (1)
ν1−1(kx1)

]
H (2)

ν2
(kx2)

+
[
H (2)

ν2−1(kx2) − H (2)
ν2+1(kx1)

]
H (1)

ν1
(kx1)

+ 2

k

(
ν2

x2
− ν1

x1

)
H (1)

ν1
(kx1)H

(2)
ν2

(kx2)

}
,

N (3,1)
12 = iπk

√
x1x2

8

{ [
H (2)

ν1+1(kx1) − H (2)
ν1−1(kx1)

]
H (2)

ν2
(kx2)

+
[
H (2)

ν2−1(kx2) − H (2)
ν2+1(kx1)

]
H (2)

ν1
(kx1)

+ 2

k

(
ν2

x2
− ν1

x1

)
H (2)

ν1
(kx1)H

(2)
ν2

(kx2)

}
,

N (3,1)
21 = iπk

√
x1x2

8

{ [
H (1)

ν1−1(kx1) − H (1)
ν1+1(kx1)

]
H (1)

ν2
(kx2)

+
[
−H (1)

ν2−1(kx2) + H (1)
ν2+1(kx2)

]
H (1)

ν1
(kx1)

+ 2

k

(
ν1

x1
− ν2

x2

)
H (1)

ν1
(kx1)H

(1)
ν2

(kx2)

}
,

N (3,1)
22 = iπk

√
x1x2

8

{ [
H (2)

ν1−1(kx1) − H (2)
ν1+1(kx1)

]
H (1)

ν2
(kx2)

+
[
−H (1)

ν2−1(kx2) + H (1)
ν2+1(kx2)

]
H (2)

ν1
(kx1)

+ 2

k

(
ν1

x1
− ν2

x2

)
H (2)

ν1
(kx1)H

(1)
ν2

(kx2)

}
.

For large k-modes, i.e. k > HB ,

|c3,1 − c3,2|2 ≈ 1 − 2HB
k sin

(
2k
HB

)
, (B2)

which corresponds to (17). Meanwhile, for small k-modes,
i.e. k < HB , the result is the same as (19).

Fig. 10 The spectrum (15) is compared with that without considering
the bounce phase. We set εc 
 10, α ∼ 1.8 × 10−3H2

B+, and �ηB ∼
0.2/HB+

Fig. 11 The numeric GWs spectrum in Sect. 4 is compared with our
analytical result (B1) without considering the bounce phase. εc 
 10

In Fig. 10, we plot PT with (16) and (B1), respectively.
Here, εc 
 10. We see that if �ηB ∼ 0.2/HB+ is set to
parameterize the physics of the bounce, both curves com-
pletely overlap. This indicates that if the bounce lasts short
enough, the effect of the bounce on the primordial GWs may
be negligible. It is noticed in Sect. 3 that in a realistic model
of bounce inflation, the period of the bounce is actually short
enough, thus the result without considering the bounce phase
is robust; see Fig. 11.
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