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Abstract Considered is the N = 1 supersymmetric QCD-
like �-theory with SU (Nc) colors and 0 < NF < 2Nc

flavors of light quarks Qi
a, Q

a
j with equal small masses.

In addition to quarks and gluons of the standard N = 1
SQCD, it includes N 2

F colorless but flavored fields �
j
i , with

the large mass parameter μ� � �Q (�Q is the scale fac-
tor of the gauge coupling), interacting with quarks through
the Yukawa coupling in the superpotential. The mass spec-
tra of this (direct) �-theory are first directly calculated in
all vacua with the unbroken or spontaneously broken flavor
symmetry U (NF ) → U (n1) × U (n2) at 0 < NF < Nc,
in which case this theory is logarithmically weakly coupled.
Further, the mass spectra of both, this direct �-theory and
its Seiberg’s dual variant with SU (NF − Nc) dual colors,
the d�-theory, are calculated at 3Nc/2 < NF < 2Nc and
at various values of μ� (in strong coupling regimes with
coupling constants O(1)), now using the dynamical scenario
introduced by the author in his previous article (Chernyak
in JETP 114:61, arXiv:0811.4283 [hep-th], 2012). This sce-
nario assumes that quarks in this case can be in two different
standard phases only: either this is the HQ (heavy quark)
phase with 〈Qi

a〉 = 0 where they are confined, or they are
higgsed with some components 〈Qi

a〉 �= 0, at appropriate val-
ues of lagrangian parameters. It is shown that mass spectra of
the direct �- and dual d�-theories are parametrically differ-
ent, so that they are not equivalent. Besides it is shown in the
direct �-theory that a qualitatively new phenomenon takes
place: under appropriate conditions, the seemingly heavy
and dynamically irrelevant fields � ‘turn back’ and there
appear two additional generations of light �-particles with
small masses μpole(�) � �Q . Also considered is the X -
theory which is the N = 2 SQCD with SU (Nc) colors and
0 < NF < 2Nc flavors of light quarks, broken down to
N = 1 by the large mass parameter of the adjoint scalar
superfield X , μX � �2. The tight interrelations between

a e-mail: v.l.chernyak@inp.nsk.su

these X - and �-theories are described, in particular, the con-
ditions under which they are equivalent.
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1 Introduction

Our main purpose in this article is to calculate the mass spec-
tra in the two N = 1 SQCD-like theories outlined in the
abstract: the direct �-theory and its Seiberg’s dual variant
[1,2], the d�-theory. In Sect. 2 the definitions of these direct
�- and dual d�-theories and their most general properties
are presented in some detail.

In Sect. 3 we calculate the mass spectra of the direct �-
theory at 0 < NF < Nc. As we show, for these values of NF

all quarks interactions have logarithmically small couplings
and so all calculations do not require any additional dynam-
ical assumptions and are, in a sense, standard and straight-
forward.

Starting from Sect. 4 we consider both the direct and the
dual theories with Nc < NF < 2Nc. In Sect. 4 the exact
results are given for multiplicities of the vacua and the non-
trivial parametric behavior of quark and gluino condensates
in different vacua and at different values of μ�/�Q � 1,
where μ� is the large mass parameter of the fields � and �Q

is the scale factor of the gauge coupling. These results for the
quark (and gluino) condensates constitute a base for further
calculations of mass spectra in Sects. 6, 7, 8, 9, 10, 11.

In Sect. 5 we discuss a new non-trivial phenomenon of
the appearance (at the appropriate conditions) of additional
generations of light colorless �-particles in the direct theory.
We show that, due to their Yukawa interactions with light
quarks in the superconformal regime at scales μ < �Q , the
seemingly heavy and dynamically irrelevant fields � (fions)
with the large original mass parameter μ�(μ ∼ �Q) � �Q

can ’turn back’, and there appear two additional generations
of light �-particles with small masses μpole(�) � �Q .

In Sects. 6, 7, 8, 9, 10, 11 we deal with calculations of mass
spectra in the direct and dual theories at 3Nc/2 < NF < 2Nc

where both theories are, in general, in the strong coupling
conformal regimes at scales μ < �Q , with the gauge cou-
pling of the direct theory a = (Ncg2/8π2) = O(1). At
present, unfortunately, it is not known how to obtain direct
solutions (i.e. without any additional assumptions) of N = 1
SQCD-like theories in strong coupling regimes. Therefore,
to calculate mass spectra of N = 1 theories in such cases
one has to introduce and use some assumptions about the
dynamics of these theories in the strong coupling regions. In
other words, one has to rely on a definite dynamical scenario.

We use in this paper the dynamical scenario introduced by
the author in [3]. Recall that this dynamical scenario assumes
that in considered N = 1 SQCD-like theories, � and d�,
the quarks can be in two standard phases only. These are:
(a) the HQ (heavy quark) phase where they are not higgsed
but confined, 〈Qi

a〉 = 0; (b) the Higgs phase where they are
not confined but higgsed, with some components 〈Qi

a〉 �= 0.
Moreover, the ‘standard phases’ imply that these two phases
are realized in a standard way, even in the strong coupling
regime a ∼ 1. This means that, unlike e.g. N = 2 SQCD
with its very special properties, in these N = 1 SQCD-
like theories without adjoint colored scalar superfields, there
appear no additional non-standard parametrically lighter
particles (e.g. parametrically lighter magnetic monopoles or
dyons) in the spectrum in the strong coupling region a ∼ 1,
in comparison with that in the weak coupling one. The mass
spectra were calculated in [3] in the standard direct N = 1
SQCD with the superpotential W = Tr ( QmQQ) and in
Seiberg’s dual variant [1,2] within this scenario. It was shown
that the mass spectra of the direct theory and its Seiberg’s dual
variant are parametrically different.

In Sects. 6, 7, 8, 9, 10, 11 below we calculate the mass
spectra of the � and d� theories within this dynamical
scenario (mainly at the left end of the conformal window,
0 < bo/NF = (2NF − 3Nc)/NF � 1) and show that, simi-
larly to the standard direct N = 1 SQCD with the superpo-
tential W = Tr ( QmQQ) considered in [3], the mass spectra
of the direct �-theory and its Seiberg’s dual variant, the d�-
theory, are parametrically different, so that these two theories
are not equivalent.

We would like to emphasize, however, that, by itself, this
does not mean that Seiberg’s proposal [1,2] about the equiv-
alence of the direct and dual theories, although not proven
and remains a hypothesis up to now, is not correct. Still, it
may be right but maybe not. The reason is, clearly, that the
results about parametric differences of mass spectra of the
direct and dual theories obtained in [3] and in this paper
are based on definite additional dynamical assumptions. In
other words, on using the dynamical scenario introduced in
[3]. This dynamical scenario from [3] satisfies all those tests
which were used as checks of Seiberg’s hypothesis. More-
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over, to the best of our knowledge, it looks self-consistent
and is not in contradiction with any known at present proven
results. Therefore, it has to be considered at present as pos-
sibly right. Therefore, what is still missing at present in this
story is a proof that, for instance, either the Seiberg hypothe-
sis is right or that the dynamical scenario introduced in [3] is
right. Nevertheless, the results obtained within this scenario
in [3] and in this paper demonstrate that the checks on which
the Seiberg hypothesis about the equivalence of the direct
and dual theories is based (i.e. the ’t Hooft triangles for the
effectively massless particles and some correspondences in
the superconformal regime), although necessary, may well
be insufficient.

Finally, we consider in Sect. 12 the X -theory which is
N = 2 SQCD broken down to N = 1 by the large mass
parameter μX � �Q of the adjoint scalar superfield. The
tight interrelations between these X - and �-theories are
described, in particular, the conditions under which they are
equivalent.

The direct �- and dual d�-theories considered in this
paper have much in common with the standardN = 1 SQCD
(and its dual variant) considered in [3]. It is implied that the
reader is familiar with Ref. [3] and with the calculation meth-
ods used therein. These methods (by the way, sufficiently
standard, the non-standard is only the dynamical scenario
itself) are heavily used in this paper. For this reason, some
technical details are omitted in the text below, and we refer to
[3] where all additional details of similar calculations can be
found. But besides, for the reader’s convenience, we recall
below in Sect. 2.1 assumptions of the dynamical scenario
introduced in [3].

2 Definitions and some generalities

2.1 Direct �-theory

The field content of this direct N = 1 �-theory includes
SU (Nc) gluons and 0 < NF < 2Nc flavors of the quarks
Q

a
j , Q

i
a, a = 1 . . . Nc, i = 1 . . . NF . Besides, there are

N 2
F colorless but flavored fields �

j
i (fions) with the large

mass parameter μ� � �Q .
The Lagrangian of this UV-free theory at scales μ �

�Q (or at μ � μH if μH � �Q , where μH is the next

largest physical mass below μ
pole
1 (�) � �Q , see Appendix

A; Nc = NF − Nc, the exponents with gluons in the Kähler
term K are implied here and everywhere below) looks like

K = 1

f 2 Tr (�†�) + z(�Q, μ)Tr( Q†Q + (Q → Q)),

W = − 2π

α(μ,�Q)
S + W� + WQ, (2.1)

W� = μ�

2

[
Tr (�2) − 1

Nc

(
Tr �

)2]
,

WQ = Tr Q(mQ − �)Q,

zQ(�Q, μ) ∼
(

ln
μ

�Q

)Nc/bo

� 1.

Here μ� and mQ are the mass parameters, S = −Wa
βW

a, β/

32π2 where Wa
β is the gauge field strength, a = 1 . . . N 2

c −
1, β = 1, 2, α(μ,�Q) = g2(μ,�Q)/4π is the gauge cou-
pling with its scale factor �Q , f is the Yukawa coupling,
a f = Nc f 2/8π2 < 1, bo = 3Nc − NF . This normalization
of fields is used everywhere below in the main text. Besides,
the perturbative NSVZ β-function for massless SUSY theo-
ries [4,5] is used in this paper.

Therefore, finally, the �-theory we deal with has the
parameters Nc, 0 < NF < 2Nc, μ�, �Q, mQ, f , with
the strong hierarchies μ� � �Q � mQ . Throughout this
text the mass parameter μ� will be varied while mQ and �Q

will stay intact.
The Konishi anomalies [6] from (2.1) for the i th flavor

look like (i = 1 . . . NF )

〈�i 〉
〈
∂W�

∂�i

〉
= 0, 〈mtot

Q,i 〉〈Qi Q
i 〉 = 〈S〉,

〈mtot
Q, i 〉 = mQ − 〈�i 〉,

〈�i
j 〉 = 1

μ�

(
〈Q j Q

i 〉 − δij
1

Nc
Tr 〈QQ〉

)
,

〈Q j Q
i 〉 = δij 〈Qi Q

i 〉, (2.2)

and, in cases with μH < �Q , 〈mtot
Q,i 〉 is the value of the

quark total running mass at μ = �Q .
At all scales “μ” until the field � remains too heavy

and non-dynamical, i.e. until its perturbative running mass
μ

pert
� (μ) > μ, it can be integrated out and the Lagrangian

takes the form

K = zQ(�Q, μ)Tr(Q†Q + Q → Q),

W = − 2π

α(μ,�Q)
S + WQ,

WQ = mQTr(QQ) − 1

2μ�

(
Tr (QQ)2 − 1

Nc
(Tr QQ)2

)
,

〈S〉 =
〈

λλ

32π2

〉
. (2.3)

The Konishi anomalies from (2.3) for the i th flavor look
like

〈S〉 =
〈
Qi

∂WQ

∂Qi

〉
= mQ〈Qi Q

i 〉
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− 1

μ�

⎛
⎝ NF∑

j=1

〈Qi Q
j 〉〈Q j Q

i 〉 − 1

Nc
〈Qi Q

i 〉〈Tr QQ〉
⎞
⎠

=
[
mQ − 1

μ�

(
〈Qi Q

i 〉 − 1

Nc
〈Tr QQ〉

)]

×〈Qi Q
i 〉 ≡ 〈mtot

Q,i 〉〈Qi Q
i 〉, i = 1 . . . NF , (2.4)

0 =
〈
Qi

∂WQ

∂Qi
− Q j

∂WQ

∂Q j

〉

=
[
mQ − 1

μ�

(
〈Qi Q

i + Q j Q
j 〉 − 1

Nc
〈Tr QQ〉

)]

×〈Qi Q
i − Q j Q

j 〉.
It is seen from (2.4) that there are only two types of
vacua: (a) the vacua with the unbroken flavor symme-
try, 〈Q j Q

i 〉 = δij 〈QQ〉, (b) the vacua with the sponta-
neously broken flavor symmetry, and the breaking is of
the type U (NF ) → U (n1) × U (n2) only: 〈Q j Q

i 〉 =
δij 〈

∑Nc
a=1 Q

a
1 Q

1
a〉 ≡ δij 〈(QQ)1〉, i, j = 1, . . . n1, and

〈Q j Q
i 〉 = δij 〈

∑Nc
a=1 Q

a
j Q

i
a〉 = δij 〈Q2Q

2〉 ≡ δij 〈(QQ)2〉, i,
j = n1 + 1, . . . NF . In these vacua with the broken flavor
symmetry one obtains from (2.4)〈
(QQ)1 + (QQ)2 − 1

Nc
Tr QQ

〉
br

= mQμ�,

〈S〉br = 1

μ�

〈(QQ)1〉br〈(QQ)2〉br,

〈(QQ)1〉br �= 〈(QQ)2〉br,

〈mtot
Q,1〉br = mQ − 〈�1〉br = 〈(QQ)2〉br

μ�

,

〈mtot
Q,2〉br = mQ − 〈�2〉br = 〈(QQ)1〉br

μ�

. (2.5)

We now recall details of the dynamical scenario intro-
duced in [3] and used in this paper in Sects. 6, 7, 8, 9, 10,
11 for calculations of mass spectra in the conformal window
3Nc/2 < NF < 2Nc in the strong coupling regime, both in
the direct and dual theories.

1. Recall first that NSVZ β-function [4,5] predicts exact
values of quark anomalous dimensions, γQ of the direct
quark or γq of the dual one, in the conformal regime at
3Nc/2 < NF < 3Nc. In the direct theory

da−1(μ)

d ln μ
= β̂(a)= bo − NFγQ

Nc(1 − a)
= 0 → γQ = bo

NF
,

bo = 3Nc − NF > 0, a(μ) = Ncg2(μ)

8π2 . (2.6)

Therefore, the renormalization factor of the quark Käh-
ler term is also known exactly in the conformal regime:
zQ(μ1, μ2) = (μ2/μ1)

γQ , while a(μ � �Q) → a∗ =

const, a∗ = O(1) in general. When the fion field � is
effectively massless and participates actively in the con-
formal regime, its anomalous dimension and renormal-
ization factor are also known exactly from the conformal
symmetry: γ� = −2γQ, z�(μ2, μ1) = (μ2/μ1)

γ� .
In the dual theory, correspondingly: Nc → Nc =
NF − Nc, a(μ) → a(μ), bo → bo = 3Nc − NF =
2NF − 3Nc > 0, γq = bo/NF , γM = −2γq , and the
dual gauge coupling a(μ � �Q) → a∗ = const. But
at the left end of the conformal window there appears
additional small parameter: 0 < bo/NF = (2NF −
3Nc)/NF � 1, γq = bo/NF � a∗ � 1. The explicit
parametric dependence of various particlemasses on this
small parameter is widely used in the text. It allows one to
trace the parametric differences of mass spectra of direct
and dual theories.

2. At some lower scales μi � �Q the conformal regime
is broken explicitly by nonzero particles masses. These
may be e.g. the quark pole masses mpole

Q,i , i = 1 or 2,

or gluon masses μ
pole
gl, i due to higgsed quarks. And

this is a first place where we need to use the addi-
tional assumption of the dynamical scenario from [3].
This states that (at least parametrically, i.e. up to non-
parametric factors O(1), this is sufficient for our pur-
poses) the scales of these masses are given by the standard
expressions: mpole

Q,i ∼ m/zQ(�Q,mpole
Q,i ), (μ

pole
gl,i )2 ∼

(g∗)2zQ(�Q, μ
pole
gl,i )〈(QQ)i 〉. If quarks Qi are in the

strong coupling regime, a∗(μ = mpole
Q,i � �Q) =

Nc(g∗)2/2π = O(1), and are in the HQ (heavy quark)
phase, i.e. not higgsed but confined, then the value mpole

Q,i
determines the typical mass scale of hadrons made from
these quarks.

3. It is additionally assumed that, unlike the very specific
N = 2 SQCD, in considered N = 1 SQCD-like the-
ories without colored adjoint scalar fields, the dynam-
ics is really standard, i.e. no additional parametrically
lighter solitons (e.g. magnetic monopoles or dyons) are
formed at those scales where the conformal regime is
broken explicitly by the quark masses in the HQ (heavy
quark) masses, or quark and gluon masses originating
from higgsed quarks.1 That is, in this respect, the dynam-
ics is qualitatively similar to those in the weak coupling
regime.

4. Finally, to deal with the N = 1 SYM theory, originating
after decoupling of heavy quarks at lower energies, we
use the effective superpotential proposed by Veneziano
and Yankielowicz [7].
The use of the values of quark condensates 〈(QQ)1〉
and 〈(QQ)2〉 in various vacua calculated in Sect. 3, the

1 Note that the appearance of such additional light solitons will change
the ’t Hooft triangles at lower energies.
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known RG evolution in the superconformal regime and
described above assumptions of the dynamical scenario
is sufficient to calculate parametrically (i.e. up to non-
parametric factors O(1) ) mass spectra of direct and dual
theories in the conformal window 3Nc/2 < NF < 2Nc.
This is done in Sects. 6, 7, 8, 9, 10, and 11.

5. Moreover, we explicitly calculate in these sections the
parametric dependencies of particle masses on the addi-
tional small parameter, 0 < bo/NF = (2NF −
3Nc)/NF � 1, appearing at the left end of the con-
formal window; see Sect. 2.2 below and section 4 in [3]
for more details. This allows one to trace explicitly the
parametric differences in mass spectra of the direct and
Seiberg’s dual theories.

2.2 Dual d�-theory

In parallel with the direct �-theory with Nc < NF < 2Nc,
we consider also the Seiberg dual variant [1,2] (the d�-
theory), with the dual Lagrangian at μ = �Q

K = 1

f 2 Tr �†� + Tr(q†q + (q → q)) + Tr
M†M

μ2
2

,

W = − 2π

α(μ = �Q)
S + WM� + Wq ,

WM� = μ�

2

[
Tr (�2) − 1

Nc
(Tr �)2

]
+ Tr M(mQ − �),

Wq = − 1

μ1
Tr(q M q). (2.7)

Here the number of dual colors is Nc = NF − Nc, bo =
3Nc − NF , and Mi

j → (Q j Q
i ) are the N 2

F elementary

mion fields, a(μ) = Ncα(μ)/2π = Ncg2(μ)/8π2 is
the dual running gauge coupling (with its scale parameter

�q ), S = −W
b
βW

b, β
/32π2, W

b
β is the dual gluon field

strength. The gluino condensates of the direct and dual theo-
ries are matched in all vacua, 〈− S〉 = 〈S〉 ≡ �3

YM , as well as
〈Mi

j 〉 ≡ 〈Mi
j (μ = �Q)〉 = 〈Q j Q

i 〉 ≡ 〈Q j Q
i (μ = �Q)〉,

and the scale parameter �q of the dual gauge coupling is
taken as |�q | ∼ �Q ; see the appendix in [3] for more
details. At 3/2 < NF/Nc < 2 this dual theory can be
taken as UV-free at μ � �Q , and this requires that its
Yukawa coupling at μ = �Q, f (μ = �Q) = μ2/μ1,
cannot be larger than its gauge coupling g(μ = �Q), i.e.
μ2/μ1 � 1. The same requirement to the value of the Yukawa
coupling follows from the conformal behavior of this theory
at 3/2 < NF/Nc < 2 and μ < �Q , i.e. f (μ = �Q) =
μ2/μ1 � f∗ = O(1) at bo/NF = O(1). We consider below
this dual theory at μ ≤ �Q only, where it claims to be equiv-
alent to the direct �-theory. As was explained in [3], one has
to take μ1 ∼ �Q at bo/NF = (3Nc − NF )/NF = O(1) in
(2.6) to match the gluino condensates in the direct and dual

theories. Therefore, μ2 ∼ μ1 ∼ �Q in this case also. But to
match the gluino condensates in the direct and dual theories at
the left end of the conformal window, i.e. at 0 < bo/NF � 1,
one has to take (μ2/μ1)

2 � f 2∗ = O(bo/NF ) � 1 and
μ1 ∼ Zq�Q � �Q, Zq ∼ exp{−Nc/7bo} � 1 (with
the exponential accuracy, i.e. powers of the small parameter
0 < bo/NF � 1 are not traced here and only the powers
of Zq are traced, this is sufficient for our purposes, so that
at bo/NF = O(1) one has to put Zq → 1; see [3] for more
details).

In fact, all N 2
F fields �

j
i remain always too heavy and

dynamically irrelevant in this d�-theory, so that they can
be integrated out once and forever and, finally, we write the
Lagrangian of the dual theory at μ = �Q in the form

K = Tr(q†q + (q → q)) + Tr
M†M

Z2
q�Q

2 ,

W = − 2π

α(μ = �Q)
s + WM + Wq ,

WM = mQTr M − 1

2μ�

[
Tr (M2) − 1

Nc
(Tr M)2

]
,

Wq = − 1

Zq�Q
Tr(q M q). (2.8)

The Konishi anomalies for the i th flavor look here like
(i = 1 . . . NF )

〈Mi 〉〈Ni 〉 = Zq�Q〈S〉,
〈Ni 〉
Zq�Q

= mQ − 1

μ�

(
〈Mi − 1

Nc
Tr M〉

)
= 〈mtot

Q,i 〉, (2.9)

〈Ni 〉 ≡ 〈q iqi (μ = �Q)〉 ≡ 〈q iqi 〉, no summation over i.

In vacua with the broken flavor symmetry these can be
rewritten as〈
M1 + M2 − 1

Nc
Tr M

〉
br

= mQμ�,

〈S〉br = 1

μ�

〈M1〉br〈M2〉br,

〈M1〉br �= 〈M2〉br,

〈N1〉br

Zq�Q
= 〈S〉br

〈M1〉br
= 〈M2〉br

μ�

= mQ

− 1

μ�

(
〈M1 − 1

Nc
Tr M〉br

)
= 〈mtot

Q,1〉br, (2.10)

〈N2〉br

Zq�Q
= 〈S〉br

〈M2〉br
= 〈M1〉br

μ�

= mQ

− 1

μ�

(〈
M2 − 1

Nc
Tr M

〉
br

)
= 〈mtot

Q,1〉br,

〈N1〉 ≡ 〈q1q1(μ = �Q)〉 ≡ 〈q1q1〉, 〈N2〉 ≡ 〈q2q2〉.

123



19 Page 6 of 35 Eur. Phys. J. C (2017) 77 :19

3 Vacua, condensates, and mass spectra at
0 < NF < Nc

Clearly, there is no dual theory for this range of NF values.
Moreover (see below in this section), in vacua of the direct
theory with the unbroken flavor symmetry all quarks are hig-
gsed in the weak (logarithmically small) coupling regime
with the large masses of higgsed gluons, μgl � �Q . In vacua
with the broken flavor symmetry all quarks: (a) are either
also higgsed in the weak (logarithmically small) coupling
regime with μgl, i � �Q, i = 1, 2, at �Q � μ� � μ̃�,
μ̃� ∼ �Q(�Q/mQ)(bo−n1)/n1 � �Q ; (b) or, in br1-vacua
with 1 ≤ n1 ≤ [NF/2], the quarks Q1, Q1 with flavors
n1 are higgsed in the weak (logarithmically small) coupling
regime, while the quarks Q2, Q2 with flavors n2 = NF −n1

are in the HQ phase at μ� � μ̃�, they are weakly confined
(i.e. the tension of confining string originating from unbro-
ken SU (Nc − n1) color group is much smaller than quark
masses,

√
σ � mpole

Q, perturb) and also perturbatively logarith-
mically weakly coupled and non-relativistic inside hadrons
(in br2-vacua n1 ↔ n2). Therefore, finally, in all vacua and at
all values �Q � μ�, the quarks are parametrically weakly
coupled and their dynamics is simple and qualitatively evi-
dent.

For this reason,wedonot needanyadditional assumptions
at all as regards the quark dynamics to calculate the mass
spectra at 0 < NF < Nc. In other words, because the HQ-
and Higgs-phases of the quarks are at logarithmically weak
couplings, there is no need to mention about any assumed
dynamical scenario at all (it is really needed to calculate the
mass spectra in the strong coupling region only).

The calculations methods used below in this section have
much in common with those in the standard SQCD with
mQ/�Q � 1 and 0 < NF < Nc in section 2 of [9]. It is
implied that the reader is familiar with Ref. [9], so that some
technical ins and outs are omitted below (see section 2 in
[9] for many more details). But really, as mentioned above,
because all quarks are parametrically weakly coupled, all
calculations in Sect. 3 are highly standard and, we hope,
self-evident.

3.1 Unbroken flavor symmetry

There is Nunbrok = (2Nc−NF ) such vacua and all quarks are
higgsed in all of them, but the hierarchies in the mass spec-
trum are parametrically different depending on the value of
μ� (see below). In any case, all N 2

F fions are very heavy and

dynamically irrelevant in these vacua at scales μ < μ
pole
1 (�)

(see Appendix A) and can be integrated out from the begin-
ning.

All quarks are higgsed at the high scale μ = μgl, �Q �
μgl � μ

pole
1 (�),

μ2
gl = Ncg

2(μ = μgl)zQ(�Q, μgl)〈�〉,
〈�〉 = 〈Q1Q

1(μ = �Q)〉 ≡ 〈QQ〉,
g2(μ) = 4πα(μ), (3.1)

where (in the approximation of leading logs, CF = (N 2
c −

1)/2Nc � Nc/2)

2π

α(μgl)
� bo ln

μgl

�Q
,

zQ(�Q, μgl) ∼
(

α(�Q)

α(μgl)

)2CF/bo

∼
(

ln
μgl

�Q

)Nc/bo

� 1,

bo = 3Nc − NF . (3.2)

Hence, after integrating out all heavy higgsed gluons and
their superpartners at μ < μgl one remains with the SU (Nc−
NF ) pure Yang–Mills theory with the scale factor �YM of its
gauge coupling. Finally, after integrating out the remaining
gluons at μ < �YM via the Veneziano–Yankielowicz (VY)
procedure [7,8] (see section 2 in [9] for more details), one
obtains the Lagrangian of N 2

F pions

K = zQ(�Q, μgl)2 Tr
√

�†�,

W = −NcS + W�, (3.3)

S =
(

�Q
bo

det �

) 1
Nc−NF

,

W� = mQTr � − 1

2μ�

[
Tr (�2) − 1

Nc
(Tr �)2

]
,

〈�i
j 〉 = δij 〈�〉 = δij 〈Q1Q

1(μ = �Q)〉, i, j = 1 . . . NF .

It follows from (3.3) that depending on the value of
μ�/�Q � 1 there are two different regimes.

(i) At �Q � μ� � μ�,o = �Q(�Q/mQ)(2Nc−NF )/Nc ,

μ�,o � �Q , the term mQTr(QQ) in the superpotential
(3.3) gives only a small correction and one obtains

〈�〉o ∼ �Q
2
(

μ�

�Q

) Nc−NF
2Nc−NF � �Q

2. (3.4)

There are (2Nc−NF ) such vacua, this agrees with [10].2

The masses of heavy gluons and their superpartners are
given in (3.1), while from (3.3) the pion masses are

μo(�) ∼ 〈�〉o

zQ(�Q, μgl)μ�

2 To see that there are just 2Nc − NF vacua and not less, one has to
separate slightly all quark masses, mQ → mi

Q , i = 1 . . . NF , 0 <

(δmi j
Q)i j = (mi

Q − m j
Q) � mQ . All quark mass terms give only small

power corrections to (3.4), but just these corrections show the Z2Nc−NF

multiplicity of the vacua.
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∼ �Q

zQ(�Q, μgl)

(
�Q

μ�

) Nc
2Nc−NF � mQ . (3.5)

Besides, the scale of the gluino condensate of unbroken
SU (Nc − NF ) is

�YM = 〈S〉1/3 ∼
(

�Q
bo

det〈�〉o

) 1
3(Nc−NF )

∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

,

μo(�) � �YM � �Q � μgl, (3.6)

and there are a large number of gluonia with the mass
scale ∼�YM (except for the case NF = Nc−1 when the
whole gauge group is higgsed, there is no gluonia with
masses ∼�YM and the non-perturbative superpotential
in (3.3) originates not from the unbroken SU (Nc − NF )

but directly from the instanton contribution [11]).
(ii) (2Nc − NF ) vacua split into two groups of vacua

with parametrically different mass spectra at μ� �
μ�,o. There are Nc SQCD vacua with 〈�〉SQCD ∼
�Q

2(�Q/mQ)(Nc−NF )/Nc differing by ZNc phases (in
these, the last term ∼�2/μ� in the superpotential (3.3)
can be neglected), and (Nc − NF ) of nearly degener-
ate classical vacua with parametrically larger conden-
sates 〈�〉cl ∼ mQμ� (in these, the first non-perturbative
quantum term ∼S in the superpotential (3.3) gives only
small corrections with ZNc−NF phases, but the mul-
tiplicity of the vacua originates just from these small
corrections). The properties of SQCD vacua have been
described in detail in chapter 2 of [9], the pion masses
are μSQCD(�) ∼ mQ/zQ(�Q, μ

SQCD
gl ) � mQ therein,

where zQ(�Q, μ
SQCD
gl ) � 1 is the logarithmically large

perturbative renormalization factor. In (Nc − NF ) clas-
sical vacua the gluon and pion masses are given in (3.1)
and (3.5) but now

〈�〉cl ∼ mQμ� � �Q
2, μcl(�) ∼ mQ

zQ(�Q, μcl
gl)

,

(3.7)

and in all vacua (except for the case NF = Nc−1 ) there
are a large number of gluonia with the mass scale

∼ �
SQCD
YM = 〈S〉1/3 ∼

(
�Q

bo

det〈�〉SQCD

) 1
3(Nc−NF )

∼ �Q

(
mQ

�Q

)NF/3Nc

in Nc SQCD vacua, (3.8)

∼ �class
YM ∼

(
�Q

bo

det〈�〉cl

) 1
3(Nc−NF )

∼ �Q

(
�Q

2

mQμ�

) NF
3(Nc−NF )

in (Nc − NF) classical vacua.

(3.9)

Finally, the change of regimes i ↔ ii occurs at

(
μ�,o

�Q

) Nc−NF
2Nc−NF ∼ mQμ�,o

�Q
2 � 1

→ μ�,o ∼ �Q

(
�Q

mQ

) 2Nc−NF
Nc � �Q . (3.10)

3.2 Spontaneously broken flavor symmetry:
U (NF ) → U (n1) ×U (n2)

The quark condensates 〈Q j Q
i 〉 ∼ δijCi split into two groups

in these vacua with the spontaneously broken flavor sym-
metry: there are 1 ≤ n1 ≤ [NF/2] equal values 〈�1〉 =
〈Q1Q

1〉 ≡ 〈(QQ)1〉 and n2 = (NF − n1) ≥ n1 equal val-
ues 〈�2〉 = 〈Q2Q

2〉 ≡ 〈(QQ)2〉 �= 〈(QQ)1〉 (unless stated
explicitly, here and everywhere below in the text it is implied
that 1 − (n1/Nc), 1 − (n2/Nc) and (2Nc − NF )/Nc are all
O(1) ). There will be two different phases, depending on the
value of μ�/�Q � 1 (see below).

3.2.1 At �Q � μ� � μ�,o all qualitative properties
are similar to those for an unbroken symmetry. All quarks
are higgsed at high scales μgl,1 ∼ μgl,2 � �Q and the low
energy Lagrangian has the form (3.3). The term mQTr(QQ)

in the superpotential in (3.3) gives only small corrections,
while (2.5) can be rewritten here in the form

〈�1 + �2〉br = 1

Nc
Tr 〈�〉br

+mQμ� � 1

Nc
〈n1�1 + n2�2〉br

→
(

1 − n1

Nc

)
〈�1〉br � −

(
1 − n2

Nc

)
〈�2〉br,

〈S〉br =
(

�Q
bo

〈�1〉n1
br 〈�2〉n2

br

) 1
Nc−NF = 〈�1〉br〈�2〉br

μ�

, (3.11)

μ2
gl,1 ∼ μ2

gl,2 ∼ g2(μ = μgl)zQ(�Q, μgl)〈�1,2〉br,

〈�1〉br ∼ 〈�2〉br ∼ �Q
2
(

μ�

�Q

) Nc−NF
2Nc−NF

. (3.12)

The pion masses in this regime look as follows, see (3.3):
(a) due to the spontaneous breaking of the flavor symme-
try, U (NF ) → U (n1) × U (n2), there always will be 2n1n2

exactly massless Nambu–Goldstone particles and in this case
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these are the hybrids �12 and �21; (b) other n2
1+n2

2 ‘normal’
pions have masses as in (3.5).

There are

N tot
brok =

n1=[NF/2]∑
n1=1

Nbrok(n1)

=
n1=[NF/2]∑

n1=1

(2Nc − NF )C
n1
NF

, C n1
NF

= NF !
n1! n2!

(3.13)

such vacua (the factor 2Nc − NF originates from Z2Nc−NF

(see the footnote 1), for even NF the last term with n1 =
NF/2 enters (3.13) with the additional factor 1/2, i.e. C

n1
NF

differ from the standard C n1
NF

in (3.13) only by C
n1=k
NF=2k =

C n1=k
NF=2k/2), so that the total number of vacua3 is

Ntot = (Nunbrok = 2Nc − NF ) + N tot
brok, (3.14)

this agrees with [10].
3.2.2 The change of the regime in these vacua with the

broken symmetry occurs at μ�,o � μ� � μ̃�; see (3.10)
and (3.20), when all quarks are still higgsed but there appears
a large hierarchy between the values of quark condensates at
μ� � μ�,o; see (2.5). Instead of 〈�1〉 ∼ 〈�2〉, they look
now like

(a) br1 (br1 = breaking − 1)-vacua

〈�1〉br1 �
(

ρ1 = Nc

Nc − n1

)
mQμ� � �Q

2,

〈�2〉br1 � �Q
2
(

�Q

mQρ1

) Nc−n2
Nc−n1

(
�Q

μ�

) n1
Nc−n1

� 〈�1〉br1. (3.15)

Unlike the mainly quantum 〈�〉o or mainly classical
〈�〉cl vacua with unbroken symmetry, these vacua are
pseudo-classical: the largest value of the condensate
〈�1〉br1 ∼ mQμ� is classical while the smaller value
of 〈�2〉br1 ∼ 〈S〉br1/mQ is of quantum origin; see (2.5).
There are Nbr1(n1) = (Nc−n1)C

n1
NF

such vacua at given
values of n1 and n2.

(b) br2-vacua. These are obtained from (3.15) by n1 ↔ n2

and there are Nbr2(n1) = (Nc − n2)C
n1
NF

such vacua.
Of course, the total number of the vacua, Nbrok(n1) =
Nbr1(n1) + Nbr2(n1) = (2Nc − NF )C

n1
NF

remains the
same at μ� ≶ μ�,o.

3 By convention, we ignore the continuous multiplicity of the vacua
due to the spontaneous flavor symmetry breaking. Another way, one
can separate slightly all quark masses (see the footnote 2), so that all
Nambu–Goldstone bosons will acquire small masses O(δmQ) � mQ .

We consider br1 vacua (all results in br2 vacua can be
obtained by n1 ↔ n2). In the range μ�,o � μ� � μ̃� (see
below) where all quarks are higgsed finally, the masses of
higgsed gluons look now like

μ2
gl,1 ∼ g2(μ = μgl,1)zQ(�Q, μgl,1)〈�1〉 � μ2

gl,2. (3.16)

The superpotential in the low energy Lagrangian of pions
looks like in (3.3), but the Kähler term of pions is different.

We write it in the form K ∼ zQ(�Q, μgl,1)Tr
√

�
†
z�z . The

NF × NF matrix �z of pions looks as follows. Its n2 ×
n2 part consists of fields z′Q(μgl,1, μgl,2)�22, where z′Q �
1 is the perturbative logarithmic renormalization factor of
Q2, Q2 quarks with unhiggsed colors which appears due to
their additional RG evolution in the range of scales μgl,2 <

μ < μgl,1, while at μ = μgl,2 they are also higgsed. All
other pion fields �11,�12 and �21 are normal. As a result,
the pion masses look as follows. 2n1n2 hybrid pions �12 and
�21 are massless, while the masses of n2

1 �11 and n2
2 �22

are

μ(�11) ∼ mQ

zQ(�Q, μgl,1)
,

μ(�22) ∼ mQ

zQ(�Q, μgl,1)z′Q(μgl,1, μgl,2)
� μ(�11).

(3.17)

Finally, the mass scale of gluonia from the unhiggsed
SU (Nc − NF ) group is ∼ �

(br1)
YM , where

(�
(br1)
YM )3 = 〈S〉br1 = 〈�1〉br1〈�2〉br1

μ�

∼ mQ〈�2〉br1 ∼ �Q
3
(

�Q

μ�

) n1
Nc−n1

(
mQ

�Q

) n2−n1
Nc−n1

.

(3.18)

3.2.3 At scales �Q � μ < μgl,1 ∼ 〈�1〉1/2 ∼
(mQμ�)1/2 (ignoring logarithmic factors) the light degrees
of freedom include the SU (Nc−n1) gluons and active quarks
Q2, Q2 with unhiggsed colors and n2 < (Nc−n1) flavors, n2

1
pions �11 and 2n1n2 hybrid pions �12 and �21 (in essence,
these are the quarks Q2, Q2 with higgsed colors in this case).
The scale factor �1 of the gauge coupling in this lower energy
theory is

�
b′

o
1 ∼ �Q

bo/ det �11,

b′
o = 3(Nc − n1) − n2, bo = 3Nc − NF . (3.19)

The scale of the perturbative pole mass of Q2, Q2 quarks is
mpole

Q ∼ mQ , while the scale of μgl,2 is μgl,2 ∼ 〈Q2Q2〉1/2 =
〈�2〉1/2, with 〈�2〉 � 〈�1〉 given in (3.15). Hence, the hier-
archy at μ�,o � μ� � μ̃� looks like mQ � �1 �
μgl,2 ∼ 〈�2〉1/2 and active Q2, Q2 quarks are also hig-
gsed, while at μ� � μ̃� the hierarchy looks like 〈�2〉1/2 ≡
〈(QQ)2〉1/2 � �1 � mQ and the active quarks Q2, Q2
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become too heavy, they are not higgsed but are in the HQ2

(heavy quark) phase. The phase changes at

〈�2〉1/2 ∼ mQ ∼ 〈�1〉 ∼ �
(br1)
YM

→ μ̃� ∼ �Q

(
�Q

mQ

) bo−n1
n1 � μ�,o. (3.20)

Hence, we consider now this Higgs1 − HQ2 phase real-
ized at μ� > μ̃�. For this it is convenient to retain all
fields � although, in essence, they are too heavy and dynam-
ically irrelevant. After integrating out all heavy higgsed glu-
ons and Q1, Q

1 quarks, we write the Lagrangian at μ2 =
μ2

gl,1 ∼ Ncg2(μ = μgl,1)zQ(�Q, μgl,1)〈�1〉 in the form
(see Appendix A)

K =
[

1

f 2 Tr(�†�) + zQ(�Q, μ2
gl,1)(K� + KQ2)

]
,

(3.21)

KQ2 = Tr(Q†
2Q

2 + (Q2 → Q2)),

K� = 2Tr
√

�
†
11�11 + Khybr,

Khybr = Tr

⎛
⎝�

†
12

1√
�11�

†
11

�12 + �21
1√

�
†
11�11

�
†
21

⎞
⎠ ,

W =
[
− 2π

α(μgl,1)
S
]

+ μ�

2

[
Tr (�2) − 1

Nc
(Tr �)2

]

+Tr(Q2m
tot
Q2
Q2) + W�,

W� = Tr

(
mQ�11 + mtot

Q2
�21

1

�11
�12

)

−Tr(�11�11 + �12�21 + �21�12),

mtot
Q2

= (mQ − �22).

In (3.21):Q2, Q2 andV are the active Q2, Q
2 guarks and glu-

ons with unhiggsed colors (S is their field strength squared),
�12,�21 are the hybrid pions (in essence, these are the
Q2, Q

2 quarks with higgsed colors), zQ(�Q, μ2
gl,1) � 1

is the corresponding perturbative logarithmic renormaliza-
tion factor of massless quarks; see (3.2). Evolving now down
in the scale and integrating Q2, Q2 quarks as heavy ones at
μ < mpole

Q2
and then unhiggsed gluons at μ < �

(br1)
YM one

obtains the Lagrangian of pions and fions, see (3.21),

K =
[

1

f 2 Tr(�†�) + zQ(�Q, μ2
gl,1)K�

]
, (3.22)

W = (Nc − n1)S + μ�

2

[
Tr(�2) − 1

Nc
(Tr �)2

]
+ W�,

S =
[
�Q

bo det mtot
Q2

det �11

] 1
Nc−n1

,

We start with determining the masses of hybrids �12,�21

and �12,�21. They are mixed and their kinetic and mass
terms look like

Khybr = Tr
[
φ

†
12φ12 + φ

†
21φ21 + π

†
12π12 + π

†
21π21

]
, (3.23)

Whybr = Tr(mφφ12φ21

+mππ12π21 − mφπ (φ12π21 + φ21π12)),

mφ = f 2μ�,mπ = mQ − 〈�2〉
zQ

= 〈�1〉
μ�zQ

∼ mQ

zQ
� mφ, zQ = zQ(�Q, μgl,1),

mφπ =
(

f 2〈�1〉
zQ

)1/2

, m2
φπ = mφmπ . (3.24)

Hence, the scalar potential looks like

VS = |m|2 · |�(−)
12 |2 + 0 · |�(+)

12 |2 + (12 → 21),

|m| = (|mφ | + |mπ |), (3.25)

�
(−)
12 = (c φ12 − s π12),

�
(+)
12 = (c π12 + s φ12),

c =
( |mφ |

|m|
)1/2

, s =
( |mπ |

|m|
)1/2

.

Therefore, the fields �
(−)
12 and �

(−)
21 are heavy, with the

masses |m| � |mφ | � �Q , while the fields �
(+)
12 and �

(+)
21

are massless. But the mixing is really parametrically small, so
that the heavy fields are mainly φ12, φ21 while the massless
ones are mainly π12, π21.4

And finally from (3.22), the pole mass of pions �11 is

μ(�11) ∼ 〈�1〉
zQ(�Q, μgl,1)μ�

∼ mQ

zQ(�Q, μgl,1)
. (3.26)

On the whole for this Higgs1–HQ2 phase the mass
spectrum looks as follows at μ� � μ̃�. (a) The heavi-
est are n1(2Nc − n1) massive gluons and the same num-
ber of their scalar superpartners with the masses μgl,1,
see (3.16), these masses originate from the higgsing of
the Q1, Q

1 quarks. (b) There are a large number of 22-
flavored hadrons made of weakly interacting and weakly
confined non-relativistic Q2,Q2 quarks with unhiggsed col-
ors (the tension of the confining string originating from the
unbroken SU (Nc − n1) color group is

√
σ ∼ �

(br1)
YM �

mpole
Q,2 , see (3.18)), the scale of their masses is mpole

Q,2 ∼
mQ/[zQ(�Q, μgl,1)z′Q(μgl,1,m

pole
Q,2 )], where zQ � 1 and

z′Q � 1 are the corresponding massless perturbative loga-

rithmic renormalization factors. (c) There are n2
1 pions �11

with the masses (3.26), μ(�11) � mpole
Q,2 . (d) There are a

4 Everywhere below in the text we neglect mixing when it is small.
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large number of gluonia made of gluons with unhiggsed col-
ors, the scale of their masses is ∼ �

(br1)
YM , see (3.18). (e) The

hybrids �12,�21 are massless.
All N 2

F fions �i j remain too heavy and dynamically irrel-

evant (see the footnote 3), their pole masses are μ
pole
1 (�) ∼

f 2μ� � μgl,1.

4 Quark and gluino condensates and multiplicities
of the vacua at Nc < NF < 2Nc

To obtain the numerical values of the quark condensates
〈Q j Q

i 〉 = δij 〈(QQ)〉i at Nc < NF < 2Nc (but only for
this purpose), the simplest way is to use the known exact
form of the non-perturbative contribution to the superpo-
tential in the standard SQCD with the quark superpotential
mQTr(QQ) and without the fions �. It seems clear that at
sufficiently large values of μ� among the vacua of the �-
theory there should be Nc vacua of SQCD in which, defi-
nitely, all fions � are too heavy and dynamically irrelevant.
Therefore, they all can be integrated out and the effective
superpotential accounting for all anomalies and depending
only on quark bilinears �i

j = (Q j Q
i ) can be written as

(mQ = mQ(μ = �Q), μ� = μ�(μ = �Q), see Sect. 2
above and sections 3 and 7 in [9])

Weff(�) = −Nc

(
det QQ

�Q
bo

)1/Nc

+ mQTr
∑
i

(Qi Q
i )

− 1

2μ�

[
Tr

∑
i, j

(Q j Q
i )(Qi Q

j )

− 1

Nc

(
Tr

∑
i

(Qi Q
i )

)2]
, i, j = 1 . . . NF . (4.1)

Indeed, among other vacua, at sufficiently large μ�, there
are Nc SQCD vacua in (4.1) with the unbroken SU (NF )

flavor symmetry. In these, the last term in (4.1) gives a small
correction only and can be neglected and one obtains

〈Q j Q
i 〉SQCD � δij

1

mQ
(�

(SQCD)
YM )3

= δij
1

mQ
(�Q

bomNF
Q )1/Nc . (4.2)

Now, using the holomorphic dependence of the exact
superpotential on the chiral superfields (Q j Q

i ) and the chiral
parameters mQ and μ�, the exact form (4.1) can be used to
find the values of the quark condensates 〈Q j Q

i 〉 in all other
vacua of the �-theory and at all other values of μ� > �Q .
It is worth recalling only that, in general, as in the standard
SQCD [3,9,12]: (4.1) is not the superpotential of the gen-
uine lowenergyLagrangiandescribing lightest particles, this
effective superpotential determines only the values of vacuum

condensates 〈Q j Q
i 〉. (The genuine low energy Lagrangians

in different vacua will be obtained below in Sects. 6, 7, 8, 9,
10, 11, both in the direct and dual theories).

4.1 Vacua with the unbroken flavor symmetry

One obtains from (4.1) that at �Q � μ� � μ�,o there are
two groups of such vacua with parametrically different val-
ues of condensates, 〈Q j Q

i 〉L = δij 〈QQ〉L and 〈Q j Q
i 〉S =

δij 〈QQ〉S .

(a) There are (2Nc − NF ) L-vacua (L = large; see also foot-
note 1) with

〈QQ〉L ≡ 〈QQ(μ = �Q)〉L

∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF � �Q

2. (4.3)

In these quantum L-vacua the second term in the super-
potential (4.1) gives numerically only a small correction.

(b) There are (NF − Nc) classical S-vacua (S = small) with

〈QQ〉S ≡ 〈QQ(μ = �Q)〉S � − Nc

Nc
mQμ�. (4.4)

In these S-vacua, the first non-perturbative term in the
superpotential (4.1) gives only small corrections with
ZNF−Nc phases, but just these corrections determine the
multiplicity of these (NF −Nc) nearly degenerate vacua.
On the whole, there are

Nunbrok = (2Nc − NF ) + (NF − Nc) = Nc (4.5)

vacua with the unbroken flavor symmetry at Nc < NF <

2Nc.

One finds from (4.1) that at μ� � μ�,o the above (2Nc−
NF ) L-vacua and (NF − Nc) S-vacua degenerate into Nc

SQCD vacua (4.2).
The value of μ�,o is determined from the matching

⎡
⎣〈QQ〉L ∼ �Q

2
(

�Q

μ�,o

) Nc
2Nc−NF

⎤
⎦ ∼ [〈QQ〉S ∼ mQμ�,o]

∼
⎡
⎣〈QQ〉SQCD ∼ �Q

2
(
mQ

�Q

) Nc
Nc

⎤
⎦

→ μ�,o ∼ �Q

(
�Q

mQ

) 2Nc−NF
Nc � �Q . (4.6)
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4.2 Vacua with the spontaneously broken flavor symmetry
U (NF ) → U (n1) ×U (n2), n1 ≤ [NF/2]

In these, there are n1 equal condensates 〈Q1Q
1(μ =

�Q)〉 ≡ 〈(QQ)1〉 and n2 ≥ n1 equal condensates
〈Q2Q

2(μ = �Q)〉 ≡ 〈(QQ)2〉 �= 〈(QQ)1〉. The simplest
way to find the values of quark condensates in these vacua is
to use (2.5). We rewrite it here for convenience〈
(QQ)1 + (QQ)2 − 1

Nc
Tr QQ

〉
br

= mQμ�,

〈S〉br =
(

det〈QQ〉br = 〈(QQ)1〉n1
br 〈(QQ)2〉n2

br

�Q
bo

)1/Nc

= 〈(QQ)1〉br〈(QQ)2〉br

μ�

. (4.7)

Besides, the multiplicity of the vacua will be shown below
at given values of n1 and n2 ≥ n1.

4.2.1 The region �Q � μ� � μ�,o.

(a) At n2 ≶ Nc, including n1 = n2 = NF/2 for even NF but
excluding n2 = Nc, there are (2Nc − NF )C

n1
NF

Lt-vacua
(Lt=L-type) with the parametric behavior of condensates
(see footnote 1)

(
1 − n1

Nc

)
〈(QQ)1〉Lt � −

(
1 − n2

Nc

)

×〈(QQ)2〉Lt ∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF

, (4.8)

i.e. as in the L-vacua above but 〈(QQ)1〉Lt �= 〈(QQ)2〉Lt

here.
(b) At n2 > Nc there are (n2 − Nc)C

n1
NF

br2 - vacua
(br2=breaking-2) with, see (4.7),

〈(QQ)2〉br2 ∼ mQμ�,

〈(QQ)1〉br2 ∼ �Q
2
(

μ�

�Q

) n2
n2−Nc

(
mQ

�Q

) Nc−n1
n2−Nc

,

〈(QQ)1〉br2

〈(QQ)2〉br2
∼

(
μ�

μ�,o

) Nc
n2−Nc � 1. (4.9)

(c) At n1 = Nc, n2 = Nc there are (2Nc − NF ) · Cn1=Nc
NF

‘special’ vacua with, see (4.7),

〈(QQ)1〉spec = Nc

2Nc − NF
(mQμ�),

〈(QQ)2〉spec ∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF

, (4.10)

〈(QQ)1〉spec

〈(QQ)2〉spec
∼

(
μ�

μ�,o

) Nc
2Nc−NF � 1.

On the whole, there are (θ(z) is the step function )

Nbrok(n1) =
[
(2Nc − NF ) + θ(n2 − Nc)(n2 − Nc)

]
C

n1
NF

=
[
(Nc − Nc) + θ(Nc − n1)(Nc − n1)

]
C

n1
NF

, (4.11)

( C
n1
NF

differ from the standard C n1
NF

only by C
n1=k
NF=2k =

C n1=k
NF=2k/2, see (3.13)) vacua with the broken flavor sym-

metry U (NF ) → U (n1) ×U (n2), this agrees with [10]
(see also the related paper [16], but the superpotential in
[16] is somewhat different and this difference is crucial
for the special vacua; see Appendix B).

4.2.2 The region μ� � μ�,o

(a) At all values of n2 ≶ Nc, including n1 = n2 = NF/2 at
even NF and the ‘special’ vacua withn1 = Nc, n2 = Nc,
there are (Nc − n1)C

n1
NF

br1-vacua (br1 = breaking − 1)
with, see (4.7),

〈(QQ)1〉br1 ∼ mQμ�, 〈(QQ)2〉br1

∼ �Q
2
(

�Q

μ�

) n1
Nc−n1

(
�Q

mQ

) Nc−n2
Nc−n1

,

〈(QQ)2〉br1

〈(QQ)1〉br1
∼

(
μ�,o

μ�

) Nc
Nc−n1 � 1. (4.12)

(b) At n2 < Nc, including n1 = n2 = NF/2, there are also
(Nc − n2)C

n2
NF

= (Nc − n2)C
n1
NF

br2-vacua with, see
(4.7),

〈(QQ)2〉br2 ∼ mQμ�, 〈(QQ)1〉br2

∼ �Q
2
(

�Q

μ�

) n2
Nc−n2

(
�Q

mQ

) Nc−n1
Nc−n2

, (4.13)

〈(QQ)1〉br2

〈(QQ)2〉br2
∼

(
μ�,o

μ�

) Nc
Nc−n2 � 1.

On the whole, there are

Nbrok(n1) = [
(Nc − n1) + θ(Nc − n2)(Nc − n2)

]
C

n1
NF

= [
(Nc−Nc)+θ(Nc−n1)(Nc−n1)

]
C

n1
NF

(4.14)

vacua. As it should, the number of vacua at μ� ≶ μ�,o

is the same.
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As one can see from the above, all quark condensates
become parametrically the same at μ� ∼ μ�,o. Clearly,
this region μ� ∼ μ�,o is very special and most of the
quark condensates change their parametric behavior and hier-
archies at μ� ≶ μ�,o. For example, the br2-vacua with
n2 < Nc, 〈(QQ)2〉 ∼ mQμ� � 〈(QQ)1〉 at μ� � μ�,o

evolve into the L-type vacua with 〈(QQ)2〉 ∼ 〈(QQ)1〉 ∼
�Q

2(�Q/μ�)Nc/(2Nc−NF ) at μ� � μ�,o, while the br2-
vacua with n2 > Nc, 〈(QQ)2〉 ∼ mQμ� � 〈(QQ)1〉 at
μ� � μ�,o evolve into the br1-vacua with 〈(QQ)1〉 ∼
mQμ� � 〈(QQ)2〉 at μ� � μ�,o, etc. The exception
is the special vacua with n1 = Nc, n2 = Nc. In these,
the parametric behavior 〈(QQ)1〉 ∼ mQμ�, 〈(QQ)2〉 ∼
�Q

2(�Q/μ�)Nc/(2Nc−NF ) remains the same but the hier-
archy is reversed at μ� ≶ μ�,o : 〈(QQ)1〉/〈(QQ)2〉 ∼
(μ�/μ�,o)

Nc/(2Nc−NF ).
The total number of all vacua at Nc < NF < 2Nc is

Ntot = (Nunbrok = Nc) +
⎛
⎝N tot

brok =
[NF/2]∑
n1=1

Nbrok(n1)

⎞
⎠

=
Nc∑
k=0

(Nc − k)C k
NF

, (4.15)

this agrees with [10].5

Comparing this with the number of vacua (3.13) and (3.14)
at NF < Nc it is seen that, for both Nunbrok and N tot

brok
separately, the multiplicities of the vacua at NF < Nc and
NF > Nc are not analytic continuations of each other.

The analog of (4.1) in the dual theory with |�q | = �Q ,
see (2.7), is obtained by the replacement QQ(μ = �Q) →
M(μ = �Q), so that 〈M(μ = �Q)〉 = 〈QQ(μ = �Q)〉 in
all vacua and multiplicities of the vacua are the same.

5 Fions � in the direct theory: one or three generations

At Nc < NF < 2Nc and in the interval of scales μH <

μ < �Q ( μH is the largest physical mass in the quark–
gluon sector), the quark and gluon fields are effectively mass-
less. Because the quark renormalization factor zQ(�Q, μ �
�Q) = (μ/�Q)γQ>0 � 1 decreases in this case in a power
fashionwith lowering energy due to the perturbative RG evo-
lution, it is seen from (2.3) that the role of the four-quark term
(QQ)2/μ� increases with lowering energy. Hence, while it
is irrelevant at the scale μ ∼ �Q because μ� � �Q , the

5 But we disagree with their ‘derivation’ in section 4.3 of [12]. There
is no their N2 vacua with 〈Mi

i 〉〈qiqi 〉/λ = 〈S〉 = 0, i = 1, ...NF (no
summation over i) in the dual SU (Nc) theory at mQ �= 0. In all Ntot

vacua in both direct and dual SU (Nc) theories: 〈det M/λbo 〉1/Nc =
〈det QQ/λbo 〉1/Nc = 〈S〉 �= 0 at mQ �= 0 (see Sects. 6, 7, 8, 9, 10, and
11 below and the Appendix B). Really, the superpotential (4.48) in [12]
contains all Ntot = N1 + N2 vacua.

question is whether it becomes dynamically relevant in the
range of energies μH � μ � �Q . For this, we estimate the
scaleμo where it becomes relevant in the massless theory (see
section 7 in [9] for the perturbative strong coupling regime
with a(μ ∼ �Q) ∼ 1, a(μ � �Q) ∼ (�Q/μ)ν >0 � 1 at
Nc < NF < 3Nc/2 )

μo

μ�

1

z2
Q(�Q, μo)

= μo

μ�

(
�Q

μo

)2γQ

∼ 1

→ μo

�Q
∼

(
�Q

μ�

) 1
(2γQ−1)

, (5.1)

γ conf
Q = bo

NF
→ μconf

o

�Q
∼

(
�Q

μ�

) NF
3(2Nc−NF )

,

γ
strong
Q = 2Nc − NF

Nc
→ μ

strong
o

�Q
∼

(
�Q

μ�

) Nc
(5Nc−3NF )

.

Hence, if μH � μo, then at scales μ < μo the four-
quark terms in the superpotential (2.3) cannot be neglected
any more and we have to account for them. For this, we have
to reinstate the fion fields � and to use the Lagrangian (2.1),
in which the Kähler term at μH < μ � �Q looks like

K =
[
z�(�Q, μ)

f 2 Tr (�†�) + zQ(�Q, μ)

×Tr

(
Q†Q + (Q → Q)

)]
,

zQ(�Q, μ) =
(

μ

�Q

)γQ

� 1. (5.2)

We recall that even at those scales μ that the running per-
turbative mass of the fions μ�(μ) ≡ μ�/ f 2z�(�Q, μ) �
μ and so they are too heavy and dynamically irrelevant; the
quarks and gluons remain effectively massless and active.
Therefore, due to the Yukawa interactions of fions with
quarks, the loops of still active light quarks (and gluons inter-
acting with quarks) still induce the running renormalization
factor z�(�Q, μ) of the fions at all those scales until quarks
are effectively massless, μ > μH . But, in contrast with a
very slow logarithmic RG evolution at NF < Nc in Sect.
3, the perturbative running mass of fions decreases now at
Nc < NF < 2Nc and μ < �Q monotonically and very
quicklywith diminishing scale (see below), μ�(μ � �Q) =
μ�/ f 2z�(�Q, μ) ∼ μ�(μ/�Q)|γ�|>1 � μ�. Neverthe-
less, until μ�(μ) � μ, the fields � remain heavy and do
not influence the RG evolution. But, when μH � μo and
μ�(μ) ∼ μ�/z�(�Q, μ) is the main contribution to the
fion mass,6 the quickly decreasing mass μ�(μ) becomes
μ

pole
2 (�) = μ�(μ = μ

pole
2 (�)) and μ�(μ < μ

pole
2 (�)) <

6 The cases when the additional contributions to the masses of the fions
from other perturbative or non-perturbative terms in the superpotential
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μ, so that: (1) there is a pole in the fion propagator at
p = μ

pole
2 (�) (ignoring here and below a possible nonzero

fion width, in any case the nonzero width can have only
massive particle), this is a second generation of fions (the
first one is at μ

pole
1 (�) � �Q – see Appendix A); (2)

the fields � become effectively massless at μ < μ
pole
2 (�)

and begin to influence the perturbative RG evolution. In
other words, the seemingly ‘heavy’ fields � turn back, they
become effectively massless and dynamically relevant. Here
and below the terms ‘relevant’ and ‘irrelevant’ (at a given
scale μ ) will be used in the sense of whether the running
mass ∼ μ�/z�(�Q, μ � �Q) of the fions at a given scale
μ is < μ, so that they are effectively massless and participate
actively in interactions at this scale, or they remain too heavy
with the running mass > μ whose interactions at this scale
give only small corrections.

It seems clear that the physical reason why the four-quark
terms in the superpotential (2.3) become relevant at scales
μ < μo is that the fion field � which was too heavy and
so dynamically irrelevant at μ > μo, μ�(μ > μo) > μ,
becomes effectively massless at μ < μo, μ�(μ < μo) < μ,
and begins to participate actively in the RG evolution, i.e. it
becomes relevant. In other words, the four-quark term in (2.3)
‘remembers’ about fions and signals about the scale below
which the fions become effectively massless, μo = μ

pole
2 (�).

This allows us to find the value of z�(�Q, μo),

f 2μ�

z�(�Q, μo)
� μo, z�(�Q, μo < μ � �Q)

= 1 + f 2
[(

μ

�Q

)γ�< 0

− 1

]

� f 2
(

�Q

μ

)2γQ> 0

� 1, γ� = −2γQ < 0. (5.3)

The perturbative running mass μ�(μ) ∼ μ�/z�(�Q,

μ � �Q) � μ� of fions continues to decrease strongly
with diminishing μ at all scales μH < μ < �Q until
quarks remain effectively massless, and becomes frozen only
at scales below the quark physical mass, when the heavy
quarks decouple.

Hence, if μH � μo, there is no pole in the fion propagator
at momenta p < �Q because the running fion mass is too
large in this range of the scales, μ�(p > μo) > p. The fions
remain dynamically irrelevant in this case at all momenta
p < �Q .

But when μH � μo, there will be not only the sec-
ond generation of fions at p = μ

pole
2 (�) = μo but also

a third generation at p � μo. Indeed, after the heavy quarks

Footnote 6 continued
are not small in comparison with ∼ μ�/z�(�Q , μ) have to be consid-
ered separately.

decouple at momenta p < μH � μo and the renormal-
ization factor z�(�Q, μ) of the fions becomes frozen in the
region of scales where the fions already became relevant,
z�(�Q, μ < μH ) ∼ z�(�Q, μ ∼ μH ), the frozen value
μ�(μ < μH ) of the running perturbative fion mass is now
μ�(μ ∼ μH ) � pH = μH . Hence, there is one more pole
in the fion propagator at p = μ

pole
3 (�) ∼ μ�(μ ∼ μH ) �

μH .
On the whole, a few words for the direct theory (see foot-

note 5 for reservations):

(a) The fions remain dynamically irrelevant and there are
no poles in the fion propagator at momenta p < �Q if
μH � μo.

(b) If μH � μo � �Q , there are two poles in the fion

propagator at momenta p � �Q : μ
pole
2 (�) ∼ μo and

μ
pole
3 (�) ∼ μ�/z�(�Q, μH ) � μ

pole
2 (�) (here and

everywhere below in similar cases – up to corrections due
to possible nonzero decay widths of the fions). In other
words, the fions appear in three generations in this case
(we recall that there is always the largest pole mass of
the fions μ

pole
1 (�) � �Q ; see Appendix A). Hence, the

fions are effectively massless and dynamically relevant
in the range of scales μ

pole
3 (�) < μ < μ

pole
2 (�).

Moreover, once the fions become effectively massless
and dynamically relevant with respect to internal interac-
tions, they begin to contribute simultaneously to the external
anomalies ( the ’t Hooft triangles in the external background
fields).

The case μH ∼ μo requires additional information. The
reason is that at scales μ � μH , in addition to the canoni-
cal kinetic term �

†
R p

2�R (R = renormalized) of the fions,

there are also terms ∼ �
†
R p

2(p2/μ2
H )k�R with higher pow-

ers of momenta induced by loops of heavy quarks (and glu-
ons). If μH � μo, then the pole in the fion propagator
at p = μ

pole
2 (�) = μo is definitely there and, because

μ�(μ = μH ) � μH , these additional terms are irrelevant in
the region p ∼ μ�(μ = μH ) � μH and the pole in the fion
propagator at p = μ

pole
3 (�) = μ�(μ = μH ) � μH is also

guaranteed. But μ�(μ ∼ μH ) ∼ μH if μH ∼ μo, and these
additional terms become relevant. Hence, whether there is a
pole in the fion propagator in this case or not depends on all
these terms.

Now, if μH < μo so that the fions become relevant at
μ < μo, the question is: what are the values of the quark
and fion anomalous dimensions, γQ and γ�, in the massless
perturbative regime at μH < μ < μo?

To answer this question, we use the approach used in [9]
(see Sect. 7). For this, we introduce first the corresponding
massless Seiberg dual theory [2]. Our direct theory includes
at μH < μ < μconf

o not only the original effectively massless
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case in this range of scales of the quark and gluon fields,
but also the active N 2

F fion fields �
j
i as they became now

also effectively massless, so that the effective superpotential
becomes nonzero and includes the Yukawa term Tr (Q�Q).
Then the massless dual theory with the same ’t Hooft triangles
includes only the massless qual quarks q, q with NF flavors
and the dual SU (Nc = NF − Nc) gluons. Furthermore,
one equates two NSVZ β̂ext-functions of the external baryon
and SU (NF )L ,R-flavor vector fields in the direct and dual
theories,

d

d ln μ

2π

αext
= β̂ext

= − 2π

α2
ext

βext =
∑
i

Ti
(
1 + γi

)
, (5.4)

where the sum runs over all fields which are effectively mass-
less at scales μH < μ < μo, the unity in the brackets is due
to one-loop contributions while the anomalous dimensions
γi of fields represent all higher-loop effects, Ti are the coeffi-
cients. It is worth noting that these general NSVZ forms (5.4)
of the external ‘flavored’ β̂-functions are independent of the
kind of massless perturbative regime of the internal gauge
theory, i.e. whether it is conformal, or the strong coupling or
the IR-free one.

The effectively massless particles in the direct theory here
are the original quarks Q, Q and gluons and, in addition, the
fions �

j
i , while in the dual theory these are the dual quarks

q, q and dual gluons only.
It is clear that, in comparison with the standard SQCD

without the fion fields (see section 7 in [9]), the addition
of the fion fields with zero baryon charge does not influence
β̂ext for the baryon charge, so that in the whole interval μH <

μ < �Q it remains the same as in [9]

NF Nc (BQ = 1)2 (1 + γQ)

= NF Nc

(
Bq = Nc

Nc

)2

(1 + γq). (5.5)

The form of (5.4) for the SU (NF )L flavor charge at scales
μH < μ < μo where the fion fields became effectively
massless and relevant differs from those in [9], now it looks
like

Nc (1 + γQ) + NF (1 + γ�) = Nc (1 + γq). (5.6)

In (5.5) and (5.6) the left-hand sides are from the direct theory
while the right-hand sides are from the dual one, γQ and γ�

are the anomalous dimensions of the quark Q and fion �,
while γq is the anomalous dimension of the dual quark q.

The massless dual theory is in the conformal regime at
3Nc/2 < NF < 2Nc, so that γ conf

q = bo/NF = (3Nc −
NF )/NF . Therefore, one finds from (5.5) and (5.6) that
γ conf
Q = bo/NF = (3Nc − NF )/NF and γ conf

� = −2γ conf
Q ,

i.e. while only the quark–gluon sector of the direct theory

behaves conformally at scales μconf
o < μ < �Q where

the fion fields � remain heavy and irrelevant, the whole
theory including the fields � becomes conformal at scales
μH < μ < μconf

o where fions become effectively massless
and relevant.7

In the region Nc < NF < 3Nc/2 the situation with (5.5)
and (5.6) is somewhat different. The massless direct theory
is now in the strong gauge coupling regime starting from
μ < �Q , a(μ � �Q) ∼ (�Q/μ)ν > 0 � 1, see section
7 in [9], while the massless dual theory is in the IR-free
logarithmic regime. Therefore, γq is logarithmically small at
μ � �Q, γq → 0, and one obtains in this case from (5.5)
for the baryon charge the same value of γ

strong
Q (μH � μ �

�Q) as in [9]

γ
strong
Q (μH � μ � �Q) = 2Nc − NF

Nc
,

a(μH � μ � �Q) ∼ (�Q/μ)ν � 1, (5.7)

ν = NF

Nc
γ

strong
Q − 3 = 3Nc − 2NF

Nc
> 0. (5.8)

In other words, the value of the quark anomalous dimension
γ

strong
Q (μH � μ � �Q) in the �-theory is the same as in

the standard SQCD, independently of whether the field � is
relevant or not.

The value of γ� at μH � μ � μ
strong
o obtained from

(5.6) will be γ
strong
� = −(1 + γ

strong
Q ) = −Nc/Nc. But we

know from the standard SQCD that the corresponding analog
of (5.6) for the flavor charge is not fulfilled in the region
Nc < NF < 3Nc/2, see section 7 in [9]). Therefore, we
will not use (5.6) in this region of NF/Nc in the �-theory
also. Instead, we will present now other arguments about
the value of γ

strong
� in the �-theory at Nc < NF < 3Nc/2

and μH < μ < μ
strong
o when the field � already became

effectively massless.
First, we point out that the gauge coupling a(μ) entered

already into a strong coupling regime in the range of scales
μ

strong
o < μ < �Q, μ

strong
o ∼ �Q(�Q/μ�)Nc/(5Nc−3NF )

� �Q , so that a(μ ∼ �Q) ∼ 1 while a(μ
strong
o ) ∼ (�Q/

μ
strong
o )ν > 0 � 1. At the same time the Yukawa coupling

a f (μ) ∼ f 2/z�(�Q, μ)zQ(�Q, μ) ∼ (�Q/μ)2γQ+γ� of
the field � stays intact, a f (μ ∼ �Q) ∼ a f (μ ∼ μ

strong
o ) ∼

1, because γ
strong
� = −2γ

strong
Q at μ

strong
o < μ < �Q .

Consider now the Feynman diagrams contributing to the
renormalization factors z�(μ) and zQ(μ) at μH � μ �
μ

strong
o . Order by order in the perturbation theory the extra

loop with the exchange of the field � is a f (μ)/a(μ) ∼

7 This does not mean that nothing changes at all after the fion field
� begins to participate actively in the perturbative RG evolution at
μH < μ < μconf

o . In particular, the frozen fixed point values of the
gauge and Yukawa couplings a∗ and a∗

f will change.

123



Eur. Phys. J. C (2017) 77 :19 Page 15 of 35 19

(μ/�Q)ν > 0 � 1 times smaller than the extra loop but with
the exchange of gluon and can be neglected. In effect, the
field � in such a situation plays a role of the “external” back-
ground field which is “weakly coupled” in comparison with
the “internal” very strong quark–gluon interactions. There-
fore, the fact that the field � became effectively massless and
formally relevant at μ < μ

strong
o is really of no importance for

the RG evolution, so that both γ
strong
Q and γ

strong
� = −2γ

strong
Q

remain the same at μ ≷ μ
strong
o (i.e. the Yukawa coupling

a f (μ) still stays at a f (μ) ∼ 1 at μH < μ < μ
strong
o ). As for

γ
strong
Q , this agrees with the fact that (5.5) remains the same

at μ
strong
o < μ < �Q and at μH < μ < μ

strong
o .

On the whole, according to the above considerations, the
values of γ

strong
Q (μ) and γ

strong
� (μ) in the �-theory are

γ
strong
Q (μ) = 2Nc − NF

Nc
, γ

strong
� (μ)

= −2γ
strong
Q (μ), μH < μ < �Q (5.9)

in the strong gauge coupling regimea(μ) � 1 at Nc < N f <

3Nc/2 and in the whole range of scales μH < μ < �Q if
μH < μ

strong
o . If the largest mass μH in the quark–gluon

sector is such that μ
strong
o � μH � �Q , then the form of

the RG evolution is those in (5.9) at μH < μ < �Q and
changes at μ < μH .

In the rest of this paper the mass spectra of the direct
and dual theories will be considered within the conformal
window 3Nc/2 < NF < 2Nc only.

Mass spectra at 3Nc/2 < NF < 2Nc

Let us recall that, within the dynamical scenario used in this
paper for the strong coupling regimes with the gauge cou-
pling a ∼ 1, the quarks can be either in the HQ (heavy
quark) phase where they are confined, or they are higgsed
at the appropriate conditions. Besides, it is implied that no
‘unexpected’ parametrically lighter particles (e.g. magnetic
monopoles or dyons) are formed in N = 1 theories without
colored adjoint superfields considered below in Sects. 6, 7,
8, 9, 10, 11.

6 Direct theory: Unbroken flavor symmetry

6.1 L-vacua

The theory enters the conformal regime as the scale is
decreased below �Q . In these (2Nc − NF ) vacua with the
unbroken flavor symmetry U (NF ) the current quark mass at
�Q � μ� � μ�,o looks like, see (4.3) and (6.2),

〈mtot
Q 〉L ≡ 〈mtot

Q (μ = �Q)〉L
= mQ − 〈�〉L = mQ + Nc

Nc

〈QQ〉L
μ�

, (6.1)

〈QQ〉L ∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF � mQμ�,

〈mtot
Q 〉L ∼ �Q

(
�Q

μ�

) Nc
2Nc−NF

,

mpole
Q, L = 〈mtot

Q 〉L
zQ(�Q,mpole

Q, L)
∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

∼ �
(L)
YM , zQ(�Q, μ � �Q) ∼

(
μ

�Q

)bo/NF

� 1.

We compare mpole
Q, L with the gluon mass due to possible hig-

gsing of quarks. The latter feature looks like

μ2
gl, L ∼ (a∗ ∼ 1)zQ(�Q, μgl, L)〈QQ〉L

→ μgl, L ∼ mpole
Q, L ∼ �

(L)
YM = 〈S〉1/3

L . (6.2)

Hence, qualitatively, the situation is the same as in the stan-
dard SQCD [3]. One can use here the same reasonings; see
the footnote 3 in [3]. In the case considered, there are only
(2Nc − NF ) these isolated L-vacua with unbroken flavor
symmetry. If quarks were higgsed in these L-vacua, then
the flavor symmetry will be necessary broken spontaneously
due to the rank restriction because NF > Nc and there
will appear the genuine exactly massless Nambu–Goldstone
fields � (pions), so that there will be a continuous family
of non-isolated vacua. This is “the standard point of ten-
sion” in the dynamical scenario #2; see [3]. Therefore, as
in [3], assuming here and everywhere below in similar sit-
uations that this scenario #2 is self-consistent, we conclude
that μgl = mpole

Q, L/(several), so that quarks are not higgsed
but are in the HQ (heavy quark) phase and are confined.

Therefore (see sections 3, 4 in [3]), after integrating out
all quarks as heavy ones at μ < mpole

Q, L and then all SU (Nc)

gluons at μ < �
(L)
YM = mpole

Q, L/(several) via the Veneziano–
Yankielowicz (VY) procedure [7], we obtain the Lagrangian
of the fions,

K = z�(�Q,mpole
Q, L)Tr (�†�), z�(�Q,mpole

Q, L)

∼ 1

z2
Q(�Q,mpole

Q, L)
∼

(
�Q

mpole
Q, L

)2bo/NF

� 1, (6.3)

W = NcS + μ�

2

[
Tr (�2) − 1

Nc
(Tr �)2

]
,

S = (�Q
bo det mtot

Q )1/Nc , mtot
Q = (mQ − �),

and one has to choose the L-vacua in (6.3).
There are two contributions to the mass of the fions in

(6.3), the perturbative one from the term ∼μ��2 and the
non-perturbative one from ∼S, and both are parametrically
the same, ∼ �

(L)
YM � mQ . Therefore,
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μ(�) ∼ μ�

z�(�Q,mpole
Q, L)

∼ mpole
Q, L ∼ �

(L)
YM . (6.4)

Besides, see (5.1), because

μconf
o ∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

∼ mpole
Q, L ∼ �

(L)
YM , (6.5)

and fions are dynamically irrelevant at μconf
o < μ < �Q and

can become relevant only at the scale μ < μconf
o , it remains

unclear in these L-vacua whether there is a pole in the fion
propagators at p ∼ μconf

o ∼ mpole
Q, L . This may or may not be

so; see Sect. 5.
On the whole for the mass spectrum in these L-vacua.

The quarks Q, Q are confined and strongly coupled here,
the coupling being a∗ ∼ 1. Parametrically, there is only one
scale ∼ �

(L)
YM in the mass spectrum at �Q � μ� � μ�,o.

There is no parametrical guarantee that there is the second
generation of fions with the pole masses μ

pole
2 (�) ∼ �

(L)
YM .

The condensate 〈QQ〉L and the quark pole mass mpole
Q, L

become frozen at their SQCD values at μ� � μ�,o, 〈Q
Q〉SQCD ∼ �Q

2(mQ/�Q)Nc/Nc , mpole
SQCD ∼ �

(SQCD)
YM ∼

�Q(mQ/�Q)NF/3Nc [3], while μ� increases and μconf
o �

mpole
Q,SQCD decreases; see (5.1). Hence, the perturbative contri-

bution ∼ μ�/z�(�Q,mpole
Q, L) � mpole

Q,SQCD to the fion mass
becomes dominant at μ� � μ�,o and the fion fields will be
dynamically irrelevant at μ < �Q .

Finally, it is worth emphasizing for all the following that,
unlike the dual theory, in all vacua of the direct theory the
mass spectra remain parametrically the same at bo/NF =
O(1) or bo/NF � 1.

6.2 S-vacua

In these Nc vacua the quark mass at �Q � μ� � μ�,o

looks like, see (4.4),

〈mtot
Q (μ = �Q)〉S

�Q
∼ 〈S〉S

�Q〈QQ〉S

∼
( 〈QQ〉S

�Q
2

)Nc/Nc

∼
(
mQμ�

�Q
2

)Nc/Nc

,

mpole
Q, S ∼ �Q

(
mQμ�

�Q
2

)NF/3Nc

∼ �
(S)
YM = 〈S〉1/3

S ,

�Q � μ� � μ�,o. (6.6)

This has to be compared with the gluon mass due to possible
higgsing of the quarks,

μ2
gl, S ∼ zQ(�Q, μgl, S)〈QQ〉S

→ μgl, S ∼ mpole
Q, S ∼ �

(S)
YM ,

zQ(�Q, μgl, S) ∼
(

μgl, S

�Q

) bo
NF

. (6.7)

For the same reasons as in previous section, it is clear
that quarks will not be higgsed in these vacua at NF > Nc

(as otherwise the flavor symmetry will be broken sponta-
neously). Hence, as in [3], we assume here also that the
pole mass of the quarks is the largest physical mass, i.e.
μH = mpole

Q, S = (several)μgl, S.
But, in contrast with the L-vacua, the fion fields become

dynamically relevant in these S-vacua at scales μ < μconf
o ;

see 5.1), if

μconf
o ∼ �Q

(
�Q

μ�

) N f
3(2Nc−NF )

� mpole
Q, S

→ i.e. at �Q � μ� � μ�,o. (6.8)

Therefore, there is a second generation of N 2
F fions with

the pole masses

μ
pole
2 (�) ∼ μconf

o � mpole
Q, S ∼ �

(S)
YM . (6.9)

Nevertheless, see Sect. 5, the theory remains in the con-
formal regime and the quark and fion anomalous dimensions
remain the same in the whole range of mpole

Q, S < μ < �Q of

scales, but fions become effectively massless at μ < μconf
o

and begin to contribute to the ’t Hooft triangles.
The RG evolution of the quark and fion fields becomes

frozen at scales μ < mpole
Q, S because the heavy quarks decou-

ple. Proceeding as before, i.e. integrating out first all quarks
as heavy ones at μ < mpole

Q, S = (several)�(S)
YM and then all

SU (Nc) gluons at μ < �
(S)
YM , one obtains the Lagrangian of

the fions as in (6.3), with a replacement zQ(�Q,mpole
Q, L) →

zQ(�Q,mpole
Q, S) (and the S-vacua have to be chosen therein).

Because fions became relevant at mpole
Q, S � μ � μconf

o ,
one could expect that their running mass will be much
smaller than mpole

Q, S . This is right, but only for μ
pert
� ∼

μ�/zQ(�Q,mpole
Q, S) � mpole

Q, S . But there is also additional
non-perturbative contribution to the fion mass originating
from the region of scales μ ∼ mpole

Q, S and it is dominant in
these S-vacua,

μ(�) ∼ 1

z�(�Q,mpole
Q, S)

〈S〉S
〈mtot

Q 〉2
S

∼ mpole
Q, S,

z�(�Q,mpole
Q, S) ∼

(
�Q

mpole
Q, S

)2bo/NF

. (6.10)

Therefore, despite the fact that the fions are definitely dynam-
ically relevant in the range of scales mpole

Q, S � μ � μconf
o �

�Q at �Q � μ� � μ�,o, whether there is the third genera-
tion of fions, i.e. whether there is a pole in the fion propagator
at p = μ

pole
3 (�) ∼ mpole

Q, S ∼ �
(S)
YM remains unclear.
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On the whole for the mass spectra in these S-vacua,
the largest are the masses of the second generation fions,
μ

pole
2 (�) ∼ �Q(�Q/μ�)NF/3(2Nc−NF ) � mpole

Q, S . The scale

of all other masses is ∼ mpole
Q, S ∼ �

(S)
YM ; see (6.6). There is

no parametrical guarantee that there is the third generation
of fions with the pole masses μ

pole
3 (�) ∼ �

(S)
YM . This may or

may not be so.
The vacuum condensates 〈QQ〉S and mpole

Q, S evolve into
their independent of μ� SQCD values at μ� � μ�,o,

〈QQ〉SQCD ∼ �Q
2
(
mQ

�Q

)Nc/Nc

,

mpole
Q,SQCD ∼ �Q

(
mQ

�Q

)NF/3Nc

, (6.11)

and the perturbative contribution ∼ μ�/zQ(�Q,mpole
Q,SQCD)

to the fion mass becomes dominant. Hence, becausempole
Q,SQCD

� μconf
o , the fions fields become dynamically irrelevant at

all scales μ < �Q when μ� � μ�,o.

7 Dual theory: Unbroken flavor symmetry

7.1 L-vacua, bo/NF � 1

Let us recall, see (2.7) and section 4 in [3], that the Lagrangian
of the dual theory at μ = �Q and 0 < bo/NF � 1, bo =
3Nc − NF , looks like

K = Tr(q†q + (q → q)) + Tr
M†M

Z2
q�Q

2 ,

W = − 2π

α(μ = �Q)
s + WM

+Wq , Zq ∼ exp

{
− Nc

7bo

}
� 1,

WM = mQTr M − 1

2μ�

[
Tr (M2) − 1

Nc
(Tr M)2

]
,

Wq = − 1

Zq�Q
Tr(q M q). (7.1)

Because �Q
2/μ� � �Q , the mions are effectively mass-

less and dynamically relevant at μ ∼ �Q (and so in some
range of scales below �Q). By definition, μ ∼ �Q is
such a scale that the dual theory already entered sufficiently
deep the conformal regime, i.e. the dual gauge coupling
a(μ = �Q) = Ncα(μ = �Q)/2π is sufficiently close
to its small frozen value, δ = [a∗ − a(μ ∼ �Q)]/a∗ � 1,
and δ is neglected everywhere below in comparison with 1
for simplicity (and the same for the Yukawa coupling a f =
Ncα f /2π ), see [3] and the appendix therein). The fixed point
value of the dual gauge coupling is a∗ � 7bo/3Nc � 1
[13,14].

We recall also that the mion condensates are matched to the
condensates of direct quarks in all vacua, 〈Mi

j (μ = �Q)〉 =
〈Q j Q

i (μ = �Q)〉. Hence, in these L-vacua

〈M〉L ∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF

, 〈N 〉L ≡ 〈qq(μ = �Q)〉

= Zq�Q〈S〉L
〈M〉L ∼ Zq�Q

2
(

�Q

μ�

) Nc
2Nc−NF

, (7.2)

Zq ∼ exp

{
− 1

3a∗

}
∼ exp

{
− Nc

7bo

}
� 1,

and here and everywhere below, as in [3], a parametric depen-
dence on the small parameter bo/NF � 1 is traced with
an exponential accuracy only (i.e. powers of bo/NF are not
traced, only powers of Zq ).

The current mass μq,L ≡ μq,L(μ = �Q) of dual quarks
q, q and their pole mass in these (2Nc − NF ) L - vacua are,
see (7.1),

μq,L

�Q
= 〈M〉L

Zq�Q
2 ∼ 1

Zq

(
�Q

μ�

) Nc
2Nc−NF

,

μ
pole
q,L = μq,L

zq(�Q, μ
pole
q,L )

,

zq(�Q, μ
pole
q,L ) ∼

(
μ

pole
q,L

�Q

)bo/NF

,

μ
pole
q,L ∼ �Q

(
μq,L

�Q

)NF/3Nc

∼ �Q

Zq

(
�Q

μ�

) NF
3(2Nc−NF )

∼ 1

Zq
�

(L)
YM � �

(L)
YM ,

�Q � μ� � μ�,o, (7.3)

μq,L

�Q
∼ 1

Zq

(
mQ

�Q

) Nc
Nc

μ
pole
q,L ∼ �Q

Zq

(
mQ

�Q

) NF
3Nc ∼ 1

Zq
�

(SQCD)
YM � �

(SQCD)
YM ,

μ� � μ�,o,

while the gluon mass due to possible higgsing of dual quarks
looks like �Q � μ� � μ�,o as

μgl,L ∼
[
a∗〈N 〉L zq(�Q, μgl)

]1/2

∼ Z1/2
q �Q

(
�Q

μ�

)NF/3(2Nc−NF )

∼ Z3/2
q μ

pole
q,L � μ

pole
q,L . (7.4)
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Therefore, the dual quarks are definitely in the HQ phase in
these L-vacua at bo/Nc � 1.

With decreasing scale the perturbative running mass
μM (μ) of the mions,

μM (μ) ∼ Z2
q�Q

2

μ�zM (μ)
= Z2

q�Q
2

μ�

(
μ

�Q

)2bo/NF

, (7.5)

decreases but more slowly than the scale μ itself because
γM = −(2bo/NF ), |γM | < 1 at 3/2 < NF/Nc < 2, and
μM (μ) becomes frozen at μ < μ

pole
q,L , μM (μ < μ

pole
q,L ) =

μM (μ = μ
pole
q,L ).

After integrating out all dual quarks as heavy ones at
μ < μ

pole
q,L and then all SU (Nc) gluons at μ < �

(L)
YM

via the Veneziano–Yankielowicz (VY) procedure [7], the
Lagrangian of the mions looks like

K = z(L)
M (�Q, μ

pole
q,L )

Z2
q�Q

2 Tr (M†M),

z(L)
M (�Q, μ

pole
q,L ) ∼

(
�Q

μ
pole
q,L

)2bo/NF

,

S =
(

det M

�Q
bo

)1/Nc

,

W = −NcS + mQTr M

− 1

2μ�

[
Tr (M2) − 1

Nc
(Tr M)2

]
. (7.6)

There are two contributions to the mass of the mions in
(7.6), the perturbative one from the term ∼M2/μ� and non-
perturbative one from ∼S. Both are parametrically the same
and the total contribution looks like

μpole(M) ∼ Z2
q�Q

2

zM (�Q, μ
pole
q,L )μ�

∼ Z2
q�

(L)
YM � �

(L)
YM � μ

pole
q,L , (7.7)

and this parametrical hierarchy guarantees that the mass
μpole(M) in (7.7) is indeed the pole mass of the mions.

On the whole, the mass spectrum in these dual L-vacua
looks like follows at �Q � μ� � μ�,o. (a) There
are a large number of heaviest flavored hadrons made of
weakly interacting and weakly confined (the tension of the
confining string originating from the unbroken SU (Nc)

SYM is
√

σ ∼ �
(L)
YM � μ

pole
q,L ) non-relativistic quarks

q, q with the pole masses μ
pole
q,L /�

(L)
YM ∼ exp(Nc/7bo) �

1. The mass spectrum of low-lying flavored mesons is
Coulomb-like with parametrically small mass differences

�μH/μH = O(b
2
o/N

2
c) � 1. (b) A large number of

gluonia made of SU (Nc) gluons with the mass scale ∼
�

(L)
YM ∼ �Q(�Q/μ�)NF/3(2Nc−NF ). c) N 2

F lightest mions

with parametrically smaller masses μpole(M)/�
(L)
YM ∼

exp(−2Nc/7bo) � 1.
At μ� � μ�,o these L-vacua evolve into the vacua of the

dual SQCD theory (dSQCD); see section 4 in [3].

7.2 S-vacua, bo/NF � 1

The current mass μq,S ≡ μq,S(μ = �Q) of dual quarks
q, q at the scale μ = �Q in these (NF − Nc) dual S-vacua
is, see (4.4),

μq,S = 〈M〉S = 〈QQ〉S
Zq�Q

∼ mQμ�

Zq�Q
,

Zq ∼ exp

{
− Nc

7bo

}
� 1. (7.8)

In comparison with the L-vacua in Sect. 7.1, a qualita-
tively new element here is that μpole(M) is the largest mass,
μpole(M) � μ

pole
q,S , in the wide region �Q � μ� �

Z 3/2
q μ�,o (see (7.15) below). In this region: (a) the mions

are effectively massless and dynamically relevant at scales
μpole(M) � μ � �Q , (b) there is a pole in the mion prop-
agator at the momentum p = μpole(M),

μpole(M) = Z2
q�Q

2

zM (�Q, μpole(M))μ�

,

zM (�Q, μpole(M)) ∼
(

�Q

μpole(M)

)2bo/NF

,

μpole(M) ∼ Z2
q�Q

(
�Q

μ�

) NF
3(2Nc−NF )

,

Z2
q ∼ exp

{
−2Nc

7bo

}
� 1. (7.9)

The mions then become too heavy and dynamically irrel-
evant at μ � μpole(M). Due to this, they decouple from the
RG evolution of dual quarks and gluons and from the ’t Hooft
triangles, and (at μ� not too close to μ�,o to have enough
“time” to evolve; see (7.14)) the remaining dual theory of NF

quarksq, q and SU (Nc) gluons evolves into a new conformal
regime with a new smaller value of the frozen gauge coupling,
a ′∗ � bo/3Nc = a∗/7 � 1. It is worth noting that, in spite
of that mions are dynamically irrelevant at μ < μpole(M),
their renormalization factor zM (μ < μpole(M)) still runs in
the range of scales μ

pole
q,S < μ < μpole(M) being induced by

loops of still effectively massless dual quarks and gluons.
The next physical scale is the perturbative pole mass of

dual quarks

μ
pole
q,S = 〈M〉S

Zq�Q

1

zq(�Q, μ
pole
q,S )

,

zq(�Q, μ
pole
q,S ) =

(
μ

pole
q,S

�Q

)bo/NF

ρS,
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ρS =
(
a∗
a ′∗

) Nc
NF

exp

{
Nc

NF

(
1

a∗
− 1

a ′∗

)}
∼ Zq

Zq
� 1,

Zq ∼ exp

{
−Nc

bo

}
∼

(
Zq

)7

� Zq ,

μ
pole
q,S ∼ 1

Zq
�

(S)
YM � �

(S)
YM ,

�
(S)
YM = �Q

(
mQμ�

�Q
2

)NF/3Nc

. (7.10)

This has to be compared with the gluon mass due to pos-
sible higgsing of q, q

μ 2
gl,S ∼ zq(�Q, μgl,S)〈qq〉S

→ μgl,S ∼ Z
1/2
q �

(S)
YM � �

(S)
YM � μ

pole
q,S . (7.11)

The parametric hierarchy in (7.11) guarantees that the dual
quarks are in the HQ phase in these S-vacua.

Hence, after integrating out all quarks at μ < μ
pole
q,S and,

finally, SU (Nc) gluons at μ < �
(S)
YM , the Lagrangian looks

like in (7.6) but with a replacement z(L)
M (�Q, μ

pole
q,L ) →

z(S)
M (�Q, μ

pole
q,S ),

z(S)
M (�Q, μ

pole
q,S ) = a f (μ = �Q)

a f (μ = μ
pole
q,S )

1

z2
q(�Q, μ

pole
q,S )

∼ 1

z2
q(�Q, μ

pole
q,S )

∼ Z 2
q

Z
2
q

(
�Q

μ
pole
q,S

)2bo/NF

. (7.12)

The contribution of the term ∼ M2/μ� in the superpotential
(7.6) to the frozen low energy value μ(M) of the running
mion mass is dominant at μ�/μ�,o � 1 and is

μ(M) = Z2
q�Q

2

z(S)
M (�Q, μ

pole
q,S )μ�

∼ Z
2
q �Q

2

μ�

(
μ

pole
q,S

�Q

) 2bo
NF � μpole(M). (7.13)

The requirement of self-consistency in this case looks like

μ(M)

μ
pole
q,S

∼ Z
3
q

(
μ�,o

μ�

)Nc/Nc

� 1

→ μ�

μ�,o
� Z

3/2
q ∼ exp

{
−3Nc

2bo

}
� Z3/2

q , (7.14)

the meaning of (7.14) is that only under this condition the
range of scales between μpole(M) in (7.9) and μ

pole
q,S �

μpole(M) in (7.10) is sufficiently large that theory has enough
“time” to evolve from a∗ = 7bo/3Nc to a ′∗ = bo/3Nc.
There is no pole in the mion propagator at the momentum
p = μ(M) � μ

pole
q,S .

The opposite case with μ
pole
q,S � μpole(M) is realized if the

ratio μ�/μ�,o is still � 1 but is much larger than Z 3/2
q �

Z
3/2
q ; see (7.15) below. In this case the theory at μpole

q,S < μ <

�Q remains in the conformal regime witha∗ = 7bo/3Nc and

the largest mass is μ
pole
q,S . One has in this case instead of (7.9),

(7.10), and (7.14)

ρS ∼ 1, μ
pole
q,S ∼ 1

Zq
�

(S)
YM ,

μpole(M)

μ
pole
q,S

∼ Z3
q

(
μ�,o

μ�

)Nc/Nc

,

μpole(M)

μ
pole
q,S

� 1 → Z 3/2
q � μ�

μ�,o
� 1. (7.15)

On the whole, the mass spectrum in these Nc dual S-

vacua looks as follows at �Q � μ� � Z
3/2
q μ�,o. (a)

The heaviest are N 2
F mions with the pole masses (7.9).

(b) There are a large number of flavored hadrons made of
weakly interacting and weakly confined (the tension of the
confining string is

√
σ ∼ �

(S)
YM � μ

pole
q,S � μpole(M))

non-relativistic dual quarks q, q with the perturbative pole
masses (7.10). The mass spectrum of low-lying flavored
mesons is Coulomb-like with parametrically small mass dif-

ferences �μH/μH = O(b
2
o/N

2
c) � 1. (b) A large num-

ber of gluonia made of SU (Nc) gluons with the mass scale
∼ �

(S)
YM ∼ �Q(mQμ�/�Q

2)NF/3Nc .
The mions with the pole masses (7.9) remain the heav-

iest ones, μpole(M) � μ
pole
q,S , at values μ� in the range

Z
3/2
q μ�,o � μ� � Z 3/2

q μ�,o, while the value μ
pole
q,S varies

in a range �
(S)
YM/Zq � μ

pole
q,S � �

(S)
YM/Zq . Finally, in a close

vicinity of μ�,o, Z 3/2
q μ�,o � μ� � μ�,o, the perturba-

tive pole mass of the quarks, μ
pole
q,S ∼ �

(S)
YM/Zq � �

(S)
YM ,

becomes the largest one, while the pole masses of the mions
μpole(M) � μ

pole
q,S become as in (7.15).

At μ� � μ�,o these S-vacua evolve into the vacua of
dSQCD; see section 4 in [3].

8 Direct theory: Broken flavor symmetry

The region �Q � μ� � μ�,o

8.1 L-type vacua

The quark condensates are parametrically the same as in the
L-vacua with unbroken flavor symmetry in Sect. 6.1,
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(
1 − n1

Nc

)
〈(QQ)1〉Lt � −

(
1 − n2

Nc

)
〈(QQ)2〉Lt ,

〈S〉 = 〈(QQ)1〉〈(QQ)2〉
μ�

, (8.1)

〈(QQ)1〉Lt ∼ 〈(QQ)2〉Lt ∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF

.

All quarks are in the HQ phase and are confined and the
Lagrangian of the fions looks like in (6.3), but one has to
choose the L-type vacua with the broken flavor symmetry
in (6.3). Due to this, see (2.5), the masses of hybrid fions
�12,�21 are qualitatively different, they are the Nambu–
Goldstone particles here and are massless. The “masses” of
�11 and �22 are parametrically as in (6.4),

μ(�11) ∼ μ(�22) ∼ μ�

z�(�Q,mpole
Q )

∼ mpole
Q,1 ∼ mpole

Q,2 ∼ �
(L)
YM

∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

, (8.2)

and hence there is no guarantee that these are the pole masses
of fions; see Sect. 5. This may or may not be so.

On the whole, there are only two characteristic scales in
the mass spectra in these L-type vacua. The hybrid fions
�12,�21 are massless while all other masses are ∼ �

(L)
YM .

8.2 br2 vacua

The condensates of the quarks look like

〈(QQ)2〉br2 �
(

ρ2 = −n2 − Nc

Nc

)
mQμ�,

〈(QQ)1〉br2 ∼ �Q
2
(

μ�

�Q

) n2
n2−Nc

(
mQ

�Q

) Nc−n1
n2−Nc

, (8.3)

〈(QQ)1〉br2

〈(QQ)2〉br2
∼

(
μ�

μ�,o

) Nc
n2−Nc � 1

in these vacua with n2 > Nc, 1 ≤ n1 < Nc. Hence, the
largest among the masses smaller than �Q are the masses of
the N 2

F second generation fions, see (5.1),

μ
pole
2 (�

j
i ) = μconf

o ∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

, (8.4)

while some other possible characteristic masses look here
like

〈mtot
Q,1〉br2 = 〈(QQ)2〉br2

μ�

∼ mQ,

mpole
Q,1 ∼ �Q

(
mQ

�Q

)NF/3Nc

� m̃pole
Q,2, (8.5)

μ2
gl,2 ∼ zQ(�Q, μgl,2)〈(QQ)2〉br2,

zQ(�Q, μgl,2) ∼
(

�Q

μgl,2

) bo
NF � 1,

μgl,2 ∼ �Q

(
mQμ�

�Q
2

)NF/3Nc

� μgl,1,

μgl,2

mpole
Q,1

∼
(

μ�

μ�,o

) NF
3Nc � 1, (8.6)

where mpole
Q,1 and m̃pole

Q,2 are the pole masses of the quarks

Q1, Q
1 and Q2, Q

2 and μgl,1, μgl,2 are the gluon masses
due to possible higgsing of these quarks. Hence, the largest
mass is mpole

Q,1 and the overall phase is HQ1–HQ2.

The lower energy theory at μ < mpole
Q,1 has Nc colors and

N ′
F = n2 > Nc flavors of the quarks Q2, Q

2. In the range

of scales mpole
Q,2 < μ < mpole

Q,1, it will remain in the conformal

regime at n1 < bo = (2NF − 3Nc)/2, while it will be in
the strong coupling regime at n1 > bo/2, with the gauge
coupling a(μ � mpole

Q,1) � 1. We do not consider the strong
coupling regime in this paper and for this reason we take
bo/Nc = O(1) in this subsection and consider n1 < bo/2
only.

After the heaviest quarks Q1, Q
1 decouple at μ < mpole

Q,1,

the pole mass of the quarks Q2, Q
2 in the lower energy theory

looks like

mpole
Q,2 = 1

z ′
Q(mpole

Q,1,mpole
Q,2)

( 〈(QQ)1〉br2

〈(QQ)2〉br2
mpole

Q,1

)
∼ �

(br2)
YM ,

z ′
Q(mpole

Q,1,mpole
Q,2) ∼

(mpole
Q,2

mpole
Q,1

) 3Nc−n2
n2 � 1. (8.7)

Hence, after integrating out quarks Q1, Q
1 at μ < mpole

Q,1

and then quarks Q2, Q
2 and SU (Nc) gluons at μ < �

(br2)
YM ,

the Lagrangian of the fions looks like

K = z�(�Q,mpole
Q,1) Tr

[
�

†
11�11 + �

†
12�12 + �

†
21�21

+z ′
�(mpole

Q,1,mpole
Q,2)�

†
22�22

]
, (8.8)

z�(�Q,mpole
Q,1) ∼

(
�Q

mpole
Q,1

) 2(3Nc−NF )

NF � 1,

z ′
�(mpole

Q,1,mpole
Q,2) ∼

(mpole
Q,1

mpole
Q,2

) 2(3Nc−n2)

n2 � 1,

W = NcS + W�, mtot
Q = (mQ − �), (8.9)
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S =
(

�Q
bo det mtot

Q

)1/Nc

,

W� = μ�

2

(
Tr (�2) − 1

Nc
(Tr �)2

)
.

From (8.8) and (8.9), the main contribution to the mass of
the third generation fions �11 gives the term ∼ μ��2

11,

μ
pole
3 (�11) ∼ μ�

z�(�Q,mpole
Q,1)

∼
(

μ�

μ�,o

)
mpole

Q,1, (8.10)

while the third generation hybrid fions �12,�21 are mass-
less, μ

pole
3 (�12) = μ

pole
3 (�21) = 0. As for the third genera-

tion fions �22, the main contribution to their masses comes
from the non-perturbative term ∼ S in the superpotential
(8.9)

μ3(�22) ∼ 〈S〉
〈mtot

Q,2〉2

× 1

z�(�Q,mpole
Q,1)z ′

�(mpole
Q,1,mpole

Q,2)
∼ mpole

Q,2 ∼ �
(br2)
YM .

(8.11)

In such a situation there is no guarantee that there is a pole
in the propagator of �22 at the momentum p ∼ mpole

Q,2. This
may or may not be so; see Sect. 5.

8.3 Special vacua, n1 = Nc, n2 = Nc

In these vacua at �Q � μ� � μ�,o, see (4.7) and (4.10),

〈(QQ)1〉spec = Nc

2Nc − NF
(mQμ�),

〈(QQ)2〉spec = �Q
2
(

�Q

μ�

) Nc
2Nc−NF

,

〈(QQ)1〉spec

〈(QQ)2〉spec
∼

(
μ�

μ�,o

) Nc
2Nc−NF � 1. (8.12)

The most important possible masses look here like fol-
lows:

〈mtot
Q,1〉 = 〈(QQ)2〉spec

μ�

∼ �Q

(
�Q

μ�

) Nc
2Nc−NF

→ mpole
Q,1 ∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

� mpole
Q,2,

μ2
gl,2 ∼ (a∗ ∼ 1)〈(QQ)2〉spec

(
μgl,2

�Q

) bo
NF

→ μgl,2 ∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

∼ mpole
Q,1 � μgl,1,

where μgl,2 is the gluon mass due to possible higgsing of
Q2, Q

2 quarks. Therefore, the overall phase is HQ1−Higgs2
and the whole gauge group is higgsed at μ ∼ μgl,2. Suppos-

ing that mpole
Q,1 = (several)μgl,2 and integrating out first the

quarks Q1, Q
1 as heavy ones at μ < mpole

Q,1 and then all
higgsed gluons and their superpartners at μ < μgl,2, the
Lagrangian takes the form

K = Tr

[
z�(�†�)+zQ

(
2
√

�
†
22�22+B†

2 B2 + B
†
2 B2

)]
,

(8.13)

zQ = zQ(�Q,mpole
Q,1) =

(mpole
Q,1

�Q

)bo/NF

,

z� = z�(�Q,mpole
Q,1) = 1/z2

Q,

W = Wnon−pert + W�

+Tr �22

(
mtot

Q,2 − �21
1

mtot
Q,1

�12

)
,

W� = μ�

2

[
Tr (�2) − 1

Nc
(Tr �)2

]
,

mtot
Q,1 = mQ − �11, mtot

Q,2 = mQ − �22,

where for the non-perturbative term we use the form proposed
in [1]

Wnon−pert = A

[
1 − det �22

λ2Nc
+ B2B2

λ2

]
,

〈A〉 = 〈S〉, λ2 = (
�Q

bo det mtot
Q,1

) 1
Nc ,

〈λ2〉 = 〈(QQ)2〉, (8.14)

in which A is the auxiliary field.
From (8.13) and (8.14), the hybrids �12,�21 are massless,

the baryons B2, B2 are light

μ(B2) = μ(B2) ∼ mQ

zQ

∼ mQ

(
μ�

�Q

) bo
3(2Nc−NF )

� μgl,2, (8.15)

while all other masses are parametrically ∼μgl,2 ∼ mpole
Q,1

(the pion masses increased due to their mixing with the fions).
Besides, in particular, because μconf

o ∼ mpole
Q,1 in these special

vacua, there is no warranty that these nonzero masses of the
fions �11 and �22 are the pole masses. This may or may not
be so (see Sect. 5).

On the whole, there are three scales in the mass spec-
trum: the hybrid fions �12,�21 are massless, the baryons
have small masses (8.15), while all other masses are μgl,2 ∼
mpole

Q,1 ∼ �Q(�Q/μ�)NF/3(2Nc−NF ) in these special vacua
at �Q � μ� � μ�,o.
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9 Dual theory: Broken flavor symmetry

The region �Q � μ� � μ�,o

9.1 L-type vacua, bo/NF � 1

The condensates of the mions and dual quarks look here like

〈M1 + M2 − 1

Nc
Tr M〉Lt = mQμ�

→ 〈M1〉Lt
〈M2〉Lt � − Nc − n1

Nc − n2
,

〈M1〉Lt 〈(qq)1〉Lt = 〈M2〉Lt 〈(qq)2〉Lt = Zq�Q〈S〉Lt ,
〈S〉Lt = 〈M1〉Lt 〈M2〉Lt

μ�

.

That is, all condensates are parametrically the same as in
the L-vacua with unbroken flavor symmetry in Sect. 7.1 and
the overall phase is also HQ1 − HQ2. The pole masses of
dual quarks are as in (7.3), the Lagrangian of the mions is
as in (7.6) and the pole masses of the mions M11 and M22

are as in (7.7). But the masses of hybrid mions M12 and
M21 are qualitatively different here. They are the Nambu–
Goldstone particles now and are exactly massless, μ(M12) =
μ(M21) = 0.

9.2 br2 vacua, , bo/NF = O(1)

In these vacua with n2 > Nc, 1 ≤ n1 < Nc the condensates
of mions and dual quarks look like

〈M1〉br2 = 〈(QQ)1〉br2 ∼ �Q
2
(

μ�

�Q

) n2
n2−Nc

(
mQ

�Q

) Nc−n1
n2−Nc

,

〈M2〉br2 = 〈(QQ)2〉br2 � − n2 − Nc

Nc
mQμ�,

〈M1〉br2

〈M2〉br2
∼

(
μ�

μ�,o

) Nc
n2−Nc � 1, (9.1)

〈(qq)1〉br2 = 〈q1q1(μ = �Q)〉br2

= �Q〈S〉br2

〈M1〉br2
= �Q〈M2〉br2

μ�

∼ mQ�Q � 〈(qq)2〉br2.

From these, the heaviest are N 2
F mions Mi

j with the pole
masses

μpole(M) = �Q
2/μ�

zM (�Q, μpole(M))
∼ �Q

(
�Q

μ�

) NF
3(2Nc−NF )

,

(9.2)

zM (�Q, μpole(M)) ∼
(

�Q

μpole(M)

) 2bo
NF � 1,

bo = 3Nc − NF ,

while some other possible characteristic masses look like

μq,2 = 〈M2〉
�Q

∼ mQμ�

�Q
,

μ̃
pole
q,2 ∼ �Q

(
mQμ�

�Q
2

)NF/3Nc

� μ
pole
q,1 , (9.3)

μgl,1 ∼ �Q

( 〈(qq)1〉
�Q

2

)NF/3Nc

∼�Q

(
mQ

�Q

)NF/3Nc

�μgl,2,

μgl,1

μ̃
pole
q,2

∼
(

μ�,o

μ�

)NF/3Nc

� 1,

where μ
pole
q,1 and μ̃

pole
q,2 are the perturbative pole masses of

the quarks q1, q1 and q2, q2 and μgl,1, μgl,2 are the gluon
masses due to possible higgsing of these quarks. Hence, the
largest mass is μgl,1 and the overall phase is Higgs1–HQ2.

After integrating out all higgsed gluons and quarks q1, q1,
we write the dual Lagrangian at μ = μgl, 1 as

K = zM (�Q, μgl, 1)Tr
M†M

�Q
2

+zq(�Q, μgl, 1)Tr

[
2
√
N †

11N11 + Khybr

+
(
q†

2q2 + (q2 → q2)

)]
,

Khybr =
(
N †

12
1√

N11N
†
11

N12 + N21
1√

N †
11N11

N †
21

)
,

zq(�Q, μgl, 1) =
(

μgl, 1

�Q

)bo/NF

, (9.4)

zM (�Q, μgl, 1) = 1/z2
q(�Q, μgl, 1),

W =
[
− 2π

α(μ)
s
]

− 1

�Q
Tr

(
q2M22q2

)

−WMN + WM ,

WMN = 1

�Q
Tr

(
M11N11 + M21

N12 + N21M12 + M22N21
1

N11
N12

)
,

where the nions (dual pions) N11 originate from higgsing of
q1, q1 dual quarks while q2

,q2 are the active quarks q2, q2

with unhiggsed colors, s is the field strength of unhiggsed
dual gluons and the hybrid nions N12 and N21 are, in essence,
the quarks q2, q2 with higgsed colors, WM is given in (2.7).
The lower energy theory at μ < μgl, 1 has N

′
c = Nc − n1
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colors and n2 > Nc flavors, b
′
o = bo−2n1 < bo. We consider

here only the case b
′
o > 0 when it remains in the conformal

window. In this case the value of the pole mass μ
pole
q,2 in this

lower energy theory is

μ
pole
q,2 ∼ 〈M2〉

�Q

1

zq(�Q, μgl, 1)z ′
q(μgl, 1, μ

pole
q,2 )

∼ �
(br2)
YM ,

z ′
q(μgl, 1, μ

pole
q,2 ) ∼

(
μ

pole
q,2

μgl, 1

)b
′
o/n2

� 1. (9.5)

The fields N11, N12, N21 and M11, M12, M21 are frozen
and do not evolve at μ < μgl, 1. After integrating out the

remaining unhiggsed quarks q2
,q2 as heavy ones and unhig-

gsed gluons at μ < �
(br2)
YM the Lagrangian of the mions and

nions looks like, see (9.4),

K = zM (�Q, μgl, 1)Tr KM

+zq(�Q, μgl, 1)

[
2
√
N †

11N11 + Khybr

]
,

z ′
M (μgl, 1, μ

pole
q,2 ) ∼

(
μgl, 1

μ
pole
q,2

) 2b ′
o

n2 � 1,

KM = 1

�Q
2

(
M†

11M11 + M†
12M12 + M†

21M21

+z ′
M (μgl, 1, μ

pole
q,2 )M†

22M22

)
, (9.6)

W = −N
′
cS − WMN + WM ,

S =
(

�
(br2)
YM

)3(
det

〈N1〉
N11

det
M22

〈M2〉
)1/N

′
c

,

�
(br2)
YM ∼

(
mQ〈M1〉

)1/3

.

From (9.6), the “masses” of the mions look like

μ(M11) ∼ μ(M12) ∼ μ(M21)

∼ �Q
2

zM (�Q, μgl, 1)μ�

∼
(

μ�,o

μ�

)
μgl, 1 � μgl, 1, (9.7)

μ(M22) ∼ �Q
2

zM (�Q, μgl, 1)z
′
M (μgl, 1, μ

pole
q,2 )μ�

∼
(

μ�,o

μ�

) 3Nc−n2
3(n2−Nc)

μgl, 1 � μgl, 1, (9.8)

while the pole masses of nions N11 are

μpole(N11) ∼ μ�〈N1〉br2

zq(�Q, μgl, 1)�Q
2 ∼

(
μ�

μ�,o

)
μgl, 1, (9.9)

and the hybrid nions N12, N21 are massless, μ(N12) =
μ(N21) = 0. The mion “masses” (9.7) and (9.8) are not
the pole masses but simply the low energy values of mass
terms in their propagators, the only pole masses are given in
(9.2).

9.3 br2 vacua, bo/NF � 1

Instead of (9.2), the pole mass of the mions is parametrically
smaller now, see (7.1),

μpole(M) = Z 2
q �Q

2/μ�

zM (�Q, μpole(M))

∼ Z 2
q �Q

(
�Q

μ�

) NF
3(2Nc−NF )

,
μpole(M)

μ
pole
2 (�)

∼ Z 2
q � 1,

(9.10)

while instead of (9.3) we have now

μq,2 = 〈M2〉
Zq�Q

∼ mQμ�

Zq�Q
,

μ̃
pole
q,2 ∼ �Q

Zq

(
mQμ�

�Q
2

)NF/3Nc

� μ
pole
q,1 , (9.11)

μgl,1 ∼ �Q

( 〈N1〉
�Q

2

)NF/3Nc

∼ Z1/2
q �Q

(
mQ

�Q

)NF/3Nc

� μgl,2,

μgl,1

mpole
Q,1

∼ Z1/2
q � 1, (9.12)

μgl,1

μ̃
pole
q,2

∼ Z3/2
q

(
μ�,o

μ�

)NF/3Nc

� 1,

�Q � μ� � Z 3/2
q μ�,o,

Zq ∼ exp

{
− Nc

7bo

}
� 1. (9.13)

Hence, at the condition (9.13), the largest mass is μgl,1
and the overall phase is also Higgs1 − HQ2. But now, at
bo/Nc � 1, it seems unnatural to require b

′
o = (bo −2n1) >

0. Therefore, with n1/Nc = O(1), the lower energy theory at
μ < μgl,1 has b

′
o < 0 and is in the logarithmic IR-free regime

in the range of scales μ
pole
q,2 < μ < μgl,1. Then instead of

(9.5) (ignoring all logarithmic renormalization factors),

�
(br2)
YM � μ

pole
q,2 ∼ 〈M2〉br2

Zq�Q

1

zq(�Q, μgl, 1)

∼ μ�

Z3/2
q μ�,o

μgl,1 � μgl,1. (9.14)
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The Lagrangian of the mions and nions now has the form
(9.6) with accounting additionally for Zq factors, and with

a replacement z ′
M (μgl, 1, μ

pole
q,2 ) ∼ 1, and so μ(M22) ∼

μ(M11) ∼ μ(M12) ∼ μ(M21) now, see (9.7), (9.8), and
(9.13),

μ(Mi
j ) ∼ Z2

q�Q
2

zM (�Q, μgl, 1)μ�

∼ Z3/2
q

(
μ�,o

μ�

)
μgl, 1 � μgl, 1, (9.15)

while, instead of (9.9), the mass of the nions looks now like

μpole(N11) ∼ μ�〈N1〉br2

zq(�Q, μgl, 1)�Q
2 ∼ Z1/2

q

(
μ�

μ�,o

)
μgl, 1.

(9.16)

On the whole for the mass spectra in this case. (a) The
heaviest are N 2

F mions with the pole masses (9.10) (the
‘masses’ (9.15) are not the pole masses but simply the
low energy values of mass terms in the mion propagators).
(b) The next are the masses (9.12) of n1(2Nc − n1) hig-
gsed gluons and their superpartners. (c) There are a large
number of flavored hadrons, mesons, and baryons, made
of non-relativistic and weakly confined (the string tension
is

√
σ ∼ �

(br2)
YM � μ

pole
q,2 ) quarks q2

,q2 with unhiggsed
colors. The mass spectrum of low-lying flavored mesons is
Coulomb-like with parametrically small mass differences,

�μH/μH = O(b
2
o /N 2

F ) � 1. d) A large number of gluonia

made of SU (Nc − n1) gluons with the mass scale ∼ �
(br2)
YM .

e) n2
1 nions N11 with the masses (9.16). f) The hybrid nions

N12, N21 are the Nambu–Goldstone particles here and are
massless.

9.4 Special vacua, n1 = Nc, n2 = Nc

The most important possible masses look here as follows:

〈M1〉spec = Nc

2Nc − NF
(mQμ�),

〈M2〉spec = �Q
2
(

�Q

μ�

)Nc/(2Nc−NF )

� 〈M1〉spec, (9.17)

μq,2 = 〈M2〉
�Q

,

mupole
q,2 ∼ �Q

( 〈M2〉
�Q

2

)NF/3Nc

∼ �Q

(
�Q

μ�

)NF/3(2Nc−NF )

� μ
pole
q,1 ,

μgl,1 ∼ �Q

( 〈N1〉
�Q

2

)NF/3Nc

∼ μ
pole
q,2 � μgl,2,

where μgl,1 is the gluon mass due to possible higgsing of the
q1, q1 quarks. Therefore, the overall phase is Higgs1–HQ2

8

and the whole dual gauge group will be higgsed.
We proceed now as in Sect. 8.3. That is, after integrating

out first the quarks q2, q2 as heavy ones at μ < μ
pole
q,2 and then

all higgsed dual gluons and their superpartners at μ < μgl,1,
the lower energy Lagrangian takes the form

K = Tr

[
zM

M†M

�Q
2 + zq

(√
N †

11N11 + b†
1b1 + b

†
1 b1

)]
,

zq = zq(�Q, μ
pole
q,2 ) =

(
μ

pole
q,2

�Q

)bo/NF

,

zM = zM (�Q, μ
pole
q,2 ) = 1/z2

q ,

W = Wnon-pert − WM

− 1

�Q
Tr N11

(
M11 − M12

1

M22
M21

)
, (9.18)

WM = 1

2μ�

[
Tr(M2) − 1

Nc
(Tr M)2

]
+ mQTr M,

where the non-perturbative term here looks like

cwnon−pert = A

[
1 − det N11

λ
2Nc

+ b1b1

λ
2

]
,

〈A〉 = 〈S〉 = 〈M1〉〈M2〉
μ�

, (9.19)

λ
2 =

(
�Q

bo det
M22

�Q

)1/Nc

,

〈λ2〉 = 〈N1〉 = 〈mtot
Q,1〉�Q = 〈M2〉�Q

μ�

,

and A is the auxiliary field.
From (9.18) and (9.19) the hybrids M12, M21 are massless,

the baryons b1, b1 are light,

μ(b1) = μ(b1) ∼ 〈M1〉
zq�Q

∼ mQ

(
μ�

�Q

) bo
3(2Nc−NF )

� μgl,1,

(9.20)

while all other masses are ∼ μgl,1 ∼ μ
pole
q,2 (the nion masses

increased due to their mixing with the mions). Besides, in
particular, because μconf

o ∼ μ
pole
q,2 in these special vacua,

there is no warranty that these nonzero masses of the mions
M11 and M22 are the pole masses. This may or may not be
so (see Sect. 5).

On the whole, there are three scales in the mass spectrum:
the hybrid mions M12, M21 are massless, the baryon masses

8 Taking bo/Nc � 1 and using the results from [3] we obtain
μ

pole
q,2 /μgl,1 ∼ exp{3Nc/14bo} � 1.
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are (9.20), while all other masses are ∼ μgl,1 ∼ μ
pole
q,2 ∼∼

�Q(�Q/μ�)NF/3(2Nc−NF ) in these special vacua at �Q �
μ� � μ

(DC)
� .

10 Direct theory: Broken flavor symmetry

The region μ�,o � μ� � �Q
2/mQ

10.1 br1 vacua

The values of quark condensates are here

〈(QQ)1〉br1 � Nc

Nc − n1
mQμ�,

〈(QQ)2〉br1 ∼ �Q
2
(

�Q

μ�

) n1
Nc−n1

(
mQ

�Q

) n2−Nc
Nc−n1

, (10.1)

〈(QQ)2〉br1

〈(QQ)1〉br1
∼

(
μ�,o

μ�

) Nc
Nc−n1 � 1.

From these, the values of some potentially relevant masses
look like

μ2
gl,1 ∼

(
a∗ ∼ 1

)
zQ(�Q, μgl,1)〈(QQ)1〉br1,

zQ(�Q, μgl,1) ∼
(

μgl,1

�Q

)bo/NF

,

μgl,1 ∼ �Q

(
mQμ�

�Q
2

)NF/3Nc

� μgl,2, (10.2)

〈mtot
Q,2〉 = 〈(QQ)1〉br1

μ�

∼ mQ,

m̃pole
Q,2 = 〈mtot

Q,2〉br1

zQ(�Q, m̃pole
Q,2)

,

m̃pole
Q,2 ∼ �Q

(
mQ

�Q

)NF/3Nc

� mpole
Q,1,

m̃pole
Q,2

μgl,1
∼

(
μ�,o

μ�

)NF/3Nc

� 1. (10.3)

Hence, the largest mass is μgl,1 due to higgsing of the Q1, Q
1

quarks and the overall phase is Higgs1–HQ2.
The lower energy theory at μ < μgl,1 has N ′

c = Nc − n1

colors and n2 ≥ N f /2 flavors. At 2n1 < bo it remains in the
conformal window with b′

o > 0, while at 2n1 > bo, b′
o < 0

it enters the logarithmic IR-free perturbative regime.

We start with b′
o > 0. Then the value of the pole mass of

quarks Q2, Q2 with unhiggsed colors looks like

mpole
Q,2 = 〈mtot

Q,2〉br1

zQ(�Q, μgl,1)z ′
Q(μgl,1,m

pole
Q,2 )

,

z ′
Q(μgl,1,m

pole
Q,2 ) ∼

(mpole
Q,2

μgl,1

)b′
o/n2

,

mpole
Q,2 ∼ �Q

(
�Q

μ�

) n1
3(Nc−n1)

(
mQ

�Q

) n2−n1
3(Nc−n1)

∼ �
(br1)
YM .

(10.4)

It is technically convenient to retain all fion fields � although,
in essence, they are too heavy and dynamically irrelevant at
μ� � μ�,o. After integrating out all heavy higgsed gluons
and quarks Q1, Q

1, we write the Lagrangian at μ = μgl,1 in
the form

K =
[
z�(�Q, μgl,1)Tr(�†�)

+zQ(�Q, μ2
gl,1)

(
KQ2 + K�

)]
,

z�(�Q, μgl,1) = 1/z2
Q(�Q, μgl,1),

KQ2 = Tr

(
Q†

2Q
2 + (Q2 → Q2)

)
,

K� = 2Tr
√

�
†
11�11 + Khybr, s (10.5)

Khybr = Tr

(
�

†
12

1√
�11�

†
11

�12 + �21
1√

�
†
11�11

�
†
21

)
,

W =
[
− 2π

α(μgl,1)
S
]

+μ�

2

[
Tr (�2) − 1

Nc

(
Tr �

)2]

+Tr

(
Q2m

tot
Q2
Q2

)
+ W�,

W� = Tr

(
mQ�11 + mtot

Q2
�21

1

�11
�12

)

−Tr

(
�11�11 + �12�21 + �21�12

)
,

mtot
Q2

= (mQ − �22).

In (10.5)Q2, Q2 andV are the active Q2, Q
2 quarks and glu-

ons with unhiggsed colors (S is their field strength squared),
�12,�21 are the hybrid pions (in essence, these are the
quarks Q2, Q

2 with higgsed colors), zQ(�Q, μ2
gl,1) is the
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corresponding perturbative renormalization factor of mass-
less quarks, see (10.2), while z�(�Q, μgl,1) is that of fions.
Evolving now down in the scale and integrating out at
μ < �

(br1)
YM quarks Q2, Q2 as heavy ones and unhiggsed

gluons via the VY-procedure, we obtain the Lagrangian of
pions and fions,

K =
[
z�(�Q, μgl,1)Tr

(
�

†
11�11 + �

†
12�12 + �

†
21�21

+z ′
�(μgl,1,m

pole
Q,2 )�

†
22�22

)
+ zQ(�Q, μ2

gl,1)K�

]
,

W = (Nc − n1)S + W� + W�,

S =
[
�Q

bo det mtot
Q2

det �11

] 1
Nc−n1

, (10.6)

W� = μ�

2

[
Tr(�2) − 1

Nc

(
Tr �

)2]
,

z ′
�(μgl,1,m

pole
Q,2 ) ∼

(
μgl,1

mpole
Q,2

)2b′
o/n2

.

We find from (10.6) that all fions are heavy with the “masses”

μ(�11) ∼ μ(�12) ∼ μ(�21)

∼ μ�

z�(�Q, μgl,1)
∼

(
μ�

μ�,o

)Nc/Nc

μgl,1 � μgl,1,

(10.7)

μ(�22) ∼ μ�

z�(�Q, μgl,1)z ′
�(μgl,1,m

pole
Q,2 )

∼
(

μ�

μ�,o

) Nc
Nc−n1

mpole
Q,2 � mpole

Q,2 . (10.8)

These are not the pole masses but simply the low energy
values of mass terms in their propagators. All fions are
dynamically irrelevant at all scales μ < �Q . The mixing
of �12 ↔ �12, �21 ↔ �21 and �11 ↔ �11 are parametri-
cally small and are neglected. We then obtain for the masses
of pions �11

μ(�11) ∼
(

μ�,o

μ�

) Nc(bo−2n1)

3Nc(Nc−n1)

�
(br1)
YM

∼
(

μ�,o

μ�

) Nc(bo−2n1)

3Nc(Nc−n1)

mpole
Q,2 � mpole

Q,2 , (10.9)

and, finally, the hybrids �12,�21 are massless, μ(�12) =
μ(�21) = 0.

At 2n1 > bo the RG evolution at mpole
Q,2 < μ < μgl,1 is

only slowly logarithmic (and is neglected). We replace then
z ′
Q(μgl,1,m

pole
Q,2 ) ∼ 1 in (10.4) and z ′

�(μgl,1,m
pole
Q,2 ) ∼ 1 in

(10.8) and obtain

μ(�22) ∼ μ(�11) ∼
(

μ�

μ�,o

)Nc/Nc

μgl,1 � μgl,1, (10.10)

μ(�11) ∼ mpole
Q,2 ∼ mQ

zQ(�Q, μ2
gl,1)

∼ �Q

(
�Q

μ�

)bo/3Nc(mQ

�Q

)2 bo/3Nc

∼
(

μ�,o

μ�

)Nc/Nc

μgl,1 � μgl,1,

�
(br1)
YM

mpole
Q,2

∼
(

μ�,o

μ�

)�

� 1,

� = Nc(2n1 − bo)

3Nc(Nc − n1)
> 0. (10.11)

10.2 br2 and special vacua

At n2 < Nc there are also br2-vacua. All their properties
can be obtained by a replacement n1 ↔ n2 in formulas of
the preceding Sect. 10.1. The only difference is that, because
n2 ≥ NF/2 and so 2n2 > bo, there is no analog of the
conformal regime at μ < μgl,1 with 2n1 < bo. That is,
at μ < μgl,2 the lower energy theory will be always in the
perturbative IR-free logarithmic regime and the overall phase
will be Higgs2–HQ1.

As for the special vacua, all their properties can also be
obtained with n1 = Nc, n2 = Nc in the formulas of Sect.
10.1.

11 Dual theory: Broken flavor symmetry

The region μ�,o � μ� � �Q
2/mQ

11.1 br1 vacua, bo/NF � 1

We recall that the condensates of the mions and dual quarks
in these vacua are

〈M1〉br1 � Nc

Nc − n1
mQμ�,

〈M2〉br1 ∼ �Q
2
(

�Q

μ�

) n1
Nc−n1

(
mQ

�Q

) n2−Nc
Nc−n1

, (11.1)

〈M2〉br1

〈M1〉br1
∼

(
μ�,o

μ�

) Nc
Nc−n1 � 1,

〈N2〉br1 ≡ 〈q2q2(μ = �Q)〉br1

= Zq
〈M1〉br1�Q

μ�

∼ ZqmQ�Q � 〈N1〉br1,
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and some potentially relevant masses look here like

〈(qq)1〉 = 〈q1q1(μ = �Q)〉 = 〈M1〉br1

Zq�Q
∼ mQμ�

Zq�Q
,

〈(qq)2〉
〈(qq)1〉 = 〈M2〉br1

〈M1〉br1
� 1, (11.2)

Zq ∼ exp

{
− 1

3a∗

}
∼ exp

{
− Nc

7bo

}
� 1,

μ
pole
q,1 ∼ �Q

Zq

(
mQμ�

�Q
2

)NF/3Nc

� μ
pole
q,2 ,

�
(br1)
YM

μ
pole
q,1

∼ Zq

(
μ�,o

μ�

) n2Nc
3Nc(Nc−n1) � 1, (11.3)

μgl, 2 ∼ �Q

( 〈N2〉
�Q

2

)NF/3Nc

∼ Z1/2
q �Q

(
mQ

�Q

)NF/3Nc

� μgl, 1,

μgl, 2

μ
pole
q,1

∼ Z3/2
q

(
μ�,o

μ�

)NF/3Nc

� 1. (11.4)

Hence, the largest mass is μ
pole
q,1 while the overall phase is

HQ1–HQ2. We consider below only the case n1 < bo/2,
so that the lower energy theory with Nc colors and N ′

F = n2

flavors at μ < μ
pole
q,1 remains in the conformal window.

After integrating out the heaviest quarks q1, q1 at μ <

μ
pole
q,1 and q2, q2 quarks at μ < μ

pole
q,2 and, finally, all SU (Nc)

dual gluons at μ < �
(br1)
YM , the Lagrangian of the mions looks

like

K = zM (�Q, μ
pole
q,1 )

Z2
q�Q

2 Tr

[
M†

11M11 + M†
12M12

+M†
21M21 + z ′

M (μ
pole
q,1 , μ

pole
q,2 )M†

22M22

]
, (11.5)

W = −NcS + WM ,

S =
(

det M

�Q
bo

)1/Nc

,

�
(br1)
YM = 〈S〉1/3 ∼

(
mQ〈M2〉

)1/3

.

WM = mQTrM

− 1

2μ�

[
Tr(M2) − 1

Nc
(TrM)2

]
,

zM (�Q, μ
pole
q,1 ) ∼

(
�Q

μ
pole
q,1

)2 bo/NF

� 1.

From (11.5), the hybrids M12 and M21 are massless,
μ(M12) = μ(M21) = 0, while the pole mass of M11 is
(compare with (10.9))

μpole(M11) ∼ Z2
q�Q

2

zM (�Q, μ
pole
q,1 )μ�

,

μpole(M11)

�
(br1)
YM

∼ Z2
q

(
μ�,o

μ�

) Nc(bo−2n1)

3Nc(Nc−n1) � 1. (11.6)

The parametric behavior of μ
pole
q,2 and z ′

M (μ
pole
q,1 , μ

pole
q,2 )

depends on the value μ� ≶ μ̃�,1 (see below). We con-
sider first the case μ� � μ̃�,1 so that, by definition, the
lower energy theory with Nc colors and n2 flavors had
enough “time” to evolve and entered already the new con-
formal regime at μ

pole
q,2 < μ � μ

pole
q,1 , with b

′
o/Nc =

(3Nc − n2)/Nc = O(1) and a ′∗ = O(1). Hence, when

the quarks q2, q2 decouple as heavy ones at μ < μ
pole
q,2 , the

coupling aYM of the remaining SU (Nc) Yang–Mills theory
is aYM ∼ a ′∗ = O(1) and this means that μ

pole
q,2 ∼ �

(br1)
YM .

This can be obtained also in a direct way. The running mass
of quarks q2, q2 at μ = μ

pole
q,1 is, see (11.1)–(11.3),

μq,2(μ = μ
pole
q,1 ) = 〈M2〉br1

〈M1〉br1
μ

pole
q,1 ,

μ
pole
q,2 = μq,2(μ = μ

pole
q,1 )

z ′
q(μ

pole
q,1 , μ

pole
q,2 )

∼ �
(br1)
YM ∼

(
mQ〈M2〉

)1/3

, (11.7)

z ′
q(μ

pole
q,1 , μ

pole
q,2 ) =

(
μ

pole
q,2

μ
pole
q,1

) b ′
o

n2
ρ,

ρ =
(
a ∗
a ′∗

) Nc
n2

exp

{
Nc

n2

(
1

a ∗
− 1

a ′∗

)}

∼ exp

{
Nc

n2

1

a ∗

}
� 1.

We find from (11.5) that the main contribution to the mass
of the mions M22 originates from the non-perturbative term
∼ S in the superpotential and, using (11.5) and (11.7),

z ′
M (μ

pole
q,1 , μ

pole
q,2 ) = a f (μ = μ

pole
q,1 )

a f (μ = μ
pole
q,2 )

×
(

1

z ′
q(μ

pole
q,1 , μ

pole
q,2 )

)2

∼
(

1

z ′
q(μ

pole
q,1 , μ

pole
q,2 )

)2

, (11.8)

μ(M22) ∼ Z2
q�Q

2

zM (�Q, μ
pole
q,1 )z ′

M (μ
pole
q,1 , μ

pole
q,2 )

×
( 〈S〉

〈M2〉2 = 〈M1〉
〈M2〉

1

μ�

)
br1

∼ �
(br1)
YM ∼ μ

pole
q,2 . (11.9)
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We consider now the region μ�,o � μ� � μ̃�,1, 2n1 ≶
bo where, by definition, μpole

q,2 is too close to μ
pole
q,1 , so that the

range of scales μ
pole
q,2 < μ < μ

pole
q,1 is too small and the lower

energy theory at μ < μ
pole
q,1 has no enough “time” to enter

a new regime (conformal at 2n1 < bo or strong coupling
one at 2n1 > bo) and remains in the weak coupling loga-
rithmic regime. Then, ignoring logarithmic effects in renor-
malization factors, z ′

q(μ
pole
q,1 , μ

pole
q,2 ) ∼ z ′

M (μ
pole
q,1 , μ

pole
q,2 ) ∼ 1,

and keeping as always only the exponential dependence on
Nc/bo:

μ
pole
q,2 ∼ 〈M2〉br1

〈M1〉br1
μ

pole
q,1 ,

�
(br1)
YM

μ
pole
q,2

� 1 → μ�,o � μ� � μ̃�,1,

μ̃�,1 ∼ exp

{
(Nc − n1)

2n1

1

a ∗

}
μ�,o � μ�,o. (11.10)

The pole mass of the mions M22 looks in this case like

μpole(M22)

μpole(M11)
∼ 〈M1〉br1

〈M2〉br1
� 1,

μpole(M22)

�
(br1)
YM

∼ Z2
q

(
μ�

μ�,o

) 2n1Nc
3Nc(Nc−n1) � 1. (11.11)

On the whole, see (11.10), the mass spectrum at μ�,o �
μ� � μ̃�,1 and 2n1 ≶ bo looks as follows. (a) There are
a large number of heaviest hadrons made of weakly coupled
(and weakly confined, the tension of the confining string is√

σ ∼ �
(br1)
YM � μ

pole
q,1 ) non-relativistic quarks q1, q1, the

scale of their masses is μ
pole
q,1 ; see (11.3). (b) The next phys-

ical mass scale is due to μ
pole
q,2 : �

(br1)
YM � μ

pole
q,2 � μ

pole
q,1 .

Hence, there are also a large number of hadrons made of
weakly coupled and weakly confined non-relativistic quarks
q2, q2, the scale of their masses is μ

pole
q,2 , see (11.10), and

a large number of heavy hybrid hadrons with the masses
∼ (μ

pole
q,1 + μ

pole
q,2 ). Because all quarks are weakly coupled

and non-relativistic in all three flavor sectors, “11”, “22” and
“12+21”, the mass spectrum of low-lying flavored mesons
is Coulomb-like with parametrically small mass differences

�μH/μH = O(b
2
o/N

2
c) � 1. (c) A large number of gluo-

nia made of SU (Nc) gluons, with the mass scale ∼ �
(br1)
YM ∼(

mQ〈M2〉
)1/3

; see (11.5) and (11.1). d) n2
2 mions M22 with

the pole masses μpole(M22) � �
(br1)
YM ; see (11.11). e) n2

1
mions M11 with the pole masses μpole(M11) � μpole(M22);
see (11.6) and (11.11). f) 2n1n2 hybrids M12, M21 are mass-
less, μ(M12) = μ(M21) = 0.

The pole mass of the quarks q2, q2 is smaller at μ̃�,1 �
μ� � �Q

2/mQ and 2n1 < bo, and stays at μ
pole
q,2 ∼ �

(br1)
YM ,

while the mass of the mions M22 is larger and also stays at
μ(M22) ∼ �

(br1)
YM .

11.2 br2 and special vacua, bo/NF � 1

The condensates of the mions look in these br2-vacua like in
(11.1) with the exchange 1 ↔ 2. The largest mass is μ

pole
q,2 ,

μ
pole
q,2 ∼ �Q

Zq

(
mQμ�

�Q
2

)NF/3Nc

� μ
pole
q,1 ,

�
(br2)
YM

μ
pole
q,2

∼ Zq

(
μ�,o

μ�

) n1Nc
3Nc(Nc−n2) � 1, (11.12)

and the overall phase is HQ1–HQ2. After decoupling the
heaviest quarks q2, q2 at μ < μ

pole
q,2 the lower energy the-

ory remains in the weak coupling logarithmic regime at, see
(11.10),

�
(br2)
YM

μ
pole
q,1

� 1 → μ�,o � μ� � μ̃�,2,

μ̃�,2

μ�,o
∼ exp

{
(Nc − n2)

2n2

1

a ∗

}
� 1. (11.13)

Hence, the mass spectra in this range μ�,o < μ� � μ̃�,2

can be obtained from corresponding formulas in Sect. 11.1
by the replacements n1 ↔ n2.

But because n2 ≥ NF/2, the lower energy theory with
1 < n1/Nc < 3/2 is in the strong coupling regime at μ� �
μ̃�,2, with a(μ) � 1 at �

(br2)
YM � μ � μ

pole
q,2 . We do not

consider the strong coupling regime in this paper.
As for the special vacua, the overall phase is also HQ1–

HQ2 therein. The mass spectra are obtained by substituting
n1 = Nc into the formulas of Sect. 11.1. At 5/3 < NF/Nc <

2 and μ� � μ̃�,1 the lower energy theory in these special

vacua enters the strong coupling regime at �
(spec)
YM � μ �

μ
pole
q,1 .

12 Broken N = 2 SQCD

We consider now N = 2 SQCD with SU (Nc) colors, NF

flavors of light quarks, the scale factor �2 of the gauge
coupling, and with N = 2 broken down to N = 1 by
the large mass parameter μX � �2 of the adjoint field
X = X AT A, Tr (T AT B) = δAB/2. At very high scales
μ � μX the Lagrangian looks like (the exponents with glu-
ons are implied in the Kähler term K )

K = 1

g2(μ,�2)
Tr (X†X) + Tr (Q†Q + Q → Q), (12.1)

W = − 2π

α(μ,�2)
S + μXTr (X2)

+√
2 Tr (QXQ) + m Tr (QQ).
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The Konishi anomalies look here like

〈X A ∂W
∂X A

〉 = μX 〈X AX A〉 + Tr〈J AX A〉 = 2Nc〈S〉,

Ja,i
j = √

2 (Q j T
aQi ), Tr

(
T AT B

)
= 1

2
δAB,

〈
Qi

∂W
∂Qi

〉
= 〈J A,i

i X A〉 + m
〈
QiQ

i
〉
= 〈S〉,

no summation over i.

From these

〈Tr X2〉 = 1

2
〈X AX A〉

= 1

2μX

[
(2Nc − NF )〈S〉 + m〈Tr QQ〉

]
.

The running mass of X is μX (μ) = g2(μ)μX , so that at
scales μ < μ

pole
X = g2(μ

pole
X )μX the field X decouples from

the dynamics and the RG evolution becomes those of N = 1
SQCD. The matching of N = 2 and N = 1 couplings at
μ = μ

pole
X looks like (�2 and �Q are the scale factors of

N = 2 and N = 1 gauge couplings, �Q is held fixed when
μX � �Q is varied, b2 = 2Nc − NF , bo = 3Nc − NF )

2π

α(μ = μ
pole
X ,�2)

= 2π

α(μ = μ
pole
X ,�Q)

,

μX � �Q � �2,

b2 ln
μ

pole
X

�2
= bo ln

μ
pole
X

�Q

−NF ln zQ(�Q, μ
pole
X ) + Nc ln

1

g2(μ = μ
pole
X )

, (12.2)

�Q
bo = �

b2
2 μ

Nc
X

zNF
Q (�Q, μ

pole
X )

= zNF
Q (μ

pole
X ,�Q)�

b2
2 μ

Nc
X ,

zQ(�Q, μ = μ
pole
X ) ∼

(
ln

μ
pole
X

�Q

) Nc
bo � 1.

Although the field X becomes too heavy and does not
propagate any more at μ < μ

pole
X , the loops of light quarks

and gluons are still active at �Q < μ < μ
pole
X if the next

largest physical mass μH is below �Q , and if μH > �Q

they induce at μH < μ < μ
pole
X a non-trivial logarithmic

renormalization factor zX (μ
pole
X , μ < μ

pole
X ) � 1.

Therefore, finally, at scales �Q � μ � μ
pole
X if μH <

�Q and at μH � μ � μ
pole
X if μH > �Q , the Lagrangian

of the broken N = 2-theory with 0 < NF < 2Nc can be
written as

K = zX (μ
pole
X , μ)

g2(μ
pole
X )

Tr (X†X)

+zQ(μ
pole
X , μ) Tr (Q†Q + Q → Q), (12.3)

W = − 2π

α(μ,�Q)
S + μXTr (X2)

+√
2 Tr (QXQ) + m Tr (QQ),

zX (μ
pole
X , μ) ∼

(
ln (μ/�Q)

ln (μ
pole
X /�Q)

)b2/bo

� 1, (12.4)

zQ(μ
pole
X , μ) = zQ(μ

pole
X ,�Q)zQ(�Q, μ), zQ(�Q, μ)

∼
(

ln
μ

�Q

)Nc/bo

� 1.

In all cases when the field X remains too heavy and dynam-
ically irrelevant, it can be integrated out in (12.3) and one
obtains

K = zQ(μ
pole
X , μ) Tr (Q†Q + Q → Q), (12.5)

WQ = − 2π

α(μ,�Q)
S + m Tr(QQ)

− 1

2μX

(
Tr (QQ)2 − 1

Nc

(
Tr QQ

)2
)

.

Now we redefine the normalization of the quarks fields

Q = 1

z1/2
Q (μ

pole
X ,�Q)

Q, Q = 1

z1/2
Q (μ

pole
X ,�Q)

Q,

(12.6)

K = zQ(�Q, μ)Tr

(
Q†Q + (Q → Q)

)
,

W = − 2π

α(μ,�Q)
S + WQ, (12.7)

WQ = m

zQ(μ
pole
X ,�Q)

Tr(QQ)

− 1

2z2
Q(μ

pole
X ,�Q)μX

(
Tr (QQ)2 − 1

Nc

(
Tr QQ

)2
)

.

(12.8)

Comparing this with (2.3) and choosing

m

zQ(μ
pole
X ,�Q)

= mQ � �Q,

z2
Q(μ

pole
X ,�Q)μX = μ� � �Q (12.9)

it is seen that with this matching the �-theory and the broken
N = 2 SQCD will be equivalent.
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Therefore, at large μX � �2 and until both X and � fields
remain dynamically irrelevant, all results obtained above for
the �-theory will be applicable to the broken N = 2 SQCD
as well. Besides, the � and X fields remain dynamically
irrelevant in the same region of parameters, i.e. at NF < Nc

and at μ� > μ�,o or μH > μo at μ� < μ�,o if NF > Nc;
see (5.1).

Moreover, some general properties of both theories such
as the multiplicity of the vacua with unbroken or broken fla-
vor symmetry and the values of vacuum condensates of corre-
sponding chiral superfields (i.e. 〈Q j Q

i 〉 and 〈S〉; see Sect. 4)
are the same in these two theories, independently of whether
the fields � and X are irrelevant or relevant.

Nevertheless, once the fields � and X become relevant
(e.g. at μX � �2), the phase states, the RG evolution, the
mass spectra etc., become very different in these two theories.
The properties of the �-theory were described in detail above
in the text. In general, if X is sufficiently light and dynam-
ically relevant, the dynamics of the softly broken N = 2
SQCD becomes complicated and is outside the scope of this
paper.

Finally, we trace a transition to the slightly broken N = 2
theory with small μX � �2 and fixed �2. For this, we
write first the appropriate form of the effective superpotential
obtained from (12.7) and (12.8)

Weff
Q = −NcS + m

zQ(μ
pole
X ,�Q)

Tr(QQ)

− 1

2z2
Q(μ

pole
X ,�Q)μX

(
Tr (QQ)2 − 1

Nc

(
Tr QQ

)2)
,

S=
(

det QQ

�Q
bo

)1/Nc

, �Q
bo = zNF

Q (μ
pole
X ,�Q)�

b2
2 μ

Nc
X ,

(12.10)

and restore now the original normalization of the quark fields
Q,Q appropriate for the slightly broken N = 2 theory with
varying μX � �2 and fixed �2, see (12.6),

Weff
Q = −NcS + m Tr(QQ)

− 1

2μX

(
Tr (QQ)2 − 1

Nc

(
Tr QQ

)2)
,

S =
(

det QQ

�
b2
2 μ

Nc
X

)1/Nc

. (12.11)

One can obtain now from (12.11) the values of the quark
condensates 〈Q jQ

i 〉 at fixed �2 and small μX � �2.
Clearly, in comparison with 〈Q j Q

i 〉 in Sect. 4, the results for
〈Q jQ

i 〉 are obtained by the replacement: mQ → m, μ� →
μX , �Q

bo → �
b2
2 μ

Nc
X , while the multiplicities of the vacua

are the same. From (12.11), the dependence of 〈Q jQ
i 〉 and

〈S〉 on μX is trivial in all vacua, ∼ μX .
With the above replacements, the expressions for 〈Q j Q

i 〉
in Sect. 4 in the region �Q � μ� � μ�,o correspond
here to the hierarchy m � �2, while those in the region
μ� � μ�,o correspond here to m � �2. In the language of
[15] used in [10] (see Sects. 6, 7, 8, 9 therein), the correspon-
dence between the r -vacua [10,15] of the slightly broken
N = 2 theory with 0 < μX/�2 � 1, 0 < m/�2 � 1 and
our vacua in Sect. 4 looks as follows9: (a) r = n1, (b) our
L-vacua with the unbroken or the L-type ones with sponta-
neously broken flavor symmetry correspond, respectively, to
the first group of vacua of the non-baryonic branches with
r = 0 and r ≥ 1, r �= Nc in [10], c) our S-vacua with the
unbroken flavor symmetry and br2-vacua with the sponta-
neously broken flavor symmetry correspond to the first type
from the second group of vacua of the baryonic branches
with, respectively, r = 0 and 1 ≤ r < Nc in [10], d) our
special vacua with n1 = Nc, n2 = Nc correspond to the
second type of vacua from this group; see [10].

13 Conclusions

We described above in the text the mass spectra at 0 < NF <

2Nc of the �-theory which is the standardN = 1 SQCD with
SU (Nc) colors and NF flavors of light quarks and with added
N 2
F colorless but flavored fields�

j
i , with Yukawa interactions

with quarks.
At 0 < NF < Nc this theory is in the logarithmically

weak coupling regime, so that calculations of its mass spectra
in various vacua in Sect. 3 is straightforward and does not
require any additional assumptions.

The calculations of values of quark and gluino condensates
in multiple vacua of this �-theory at Nc < NF < 2NC

and multiplicities of various vacua were presented in Sect. 4.
The values of these condensates constitute a base for further
calculations of mass spectra.

A qualitatively new phenomenon appearing in this �-
theory in the conformal window 3Nc/2 < NF < 2Nc due
to the strong power-like RG evolution of the quark and �

renormalization factors of their Kähler terms was described
in Sect. 5. At the appropriate values of the Lagrangian param-
eters μ� � �Q and mQ � �Q , the seemingly heavy and

dynamically irrelevant fields �
j
i ’turn back’ and there appear

two additional generations of light �-particles.
At present, the calculations of mass spectra of the direct

�-theory (and its Seiberg’s dual variant, the d�-theory) in
conformal window in the strongly coupled regime cannot be

9 This correspondence is based on comparison of multiplicities of our
vacua at μ� � μ�,o described in Sect. 4 and those of r -vacua at
m � �2 and μX � �2 as these last are given in [10].
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performed directly (i.e. without additional assumptions as
regards dynamics of these theories). Therefore, these mass
spectra were calculated in Sects. 6, 7, 8, 9, 10, and 11 within
the dynamical scenario introduced in [3]. We recall that this
scenario assumes that in such N = 1 SQCD-like theories
quarks may be in two standard phases only. These are: (a)
the heavy quark (HQ) phase where they are not higgsed but
confined, and (b) the Higgs phase where they are higgsed and
so not confined.

Moreover, this scenario includes the assumption that two
above phases are realized in a ‘standard way’ even in a strong
coupling regime with a = (Ncg2/8π2) ∼ 1. This means
that, unlike e.g. N = 2 SQCD with its very special prop-
erties, in these N = 1 SQCD-like theories without adjoint
colored scalar superfields, the additional non-standard para-
metrically lighter particles (e.g. parametrically lighter mag-
netic monopoles or dyons) do not appear in the spectrum even
in the strong coupling region a ∼ 1, in comparison with that
in the weak coupling one.

In comparison with the standard N = 1 SQCD with the
superpotential W = mQTr(QQ) and the only small parame-
ter mQ/�Q � 1, which serves as the infrared regulator, the
�-theory considered in this paper includes two independent
competing small parameters which serve as infrared regula-
tors,mQ/�Q � 1 and �Q/μ� � 1. Due to this the dynam-
ics of this theory is much richer. Two main qualitatively new
elements in this direct �-theory are:

(a) the appearance of a large number of vacua with the spon-
taneously broken global flavor symmetry, U (NF ) →
U (n1)×U (n2), and as a result, with a number of exactly
massless Nambu–Goldstone particles in the mass spec-
trum;

(b) in a number of cases with NF > Nc, due to their Yukawa
interactions with the light quarks, the seemingly heavy
and dynamically irrelevant fion fields � ‘turn back ’
and there appear two additional generations of light �-
particles with μpole(�) � �Q ; see Sect. 5.

It is is not a purpose of the conclusions to repeat in a shorter
form all results obtained above in the main text for the phase
states and mass spectra of the direct and dual theories at dif-
ferent values of μ�/�Q � 1. We will try only to formulate
here in a few words the most general qualitative property of
N = 1 SQCD-like theories which emerged from the studies
in [3,9,12] and in this paper. This is the extreme sensitivity
of their dynamical behavior in the IR region of momenta, of
their mass spectra and even the phase states, to the values of
small parameters in the Lagrangian which serve as infrared
regulators.

As was shown above in the main text, similarly to the
standard N = 1 SQCD with the superpotential W =
mQTr(QQ) [3], the direct �-theory and its Seiberg’s dual

variant, the d�-theory, are (within the dynamical scenario
introduced in [3] and used in this paper) also not equivalent
as their mass spectra are parametrically different.10

At present, unfortunately, it is not known how to obtain
direct solutions (i.e. without any additional assumptions) of
N = 1 SQCD-like theories in the strong coupling region.
Therefore, to calculate the mass spectra in such theories one
has to introduce and use some assumptions as regards the
dynamics of these theories when they are in the strong cou-
pling region. In other words, one has to rely on a definite
dynamical scenario. Therefore, clearly, the results obtained
in [3] and in this paper are not direct proofs (i.e. without
any additional assumptions) that the Seiberg hypothesis [1,2]
about an equivalence of the direct and dual theories is not cor-
rect. Still, strictly speaking, both possibilities remain open: it
may be correct, but maybe not. Finally, the Seiberg hypoth-
esis is based mainly on matching of the ’t Hooft triangles in
the direct and dual theories in those ranges of scales where all
particles are effectively massless, and on some suitable corre-
spondences of their behavior in the superconformal regime.
Clearly, these are the necessary conditions. But they may be
insufficient.

The dynamical scenario introduced in [3] and used in this
paper looks self-consistent and not in contradiction with any
proved result. Therefore, it clearly seems possible at present.
Also, in particular, all Seiberg’s checks of duality in the con-
formal window are fulfilled in this scenario. Nevertheless,
as shown in [3] and in this paper, in spite of that, the mass
spectra of the direct and dual theories are parametrically dif-
ferent. This demonstrates clearly that, indeed, those checks
on which the Seiberg hypothesis is based, although neces-
sary, may well be insufficient. This does not mean, of course,
that the scenario introduced in [3] is right. But, nevertheless,
this implies that it well may be right. Therefore, what is still
missing in this story at present is a proof that the dynamical
scenario from [3] is right, or the opposite proof that Seiberg’s
hypothesis about a complete equivalence of the direct and
dual theories is right.

From our standpoint, a new and practically most impor-
tant thing at present is a very ability to calculate the mass
spectra of various N = 1 SQCD-like theories in the strong
coupling regimes, even within a given dynamical scenario. It
seems clear that further developments of the theory or lattice
calculations will allow one to find a unique right scenario in
each such theory. Time will tell, as always, which hypotheses
are right and which are not.

The �-theory with μ� � �Q considered in this paper
is tightly connected with the X -theory which is the N = 2

10 But, similarly to the standard N = 1 SQCD with the superpotential
W = mQTr(QQ) [3], to see clearly the parametric differences in mass
spectra of the direct �- and dual d�-theories, one needs to use the
additional small parameter 0 < bo/NF = (2NF − 3Nc)/NF � 1.
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SQCD broken down to N = 1 by the large mass param-
eter μX � �2 of the adjoint colored superfields X A. The
multiplicity of the vacua and the values of the quark and
gluino condensates, 〈Q j Q

i 〉 and 〈S〉, are the same in both
theories (under the appropriate matching of parameters; see
Sect. 12). Moreover, in all those cases when the fields � are
dynamically irrelevant in the �-theory, the fields X are also
dynamically irrelevant in the X -theory and these two theories
are equivalent (up to inessential small power corrections). We
have described in Sect. 12 the connections between the val-
ues of the quark and gluino condensates in different vacua
in the broken N = 2 SQCD at m ≷ �2, with those in the
direct �-theory with large varying μ� � �Q .

But even in those cases when both fields � and X A are
irrelevant, this does not mean that these two theories are sim-
ply equivalent to the standard N = 1 SQCD with small
unimportant corrections. First, the whole physics in a large
number of additional vacua with the spontaneously bro-
ken flavor symmetry is completely different. Second, even
in vacua with the unbroken flavor symmetry, these theories
evolve to the standard N = 1 SQCD with small power
corrections not simply at μ� = (several)�Q, as one can
naively expect, but only at parametrically larger values
μ� � μ�,o = �Q(�Q/mQ)(2Nc−NF )/Nc � �Q .

But e.g. when the corresponding mass parameters μ� and
μX are small and both fields � and X are dynamically rel-
evant, the phase states, the mass spectra, etc. become very
different in these �- and X -theories.
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Appendix A: The RG flow in the �-theory at μ > �Q

A.1 We first consider the �-theory at Nc < NF < 2Nc

where it is taken as UV-free. We start with the canonically
normalized Kähler term K at the very high scale μ ∼ μUV

and the running couplings and mass parameters

K = Tr
(
�̂†�̂

) + Tr
(
Q̂† Q̂ + (Q̂ → Q̂)

)
,

W = − 2π

α(μ)
S + W� + WQ,

W� = μ�(μ)

2

[
Tr (�̂2) − 1

Nc

(
Tr �̂

)2
]

,

WQ = − f (μ)Tr
(
Q̂�̂Q̂

) + Tr
(
Q̂ mQ(μ)Q̂

)
. (A.1)

Now, instead of running parameters, we introduce μ-
independent ones, �Q, μ� and mQ (μ� � �Q and mQ �
�Q in the main text),

1

a(μ)
= 2π

Ncα(μ)
= bo

Nc
ln

μ

�Q
− NF

Nc
ln zQ(�Q, μ)

+ ln
1

a(μ)
+ Ca, bo = 3Nc − NF , (A.2)

a f (μ) = Nc f 2(μ)

2π
= a f = Nc f 2/2π

z�(�Q, μ)z2
Q(�Q, μ)

,

μ�(μ) ≡ f 2μ�

z�(�Q, μ)
, mQ(μ) ≡ mQ

zQ(�Q, μ)
,

where zQ(�Q, μ � �Q) � 1 and z�(�Q, μ) are the per-
turbative renormalization factors (logarithmic in this case)
in the theory with all fields massless, a f is taken as a f ∼
1/(several) and Ca is also O(1) (it will be omitted for sim-
plicity). Therefore, after redefinitions of the quark and �

fields, the Lagrangian at the very high scale can be rewritten
as

K = z�(�Q, μ)
1

f 2 Tr (�†�)

+zQ(�Q, μ)Tr
(
Q†Q + (Q → Q)

)
, (A.3)

W� = μ�

2

[
Tr (�2) − 1

Nc

(
Tr �

)2]
,

WQ = −Tr
(
Q�Q

) + Tr
(
QmQQ

)
.

From (A.2)
da f (μ)

d ln μ
= β f = −a f (μ)

(
2γQ(μ) + γ�(μ)

)
,

γQ = d ln zQ(μ)

d ln μ
, γ� = d ln z�(μ)

d ln μ
. (A.4)

In the approximation of leading logarithms at large μ

γQ(μ) � 2CF

Nc
a(μ) − NF

Nc
a f (μ),

γ�(μ) � −a f (μ),
2CF

Nc
= N 2

c − 1

N 2
c

� 1. (A.5)

From (A.4) and (A.5), there is the UV-free solution

a(μ) � Nc

bo

1

ln(μ/�Q)
,

a f (μ) ∼ a f

(
1

ln(μ/�Q)

) 2Nc
bo � a(μ),

1 <
2Nc

bo
< 2, (A.6)

zQ(�Q, μ) ∼
(

ln
μ

�Q

)Nc/bo

� 1,

z�(�Q, μ) ∼ 1. (A.7)

It is seen from (A.6) that the Yukawa coupling a f (μ) is para-
metrically small in comparison with the gauge coupling a(μ)
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and, up to small corrections, it has no effect on the RG evo-
lution at large μ.

The first physical mass parameter which influences the
RG flow with lowering the scale μ is μ

pole
1 (�) = μ�(μ =

μ
pole
1 (�)) = f 2μ�/z�(�Q, μ

pole
1 (�)) ∼ f 2μ� � �Q , so

that μ�(μ) becomes μ�(μ) ∼ f 2μ� > μ at μ < μ
pole
1 (�)

and the fields � become too heavy. They do not propagate any
more and do not influence the RG evolution until μ�(μ) >

μ. Nevertheless, the anomalous dimension γ�(μ) remains
small but nonzero even at μ < μ

pole
1 (�) due to loops of

still active light quarks (and gluons interacting with quarks)
and, instead of (A.5), the anomalous dimensions look at μ <

μ
pole
1 (�) like

γQ(μ) � a(μ), γ�(μ) � −a f (μ), (A.8)

while (A.6) and (A.7) remain the same. Hence, although the
heavy fields �i j decouple at �Q < μ < μ

pole
1 (�), the RG

flow remains parametrically the same because their role even
at μ > μ

pole
1 (�) was small.

Therefore, finally, at scales�Q < μ < μ
pole
1 (�) if there is

no physical masses μH > �Q and at μH < μ < μ
pole
1 (�)

if μH > �Q , the Lagrangian of the �-theory with Nc <

NF < 2Nc light flavors can be written as

K = 1

f 2 Tr (�†�) + zQ(�Q, μ)Tr
(
Q†Q + (Q → Q)

)
,

W = − 2π

α(μ,�Q)
S + W� + WQ,

W� = μ�

2

[
Tr (�2) − 1

Nc

(
Tr �

)2
]
,

WQ = Tr
(
Q mtot

Q Q
)
,

mtot
Q = mQ − �, (A.9)

with zQ(�Q, μ) given in (A.7).
A.2 We consider now the case 1 ≤ NF < Nc. Although

the �-theory is not UV-free in this case and requires UV
completion at μ > μUV, the RG flow at μH < μ � μUV is
very specific (see below; the quarks are really higgsed in this
case at μH = μgl, �Q � μgl � μ� � μUV ; see Sect.
3). We take from the beginning a f in (A.2) to be sufficiently
small, a f � 1, and calculate the behavior of a(μ) and a f (μ)

at �Q � μ � μUV in the massless theory which follows
from their definitions in (A.2). Then, by definition, in the
theory with �Q � μ

pole
1 (�) � μUV , the behavior of a(μ)

and a f (μ) at μ
pole
1 (�) � μ � μUV will be the same while,

in general, it can be different at μ < μ
pole
1 (�).

There is the same solution (A.6) also at 1 ≤ NF <

Nc, with a difference that 2/3 < 2Nc/bo < 1 now and
a f � 1. Hence, starting with μ > �Q, a f (μ) begins first
to decrease with increasing μ, but more slowly now than

a(μ) ∼ 1/ ln(μ/�Q). Due to this, β f (μ) in (A.4) changes
sign at μ ∼ μ,

a f (μ) ∼ a(μ) → ln
μ

�Q
∼

(
1

a f

) bo
Nc−NF � 1,

a f (μ) ∼ 1

ln(μ/�Q)
∼

(
a f

) bo
Nc−NF � a f � 1, (A.10)

and then a f (μ) begins to grow,

a f (μ > μ) ∼ 1

ln(μUV /μ)
,

ln

(
μUV

μ

)
∼

(
1

a f

) bo
Nc−NF � 1, (A.11)

with further increasing μ > μ. Therefore, z�(�Q, μ <

μ) ∼ 1 in the massless theory.
For our purposes in Sect. 3 it will be sufficient to have

μgl � μ
pole
1 (�) ∼ a f μ� � μ � μUV. This leads to a

sufficiently weak logarithmic restriction,

1

a f
�

(
ln

μ�

�Q

) Nc−NF
bo

, 0 <
Nc − NF

bo
<

1

3
, (A.12)

and then z�(�Q, μ < μ
pole
1 (�)) remains ∼ 1 also in the

�-theory with massive fields �.

14 Appendix B: There are no vacua with 〈S〉 = 0 at
mQ �= 0

The purpose of this appendix is to show that the gluino con-
densate 〈S〉 �= 0 at mQ �= 0 in all vacua with the broken
flavor symmetry, U (NF ) → U (n1) × U (n2), in both the
direct and the dual theories.

1. Direct theory
We assume that there is at Nc < NF < 2Nc a large number

of additional vacua with either 1 ≤ n1 ≤ Nc−1 components
〈(QQ)1〉 = 0, or n2 ≥ n1 components 〈(QQ)2〉 = 0. Even
in this case the relations at μ = �Q ,

〈(QQ)1 + (QQ)2〉 − 1

Nc
Tr 〈QQ〉 = mQμ�,

〈S〉 = 1

μ�

〈(QQ)1〉〈(QQ)2〉,
〈(QQ)1〉 �= 〈(QQ)2〉, (B.1)

〈mtot
Q,1〉 = 〈mQ − �1〉 = 〈(QQ)2〉

μ�

,

〈mtot
Q,2〉 = 〈mQ − �2〉 = 〈(QQ)1〉

μ�

,

following from the Konishi anomalies (2.2) and (2.4) remain
valid. Therefore, one obtains from (B.1) that either
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〈(QQ)2〉 = 0, 〈(QQ)1〉 = Nc

Nc − n1
mQμ�,

〈S〉 = 0, 1 ≤ n1 ≤ Nc − 1, (B.2)

〈mtot
Q,1〉 = 〈(QQ)2〉

μ�

= 0,

〈mtot
Q,2〉 = 〈(QQ)1〉

μ�

= Nc

Nc − n1
mQ,

or

〈(QQ)1〉 = 0, 〈(QQ)2〉 = Nc

Nc − n2
mQμ�,

〈S〉 = 0, n2 �= Nc, (B.3)

〈mtot
Q,2〉 = 〈(QQ)1〉

μ�

= 0,

〈mtot
Q,1〉 = 〈(QQ)2〉

μ�

= Nc

Nc − n2
mQ,

in these vacua. We will show below that this assumption is
not self-consistent. That is, we will start with (B.2) or (B.3)
and calculate then explicitly 〈S〉 �= 0 in these vacua. For
this, using a holomorphic dependence of 〈S〉 on μ�, it will
be sufficient to calculate 〈S〉 �= 0 in some range of most
convenient values of μ�. Hence, we take mQμ� ∼ �Q

2.
In vacua (B.2) with 〈(QQ)2〉 = 0, 〈(QQ)1〉 ∼ mQμ� ∼

�Q
2 the quarks Q1, Q1 are higgsed with 〈Q1〉 = 〈Q1〉 ∼

�Q . At n1 < Nc − 1 the lower energy theory at μ <

�Q contains SU (Nc − n1) unbroken gauge symmetry
with the scale factor of the gauge coupling (�′)b′

o ∼
�Q

bo/ det �11, 〈�′〉 ∼ �Q , n2
1 pions �11 and Q2, Q2

quarks with zero condensate and the running mass 〈mtot
Q,2〉 =

〈mQ − �2〉 = 〈(QQ)1〉/μ� ∼ mQ at μ = �Q . For this
reason, the variant with the Higgs2 phase of these quarks is
excluded, they will be always in the heavy quark HQ2 phase.
At all n1 < Nc − 1, proceeding as in [3,9,12], i.e. lowering
the scale down to μ < mpole

Q,2 ∼ mQ/zQ(�Q,mpole
Q,2) and inte-

grating out Q2, Q2 quarks as heavy particles, there remains
the pure SU (Nc−n1) Yang–Mills theory (and n2

1 pions �11)
with the scale factor of its gauge coupling

�3
YM =

(
�Q

bo det(mQ − �22)

det �11

)1/(Nc−n1)

, (B.4)

and, finally, with the Lagrangian of the form (3.22) at μ <

〈�YM 〉. From (B.4)

〈S〉 = 〈�3
YM 〉 ∼ �Q

3
(

�Q

μ�

) n1
Nc−n1

(
mQ

�Q

) n2−n1
Nc−n1 �= 0. (B.5)

At n1 = Nc−1 the gauge group will be broken completely
and (B.4) originates from the instanton contribution.

The vacua (B.3) with 〈(QQ)1〉 = 0 are considered the
same way and one obtains (B.4) and (B.5) with the replace-

ment n1 ↔ n2. (In vacua (B.3) the cases with n2 > Nc are
excluded from the beginning as the rank of 〈Q2〉 is ≤ Nc and
the unbroken U (n2) flavor symmetry cannot be maintained;
the case n2 = Nc is also excluded as 〈�1〉 �= 0 in this case;
see (B.1)). Hence, only the cases with n2 ≤ Nc − 1 remain).

On the whole, the assumption as regards the existence
of additional vacua (B.2) or (B.3) with 〈(QQ)1〉 = 0 or
〈(QQ)2〉 = 0 at Nc < NF < 2Nc is not self-consistent.

2. Dual theory
The dual analog of (B.1)–(B.3) looks like, see (2.8),

〈M1 + M2〉 − 1

Nc
Tr 〈M〉 = mQμ�,

〈S〉 = 1

μ�

〈M1〉〈M2〉, 〈M1〉 �= 〈M2〉. (B.6)

By assumption, there are a large number of additional vacua
with either

〈M2〉 = 0, 〈M1〉 = Nc

Nc − n1
mQμ�,

〈S〉 = 0, 1 ≤ n1 ≤ Nc − 1, (B.7)

〈N1〉 = 〈mtot
Q,1〉�Q = 〈M2〉�Q

μ�

= 0,

〈N2〉 = 〈mtot
Q,2〉�Q = 〈M1〉�Q

μ�

= Nc

Nc − n1
mQ�Q,

or

〈M1〉 = 0, 〈M2〉 = Nc

Nc − n2
mQμ�,

〈S〉 = 0, n2 �= Nc, (B.8)

〈N2〉 = 〈mtot
Q,2〉�Q = 〈M1〉�Q

μ�

= 0,

〈N1〉 = 〈mtot
Q,1〉�Q = 〈M2〉�Q

μ�

= Nc

Nc − n2
mQ�Q .

In this case, it is more convenient for our purposes to choose
the regions �Q � μ� � μ�,o at 3Nc/2 < NF < 2Nc and
�Q � μ� � �Q(�Q/mQ)1/2 at Nc < NF < 3Nc/2.

We start from (B.7). It is not difficult to check that in
these ranges of μ� and at all Nc < NF < 2Nc the largest
mass is μgl,2 � μ

pole
q,1 due to higgsing of the q2, q2 quarks.

Hence, in these (B.7) vacua, the cases with n2 > Nc are
excluded from the beginning as the rank of 〈q2〉 is ≤ Nc and
the unbroken U (n2) flavor symmetry cannot be maintained.
But this excludes all such vacua as n1 ≤ Nc − 1 and n2 =
NF − n1 ≥ Nc + 1.

Therefore, there remain only (B.8) vacua. In these, in the
above ranges of μ�, the largest mass is μgl,1 � μ

pole
q,2 due to

higgsing of the q1, q1 quarks. Hence, one obtains from simi-
lar considerations that n1 ≤ Nc−1 (the case n1 = Nc is also
excluded from (B.6) and (B.8)). Similarly, because their con-
densate 〈q2q2〉 = 0, the quarks q2, q2 will be always in the

123



Eur. Phys. J. C (2017) 77 :19 Page 35 of 35 19

heavy quark HQ2-phase only. Hence, at all n1 < Nc−1, pro-
ceeding as in [3,9,12], i.e. integrating out first higgsed glu-
ons and q1, q1 quarks at μ < μgl,1, then q2, q2 quarks with

unhiggsed colors at μ < μ
pole
q,2 and, finally, unhiggsed gluons

at μ < 〈�YM 〉, one obtains the low energy Lagrangian of the
form (9.6) with

�3
YM =

(
�Q

bo det
(
M22/�Q

)
det N11

)1/(Nc−n1)

,

〈S〉 = 〈�3
YM 〉 ∼ �Q

3
(

μ�

�Q

) n2
n2−Nc

(
mQ

�Q

) n2−n1
n2−Nc �= 0. (B.9)

At n1 = Nc−1 the dual gauge group will be broken com-
pletely and (B.9) originates from the instanton contribution.

On the whole, the assumption as regards the existence of
additional vacua (B.7) or (B.8) with 〈M1〉 = 0 or 〈M2〉 = 0
at Nc < NF < 2Nc is also not self-consistent.

The additional Nadd = 1 · CNc
NF

special GK-vacua with

n1 = Nc, n2 = Nc and (in our notations) 〈(QQ)1〉 =
〈M1〉 = 0, 〈(QQ)2〉 = 〈M2〉 = mQμ�, 〈S〉 = 0 have been
found in the SU (Nc) theory with NF quark flavors consid-
ered in [16], were instead of (2.3) the superpotential looks
like

WGK = mQTr(QQ) − 1

2μ�

Tr (QQ)2. (B.10)

Due to this, the Konishi anomalies for (B.10) in vacua with
the spontaneously broken flavor symmetry look like

〈(QQ)1 + (QQ)2〉br = mQμ�,

〈S〉br = 〈(QQ)1〉br〈(QQ)2〉br

μ�

. (B.11)

At the same time, for the superpotential (2.3)

WQ = mQTr(QQ)

− 1

2μ�

(
Tr (QQ)2 − 1

Nc

(
Tr QQ

)2
)

(B.12)

in this paper the Konishi anomalies look like

〈(QQ)1 + (QQ)2 − 1

Nc
Tr QQ〉br = mQμ�,

〈S〉br = 〈(QQ)1〉br〈(QQ)2〉br

μ�

. (B.13)

We note here only that the difference between (B.11) and
(B.13) is crucial for these special GK-vacua. (B.13) does
not allow for such additional GK-vacua with n2 = Nc and
〈(QQ)1〉 = 〈S〉 = 0.

Besides, e.g. at �Q � μ� � μ�,o, in (2Nc − NF ) ·
CNc
NF

vacua with n1 = Nc, n2 = Nc and 〈(QQ)1〉 �=
0, 〈(QQ)2〉 �= 0, 〈S〉 �= 0 the parametric behavior of con-
densates following from the superpotential (B.12) used in

this paper is

〈(QQ)1〉 = mQμ� � 〈(QQ)2〉 ∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF

,

〈S〉 ∼ mQ�Q
2
(

�Q

μ�

) Nc
2Nc−NF

, (B.14)

while (B.10) allows only for the L-type behavior

〈�1〉 � −〈�2〉 ∼ �Q
2
(

�Q

μ�

) Nc
2Nc−NF

,

〈S〉 ∼ �Q
3
(

�Q

μ�

) NF
2Nc−NF

. (B.15)
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