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Abstract In this paper we consider a generally covariant
theory of gravity, and extend the generalized off-shell ADT
current such that it becomes conserved for field dependent
(asymptotically) Killing vector field. Then we define the
extended off-shell ADT current and the extended off-shell
ADT charge. Consequently, we define the conserved charge
perturbation by integrating from the extended off-shell ADT
charge over a spacelike codimension two surface. Eventu-
ally, we use the presented formalism to find the conserved
charge perturbation of an asymptotically flat spacetime. The
conserved charge perturbation we obtain is exactly matched
with the result of Ref. (Barnich and Troessaert, 12:105 2011).
These charges are as representations of the BMS4 symmetry
algebra. Also, we find that the near horizon conserved charges
of a non-extremal black hole with extended symmetries are
the Noether charges. For this case our result is also exactly
matched with that of Ref. (Donnay et al., arXiv:1607.05703
[hep-th], 2016).

1 Introduction

It is well known that the group of asymptotic symmetries of
asymptotically flat space-times at future null infinity is the
BMS group [3–5]. The BMS symmetry algebra in n space-
time dimension consists of the semi-direct sum of the confor-
mal Killing vectors of a (n − 2)-dimension sphere acting on
the ideal of infinitesimal supertranslations [6,7]. So, in four
dimensions, the asymptotic symmetry group at null infinity
of asymptotically flat space-times is not the Poincaré group.
In this case, the symmetry algebra is an extension of the
Poincaré algebra, in which translations are replaced by super-
translations, and contains two copies of the Virasoro algebra
[1]. In contrast to 3 and 4 dimensions, in higher dimensions
the supertranslations reduce to the usual translation. Thus
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the asymptotical symmetry algebra of asymptotically flat
space-times at the future null infinity for n > 4 dimensions
is just the Poincaré algebra [7–9]. The infinite-dimensional
supertranslation subgroup of BMS4 generates arbitrary angle
dependent translations of retarded time. Ashtekar has investi-
gated the implications of the supertranslations in the context
of asymptotic quantization [10,11]. Recently, Donnay et al.
[12], have shown that the asymptotic symmetries close to
the horizon of the non-extremal black hole solution of the
three-dimensional Einstein gravity in the presence of a neg-
ative cosmological term, are generated by an extension of
supertranslations. They have shown that for a special choice
of boundary conditions, the near region to the horizon of a
stationary black hole presents a generalization of supertrans-
lation, including a semidirect sum with superrotations, rep-
resented by Virasoro algebra (see also [13]). More recently,
we have studied the behaviors and algebras of the symme-
tries and conserved charges near the horizon of the non-
extremal black holes in the context of the so-called General-
ized Minimal Massive Gravity [14], proposed in Ref. [15]. In
an interesting paper [16] Strominger has studied the BMS4

invariance of gravitational scattering. He has discussed that
in a finite neighborhood of the Minkowski vacuum, clas-
sical gravitational scattering is in fact BMS-invariant. He
has demonstrated BMS invariance of the S-matrix, and has
shown that the supertranslation invariance implies energy
conservation at every angle. In extension of AdS/CFT cor-
respondence to the flat space holography, the BMS algebra
has been investigated very much in recent years [1,6,17–34].
Since the BMS4 algebra is an extension of the Poincaré alge-
bra, the asymptotically flat space-time in four dimensions is
dual to an extended conformal field theory. The BMS4 charge
algebra has been studied in [1]. The authors of [1] have used
the covariant approach in order to obtain surface charges and
their algebra (see also [35–37]). The BMS4 Surface-charge
algebra on the null infinity of asymptotically flat space-
time has been investigated via the Hamiltonian formalism
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in the reference [38]. The BMS4 group leads to the con-
served charges, a part of these conserved charges are associ-
ated to the Poincaré group, another part is an infinite number
of supermomentum charge associated with supertranslations.
In Refs. [1,7,24] Barnich and Troessaert have discussed the
vector fields called “superrotations”, which correspond to
the infinitesimal symmetries but cannot be exponentiated to
lead smooth finite diffeomorphisms. Recently, Flanagan and
Nichols have computed the superrotation charges, and have
shown that these charges which are called “super center-of-
mass” by them are in general finite [39].

In this paper we are going to show that the BMS sym-
metries appear at null infinity of asymptotically flat four-
dimensional space-times. What we find in this case is exactly
matched with the result of Ref. [1], but here, we obtain this
result by a different approach. On the other hand, the near
horizon geometry of non-extremal black hole solutions of
a generally covariant theory of gravity exhibits an infinite-
dimensional symmetry which is not exactly BMS4 [2]. In
fact, at the horizon we find the so-called BMSH

4 algebra pro-
vided in reference [2].

In this paper at first we consider a generally covariant the-
ory of gravity in D dimensions. Then we try to find the quasi-
local conserved charges corresponding to the field-dependent
Killing vector fields. We assume that the diffeomorphism
generator ξ depends on the dynamical fields which appear in
the metric. Then by using the ADT method [40–42], devel-
oped in [43–45] (for the recent works see [46–48]), we obtain
the extended off-shell ADT current. Afterward, we define the
perturbation of the conserved charge by integrating of the
extended off-shell ADT charge over a space-like codimen-
sion two surface. As an application of this method for com-
putation of conserved charges, when the Killing vector fields
are dependent on the dynamical fields in the metric, and in the
direction of our aims, we consider an asymptotically flat line
element where the components of the metric are functions of
the coordinates. Our result for a conserved charge perturba-
tion is exactly matched with that of Ref. [1]. These charges
are as representations of the BMS4 symmetry algebra. Very
recently the authors of [2] have shown that the non-extremal
black holes in four-dimensional general relativity exhibit an
infinite-dimensional symmetry in their near horizon region.
The algebra they have found contains two sets of supertrans-
lations currents, besides, it contains two sets of Virasoro cur-
rents which are in semi-direct sum with the supertranslations.
Due to the presence of two sets of supertranslation currents,
this algebra is not exactly the BMS4 symmetry algebra which
includes two copies of Virasoro algebra and one set of super-
translations. In Sect. 3 we try to find the expression of the
conserved charges associated to the near horizon symmetry
of the non-extremal black hole solution of general relativity
in four dimensions by the Noether method. Our result for this
case is also exactly matched with that of Ref. [2].

2 Quasi-local conserved charges correspond to the field
dependent Killing vector fields

The action of a generally covariant theory of gravity in D
dimensions is given by

I = 1

16πG

∫
dDx

√−gL, (1)

whereG is the gravitational constant andL = L(gμν, R, Rμν

Rμν, . . . ) is the Lagrangian density of a generally covariant
theory of gravity. By varying Eq. (1) with respect to metric
gμν we have

δ
(√−gL) = √−gEμνδgμν + ∂μ�μ(g; δg), (2)

where Eμν = 0 are the equations of motions and �μ(g; δg)
is the surface term. The variation of the metric under a dif-
feomorphism generated by the vector field ξμ is δξ gμν =
∇μξν + ∇νξμ. By supposing that the variation in Eq. (2) is
due to a diffeomorphism generated by the vector field ξμ we
find that

δξ

(√−gL) = 2
√−gEμν∇μξν + ∂μ�μ(g; δξ g). (3)

It is known that
√−g is a scalar density of weight +1 and

the Bianchi identity is given by ∇νEμν = 0, then Eq. (3) can
be written as

∂μ J
μ = 0, (4)

where Jμ = Jμ(g; ξ) is an off-shell conserved current and
it is given by

Jμ = �μ(g; δξ g) − √−gLξμ + 2
√−gEμνξν. (5)

By virtue of the Poincaré lemma, one can write

Jμ(g; ξ) = ∂νK
νμ(g; ξ), (6)

where Kμν = −K νμ. Now, we assume that the diffeomor-
phism generator ξ depends on the dynamical fields which are
appear in the metric. By varying Eq. (5) with respect to the
dynamical fields we find that

∂ν

(
δ̂K νμ(g; ξ) − K νμ(g; δ̂ξ ) − 2ξ [ν�μ](g; δ̂g)

)

= δ̂�μ(g; δξ g) − δξ�
μ(g; δ̂g) − �μ(g; δ

δ̂ξ
g)

+2
√−g

(
δ̂Eμνξν + Eμνδ̂gνλξ

λ − 1

2
ξμEαβ δ̂gαβ

+1

2
gαβ δ̂gαβEμνξν

)
(7)

where δ̂ denotes variation with respect to the dynamical
fields. The off-shell ADT current is defined as [43–45]
√−gJ μ

ADT(g, δg; ξ) = δEμνξν + Eμνδgνλξ
λ

−1

2
ξμEαβδgαβ + 1

2
gαβδgαβEμνξν. (8)
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The off-shell ADT current J μ
ADT(g; δg) is conserved off-

shell for arbitrary field-independent Killing vector field
which is admitted by the spacetime everywhere. Also, the
symplectic current define as an antisymmetric bilinear map
on perturbations [49]

ωμ(g; δ1g, δ2g) = δ1�
μ(g; δ2g)

−δ2�
μ(g; δ1g) − �μ(g; [δ1, δ2]g). (9)

The above expression for the symplectic current reduces to
the Lee–Wald one [50–53], namely ω

μ
LW = δ1�

μ(g; δ2g) −
δ2�

μ(g; δ1g), when two variations δ1 and δ2 are commute,
i.e. [δ1, δ2]g = 0. The symplectic current (9) is conserved
on-shell and it gives us conserved charges correspond to
asymptotically field-independent Killing vectors. It should
be noted that for the case in which ξ is field-dependent we
have [δ̂, δξ ] = δ

δ̂ξ
, then Eq. (9) becomes

ωμ(g; δ̂g, δξ g) = δ̂�μ(g; δξ g)

−δξ�
μ(g; δ̂g) − �μ(g; δ

δ̂ξ
g). (10)

It is easy to see that Eq. (10) will be reduced to the Lee–Wald
symplectic current when ξ is field-independent, i.e. δ̂ξ = 0.
In Ref. [54], the authors have generalized the off-shell ADT
current as follows:

J μ
GADT(g, δg; ξ) = J μ

ADT(g, δg; ξ)

+ 1

2
√−g

ω
μ
LW(g; δg, δξ g), (11)

this current is conserved off-shell for the asymptotically field-
independent Killing vector fields as well as field-independent
Killing vector fields admitted by spacetime everywhere.

For the case in which ξ depends on the dynamical fields, it
seems to be sensible replacing δ and the Lee–Wald symplec-
tic current by δ̂ and ωμ(g; δ̂g, δξ g) in Eq. (11), respectively.
Thus, we can define the extended off-shell ADT current as

J
μ
ADT(g, δ̂g; ξ)=J μ

ADT(g, δ̂g; ξ)+ 1

2
√−g

ωμ(g; δ̂g, δξ g).

(12)

It is clear that the extended off-shell ADT current J
μ
ADT

is conserved off-shell for asymptotically field dependent
Killing vector fields as well as field-dependent Killing vec-
tor fields admitted by spacetime everywhere. By considering
Eq. (12), one can rewrite Eq. (7) as follows:

√−gJμ
ADT(g, δ̂g; ξ) = ∂ν

[√−gQνμ
ADT(g, δ̂g; ξ)

]
, (13)

where Qμν
ADT(g, δ̂g; ξ) is defined as the extended off-shell

ADT charge and it is given by

√−gQμν
ADT(g, δ̂g; ξ) = 1

2
δ̂Kμν(g; ξ)

−1

2
Kμν(g; δ̂ξ ) − ξ [μ�ν](g; δ̂g). (14)

By substituting Kμν = √−gK̃μν and �μ = √−g�̃μ into
Eq. (14) we have

Qμν
ADT(g, δ̂g; ξ) = 1

2
δ̂ K̃μν(g; ξ) + 1

4
gαβ δ̂gαβ K̃

μν(g; ξ)

−1

2
K̃μν(g; δ̂ξ ) − ξ [μ�̃ν](g; δ̂g). (15)

The above expression for the extended off-shell ADT charge
is reduced to the generalized ADT charge [54] when ξ is field-
independent, i.e. δ̂ξ = 0. Now, we can define the perturbation
of the conserved charge by integrating from the extended off-
shell ADT charge over a spacelike codimension two surface

δ̂Q(ξ) = 1

16πG

∫
�

(dD−2x)μν

√−gQμν
ADT(g, δ̂g; ξ), (16)

where

(dD−2x)μν = 1

2(D − 2)!εμνα1···αD−2 dxα1 · · · dxαD−2 . (17)

The charge defined by Eq. (16) is conserved off-shell for the
asymptotically field-dependent Killing vector fields as well
as field-dependent Killing vector fields admitted by space-
time everywhere.

As we mentioned earlier, the Lagrangian of a generally
covariant theory of gravity is given by L = L(gμν, R, Rμν

Rμν, . . . ), so we have the following expressions for K̃μν and
�̃μ [45]:

K̃μν(g; ξ) = 2Pμναβ∇αξβ − 4ξβ∇αPμναβ,

�̃μ(g; δ̂g) = 2
(
Pμαβν∇ν δ̂gαβ − δ̂gαβ∇ν Pμαβν

)
,

(18)

where Pμναβ = ∂L/∂Rμναβ . For Einstein gravity, we have

Pαμβν = 1

2

(
gμνgαβ − gανgμβ

)
, (19)

therefore in this case Eq. (18) will be reduced to

K̃μν(g; ξ) = 2∇[μξν],
�̃μ(g; δ̂g) = ∇α

(
gμβδ̂gαβ

)
− ∇μ

(
gαβ δ̂gαβ

)
.

(20)

By substituting Eq. (20) into Eq. (15) we find that 1

Qμν
ADT(g, δ̂g; ξ)

= −hλ[μ∇λξ
ν] + ξλ∇[μhν]

λ + 1

2
h∇[μξν]

−ξ [μ∇λh
ν]λ + ξ [μ∇ν]h, (21)

where hμν = δ̂gμν . Although this formula is independent of
δ̂ξ , we have shown that this formula is valid for the case in
which ξ is field-dependent.

1 It is easy to see that the Abbott–Deser formula (see Eq. (2.1) of [1])
has two more terms than Eq. (21).
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2.1 An example

Let xμ = (u, r, θ, φ) and A, B, · · · = 2, 3. We consider
an asymptotically flat spacetime presented in [25]. The line
element of an asymptotically flat spacetime can be written in
the following form [5,25]:

ds2 = e2X V

r
du2 − 2e2Xdudr

+gAB(dx A −U Adu)(dx B −UBdu), (22)

where X , V , and gAB(detgAB)−1/2 are six functions of the
coordinates. Also, we assume that gACgCB = δAB and we
impose the following gauge conditions:

grr = 0, gr A = 0, (23)

∂r

(
r−4detgAB

)
= 0. (24)

The line element (22) solves the Einstein field equations
when gAB , X , V and U A are given as

gAB = r2γ̄AB + rC̄AB + D̄AB + 1

4
γ̄ABC̄

C
DC̄

D
C + O(r−ε),

(25)

X = − 1

32r2 C̄
A
B C̄

B
A − 1

12r3 C̄
A
B D̄

B
A + O(r−3−ε), (26)

V

r
= −1

2
R̄ + 2M

r
+ O(r−1−ε), (27)

U A = − 1

2r2 ∇̄BC̄
AB

− 2

3r3

[(
ln r + 1

3

)
∇̄B D̄

AB

−1

2
C̄ A
B ∇̄CC̄

CB + N̄ A
]

+ O(r−2−ε), (28)

where γ̄ AC γ̄CB = δAB , γ̄ABdx Adx B = e2ϕ(xC )(dθ2 +
sin2 θdφ2) and indices on C̄AB and D̄AB are raised with
γ̄ AB . Also, C̄C

C = D̄C
C = ∂u D̄AB = 0. ∇̄A is the covariant

derivative associated with γ̄AB and R̄ is the scalar curvature
of ∇̄A. In Eq. (27), M = M(u, x A) is the mass aspect and, in
Eq. (28), N̄ A = N̄ A(u, x B) is the angular momentum aspect.
We should mention that C̄AB , D̄AB , M , and N̄ A are dynam-
ical fields. The metric under transformations generated by ξ

transforms as δξ gμν = £ξ gμν . The variation generated by
the following vector field preserves the fall-off conditions
(25)–(28):

ξu = f,

ξ r = − r

2
(∇̄Aξ A − f,BU

B),

ξ A = Y A + I A; I A = − f,B

∫ ∞

r
dr ′(e2X gAB), (29)

where f = eϕT + 1
2uψ , Y A = Y A(x B) , T = T (x B)

and ψ = ∇̄AY A, where Y A is a conformal Killing vector
of γ̄AB . Preserving the boundary conditions means that the
metric gμν(�) is mapped into gμν(� + δξ�) by transforms
generated by ξ , where � is the collection of dynamical fields.
The change of dynamical fields δξ� under a transformation
generated by ξ is given in Ref. [1].

Now, we take codimension two surface � to be a (u, r)-
constant surface. Thus, the ru component of the extended
ADT charge is important. We can rewrite the ru component
of the extended ADT charge (21) as

2Qru
ADT = ξ r

[∇r hur + ∇uh − ∇uhrr − ∇λh
uλ

]
+ ξu

[∇r huu − ∇r h − ∇uhru + ∇λh
rλ]

+ ξ A [∇r huA − ∇uhrA
] + 1

2
h

(∇r ξu − ∇uξ r
)

+ hλu∇λξ
r − hλr∇λξ

u . (30)

Two last terms in the right hand side of Eq. (30) can be
simplified as

1

2
h

(∇rξu − ∇uξ r
) + hλu∇λξ

r − hλr∇λξ
u

=
(

1

2
hgru − hru

) (∇uξ
u − ∇rξ

r )

+
(

1

2
hgr A − hr A

)
∇Aξu, (31)

where we have used the equation ∇rξ
u = 0. Since hμν =

gμαgνβ δ̂gαβ = −δ̂gμν , then by considering line element
(22), we find that

1

2
h

(∇rξu − ∇uξ r
) + hλu∇λξ

r − hλr∇λξ
u

= −e−2X δ̂U A∇Aξu . (32)

By substituting Eqs. (25) and (26) into Eq. (29), we have

ξ A = Y A − 1

r
∇̄ A f + 1

2r2 C̄
AB∇̄B f + O(r−3), (33)

and by some calculations one can show that

∇Aξu = rYA + 1

2
C̄ABY

B + O(r−1), (34)

ξ r = −1

2
rψ + 1

2
�̄ f + O(r−1). (35)

By substituting Eqs. (34) and (28) into Eq. (32) we find that

r2e2X
[

1

2
h

(∇r ξu − ∇uξ r
) + hλu∇λξ

r − hλr∇λξ
u
]

= 1

2
rYA∇̄B δ̂C̄ AB

+
[

2

3

(
ln r + 1

3

)
YA∇̄B δ̂ D̄AB − 1

3
YA δ̂

(
C̄ A
B ∇̄CC̄

BC
)

123
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+2

3
YA δ̂ N̄ A

]

+1

4
∇̄B δ̂C̄ ABC̄ACY

C + O(r−1). (36)

Also, we have [1]

∇r hur + ∇uh − ∇uhrr − ∇λh
uλ

= 1

4r3 C̄
AB δ̂C̄AB + O(r−3−ε), (37)

∇r huu − ∇r h − ∇uhru + ∇λh
rλ

= 1

r2

[
4δ̂M − 1

2
∇̄A∇̄B δ̂C̄ AB + 1

2
∂uC̄

AB δ̂C̄AB

]

+O(r−2−ε), (38)

∇r huA − ∇uhrA = 1

2r
∇̄B δ̂C̄ B

A + 2

3r2

(
2 ln r − 1

3

)
∇̄B δ̂ D̄B

A

+ 1

r2

[
4

3
δ̂ N̄A + 1

3
δ̂
(
C̄AB∇̄CC̄

BC
)

−1

4
C̄AB∇̄C δ̂C̄ BC

]

+O(r−2−ε). (39)

As we mentioned earlier, we take the codimension two sur-
face � to be a (u, r)-constant surface so Eq. (16) becomes

��̂δQ(ξ) = 1

8πG

∫
2-sphere

d2�
(
r2e2XQru

ADT

)
, (40)

where

d2� = e2ϕ sin θdθdφ. (41)

The symbol ��̂δ emphasizes that the perturbation of conserved
charge may be non-integrable. By substituting Eqs. (36)–(39)
into Eq. (40) we have

��̂δQ(ξ)

= 1

16πG

∫
2-sphere

d2�

{
rYA∇̄B δ̂C̄ AB − 1

2
∇̄A f ∇̄B δ̂C̄ AB

−1

8
ψC̄ AB δ̂C̄AB + 2 ln rYA∇̄B δ̂ D̄AB

+2YA δ̂ N̄ A + 4 f δ̂M − 1

2
f ∇̄A∇̄B δ̂C̄ AB

+1

2
f ∂uC̄

AB δ̂C̄AB

}
. (42)

Using the conformal Killing equation for the Y A, i.e.
∇̄(AYB) = 1

2 γ̄AB∇̄CYC , and integrations by parts, Eq. (42)
can be simplified to

��̂δQ(ξ) = 1

16πG
δ̂

∫
2-sphere

d2�

×
{

4 f M + Y A
[

2N̄A + 1

16
∂A

(
C̄ BCC̄BC

)]}

+ 1

16πG

∫
2-sphere

d2�

[
1

2
f ∂uC̄

AB δ̂C̄AB

]
. (43)

In the right hand side of Eq. (43), the first term is the inte-
grable part of the surface charge and the second term is the
non-integrable part. The conserved charge perturbation (43)
which we found in this way is exactly matched with that of
Ref. [1]. Here we have obtained this result by a different
approach. As has been discussed in [1] these charges behave
as representations of the BMS4 symmetry algebra.

3 Near horizon conserved charges of non-extremal
black holes as Noether charges

Consider near horizon metric of a non-extremal black hole
in the Eddington–Finkelstein coordinates. Let v and ρ are
the advanced time and radial coordinate, respectively. We
suppose that the event horizon (which is a null surface)
located at ρ = 0 and it is a non-expanding surface. Fol-
lowing [2,55,56], the components of the metric close to the
near horizon region behave like

gμν =
⎛
⎝−2κρ + O(ρ2) 1 ρNB + O(ρ2)

1 0 0
ρNA + O(ρ2) 0 �AB + ρλAB + O(ρ2)

⎞
⎠ ,

(44)

where κ , NA, �AB and λAB are functions of (v, x A). As
before, we assume that x A = (θ, φ). The inverse of the metric
(45) is given by

gμν =
⎛
⎝ 0 1 0

1 2κρ + O(ρ2) −ρN B + O(ρ2)

0 −ρN A + O(ρ2) �AB − ρλAB + O(ρ2)

⎞
⎠ ,

(45)

where �AB is the inverse of �AB and, in this section,
A, B, . . . indices are raised with �AB . By some calculations,
one can show that the metric connections corresponding to
the metric (44) are

�λ
ρρ = 0, �v

λρ = 0, �
ρ
Aρ = 1

2
NA + O(ρ),

�A
Bρ = 1

2
λA
B + O(ρ),

�v
AB = −1

2
λAB + O(ρ), �A

BC = �̃A
BC + O(ρ),

�A
ρv = 1

2
N A + O(ρ),

�v
vA = −1

2
NA, �ρ

ρv = −κ + O(ρ),

123
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�A
Bv = 1

2
�AC�CB,v + O(ρ),

�v
vv = κ, �

ρ
AB = −1

2
�AB,v + O(ρ),

�
ρ
Av = O(ρ), �ρ

vv = O(ρ),

�A
vv = O(ρ), (46)

where �̃A
BC is the connection associated to �AB .

The variation generated by the following vector field pre-
serves the fall-off conditions (44):

χv = f,
χρ = −ρ∂v f + 1

2ρ2N A∂A f + O(ρ3),

χ A = Y A + ρ∂ A f + 1
2ρ2λAB∂B f + O(ρ3),

(47)

where f = f (v, x A) and Y A = Y A(x B) [2]. Here, as we
mentioned in the previous section, the metric under transfor-
mation generated by χ transforms as δχgμν = £χgμν . In this
section, we consider the gauge conditions gρρ = gρA = 0
and gρv = 1. Due to these gauge conditions the v component
of χ has been fixed exactly. Also, the fall-off conditions (44)
are considered up to O(ρ2) so to preserve these boundary
conditions under transformations generated by χ , we need
to consider χρ and χ A up to O(ρ3) (see Ref. [2]).

In Sect. 2, we have showed that Jμ is a Noether current
density which is conserved off-shell for any vector field ξ ,
see equations (4) and (5). Then, by virtue of Poincaré lemma,
we have introduced the Noether charge density (6), namely
Kμν(ξ) = √−gK̃μν(ξ) where K̃μν(ξ) is given by Eq. (20).
Now, we can define the near horizon conserved charge by
integrating the Noether charge density over the event horizon

Q(χ) = 1

8πG
lim
ρ→0

∫
2−sphere

(dD−2x)μν

√−g∇[μχν], (48)

where we have replaced ξ by χ . By substituting Eqs. (44)-
(47) into the Eq. (48), we find that

Q( f,Y A) = 1

16πG

∫
Horizon

d2x
√

det�AB

×
[
2∂v f + 2κ f − Y ANA

]
. (49)

In the stationary case, in which metric and f are independent
of the advanced time, Eq. (49) reduced to

Q( f,Y A) = 1

16πG

∫
Horizon

d2x
√

det�AB

×
[
2κ f − Y ANA

]
. (50)

This result is exactly what has been found in Ref. [2],
where the authors have considered the additional restric-
tions demanded by integrability (see Eq. (37) in Ref. [2]).
As we have mentioned in the introduction, the near horizon
geometry of non-extremal black hole solutions of a generally
covariant theory of gravity exhibits an infinite-dimensional
symmetry which is not exactly BMS4. The authors of [2]

have shown that the full symmetry algebra includes two sets
of supertranslations in semi-direct sum with two mutually
commuting copies of Virasoro algebras. So, at the horizon we
have found the so-called BMSH

4 algebra provided in Ref. [2].

4 Conclusion

We have considered a generally covariant theory of gravity,
and found an off-shell conserved current Eq. (5) by virtue
of the Bianchi identities. In order to define an extended
off-shell ADT conserved current, we took variation of off-
shell conserved current Eq. (5) with respect to the dynamical
fields. The generalized off-shell ADT current Eq. (11) is con-
served for the asymptotically field-independent Killing vec-
tor fields and field-independent Killing vector fields admit-
ted by spacetime everywhere. We have extended the gen-
eralized off-shell ADT current by replacing the Lee–Wald
symplectic current by the symplectic current Eq. (10) to
define the extended off-shell ADT current Eq. (12) which
is conserved for asymptotically field-dependent Killing vec-
tor fields and field-dependent Killing vector fields admitted
by spactime everywhere as well as field-independent one.
Using the extended off-shell ADT current Eq. (12) we have
defined extended off-shell ADT charge Eq. (15). Also, we
have defined the conserved charge perturbation Eq. (16) by
integrating of the extended off-shell ADT charge Eq. (15)
over a spacelike codimension two surface. Then we applied
the presented formalism to find the conserved charge per-
turbation of an asymptotically flat spacetime, which is pre-
sented in Ref. [25]. The obtained result Eq. (43) is exactly
matched with the result of Ref. [1]. Then we have consid-
ered the fall-off conditions Eq. (44) near to the horizon of a
non-extremal black hole. The considered fall-off conditions
Eq. (44) are preserved under variation of the metric due to
a diffeomorphism generated by the vector field Eq. (47). We
have found near horizon conserved charges of the considered
fall-off conditions Eq. (44) associated to the vector field Eq.
(47) as the Noether charges.
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