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Abstract The residual symmetry approach, along with a
complex extension for some flavor invariance, is a power-
ful tool to uncover the flavor structure of the 3 × 3 neutrino
Majorana mass matrix Mν toward gaining insights into neu-
trino mixing. We utilize this to propose a complex extension
of the real scaling ansatz for Mν which was introduced some
years ago. Unlike the latter, our proposal allows a nonzero
mass for each of the three light neutrinos as well as a non-
vanishing θ13. The generation of light neutrino masses via
the type-I seesaw mechanism is also demonstrated. A major
result of this scheme is that leptonic Dirac CP-violation must
be maximal while atmospheric neutrino mixing does not need
to be exactly maximal. Moreover, each of the two allowed
Majorana phases, to be probed by the search for nuclear 0νββ

decay, has to be at one of its two CP-conserving values. There
are other interesting consequences such as the allowed occur-
rence of a normal mass ordering which is not favored by the
real scaling ansatz. Our predictions will be tested in ongoing
and future neutrino oscillation experiments at T2K, NOνA
and DUNE.

1 Introduction

The masses and mixing properties of the three light neutrinos
are beginning to get pinned down. Though the precise mass
values are still unknown, upper limits on them have been
pushed down to fractions of electron volts. Furthermore, it
is already known that at least one of the neutrinos must be
heavier than about 50 meV. Additionally, the three angles
which describe their mixing have become reasonably well
known with θ12 ∼ 34◦, θ23 ∼ 45◦ and θ13 ∼ 8◦. Under-
standing this mixing phenomenon (with one small and two
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large angles) has emerged as a major challenge. As ongoing
experiments feed in more and more information on neutrino
masses and mixing, the flavor structure of the 3 × 3 neu-
trino mass matrix Mν is being slowly uncovered. Many of
its features still remain unknown nonetheless and continue
to intrigue theoretical investigators. (Up-to-date overviews
of these issues and their investigations along with original
references may be found in the two review articles quoted
in Refs. [1,2].) Especially tantalizing is the predicted phe-
nomenon of leptonic CP-violation which likely to have impli-
cations for leptogenesis [3–5]. As yet, there is no statisti-
cally reliable definitive experimental result on leptonic CP-
violation. However, hints of a near-maximal CP-violation,
with the phase δ being �3π/2, have emerged from results
reported by the T2K [6], NOνA [7] and Super-Kamiokande
[8] experiments. Similarly, a recent global analysis [9] of all
neutrino data is hinting at a nonmaximal value of sin2 2θ23.
Another yet unresolved question of great interest is that of
neutrino mass ordering: normal vs. inverted. In addition, one
would like to know if the three neutrinos are Majorana or
Dirac particles—to be presumably determined by a future
observation of nuclear 0νββ decay [10].

Let us start with the minimal supposition that there are
only three light and flavored left-chiral neutrinos and that
they are Majorana in character. The neutrino mass term in
the Lagrangian density now reads

− Lν
mass = 1

2
¯νCl (Mν)lmνm + h.c. (1.1)

with νCl = C ν̄l
T and the subscripts l,m spanning the lepton

flavor indices e, μ, τ . Mν is a complex symmetric matrix
(M∗

ν �= Mν = MT
ν ) which can be put into a diagonal form

by a similarity transformation with a unitary matrix U :

UT MνU = Md
ν ≡ diag (m1,m2,m3). (1.2)

Here mi (i = 1, 2, 3) are real and positive masses. We choose
to work in a weak basis [11], in which the charged lepton
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mass matrix is diagonal with real and positive elements, i.e.
Ml = diag. (me,mμ,mτ ) and the unphysical phases of U
are absorbed into the neutrino fields. Now

U = UPMNS

≡

⎛
⎜⎜⎜⎜⎜⎝

c12c13 ei
α
2 s12c13 s13e−i(δ− β

2 )

−s12c23 − c12s23s13eiδ ei
α
2 (c12c23 − s12s13s23eiδ) c13s23ei

β
2

s12s23 − c12s13c23eiδ ei
α
2 (−c12s23 − s12s13c23eiδ) c13c23ei

β
2

⎞
⎟⎟⎟⎟⎟⎠

(1.3)

with ci j ≡ cos θi j , si j ≡ sin θi j and θi j = [0, π/2]. CP-
violation enters through nontrivial values of the Dirac phase
δ and of the Majorana phases α, β with δ, α, β = [0, 2π ]. We
follow the PDG convention [12] on these angles and phases
except that we denote the Majorana phases by α and β. In
principle there could also be a phase matrix with UPMNS if
we work in a weak basis where Ml is diagonal but where the
unphysical phases are not absorbed in the neutrino fields. It
is demonstrated later that even if we include the unphysical
phase matrix, our result remains the same which is obvious,
since physical results are basis independent.

Quite a few different hypotheses have been advanced over
several decades on the flavor structure of Mν , as reviewed in
the first article of Refs. [1,2]. We zero in on an ansatz made
some years ago [13,14] that we call Simple Real Scaling
(SRS). This posits the relations

(MSRS
ν )eμ

(−MSRS
ν )eτ

= (MSRS
ν )μμ

(−MSRS
ν )μτ

= (MSRS
ν )τμ

(−MSRS
ν )ττ

= k, (1.4)

where k is a real and positive dimensionless scaling factor.
It is straightforward to induce from (1.4) the form of the
neutrino Majorana mass matrix:

MSRS
ν =

⎛
⎝

X −Yk Y
−Yk Zk2 −Zk
Y −Zk Z

⎞
⎠ . (1.5)

Here X , Y , Z are complex mass dimensional quantities
that are a priori unknown. We consistently denote complex
(real) quantities by capital (small) letters throughout. We
have chosen appropriate negative signs in (1.4) and (1.5)
to be in conformity with the PDG convention [12] on the
form of UPMNS that emerges from (1.5). It was pointed out
by Mohapatra and Rodejohann [13,14] that—in the basis
where the charged lepton mass matrix is diagonal—(1.5)
can be realized from the larger symmetry group D4 × Z2.
This ansatz of SRS led to a sizable body of research [15–
21]. But it predicts a vanishing s13 (and hence no mea-
surable leptonic Dirac CP-violation) as well as an inverted
neutrino mass hierarchy (i.e. m2,1 > m3) with m3 = 0.
While the latter result is still allowed within current exper-
imental bounds, a null value of s13 has been ruled out at

more than 10σ [22]. Thus SRS, as it stands, has to be aban-
doned.

We want to consider an extended version of (1.5) which
allows a nonvanishing s13. To this end, we employ the
method of complex extension which in turn is based on
the idea of the residual symmetry Z2 × Z2 [23–25] of
Mν . This is explained in Sect. 3 below. As detailed in
the subsequent Sect. 4, the complex extension (CES for
Complex Extended Scaling) leads to the neutrino mass
matrix

MCES
ν =

⎛
⎜⎜⎜⎝

x −y1k + iy2k−1 y1 + iy2

−y1k + iy2k−1 z1 − wk−1(k2 − 1) − i z2 w − i z2(2k)−1(k2 − 1)

y1 + iy2 w − i z2(2k)−1(k2 − 1) z1 + i z2

⎞
⎟⎟⎟⎠.

(1.6)

Here x , y1,2, z1,2, and w are real mass dimensional quan-
tities that are a priori unknown. It will be shown that
MCES

ν of (1.6) can accommodate a nonzero value for each
of m1, m2, m3 and can fit the extant data on 
m2

21 ≡
m2

2 − m2
1, |
m2

32| ≡ |m2
3 − m2

2| as well as on θ12 and
θ13. The relation tan θ23 = k−1 is a consequence so that
the presently allowed range of tan θ23 around unity would
yield the permitted domain of the variation of the scal-
ing parameter k to be close to 1. Furthermore, (1.6) leads
to the result that α, β = 0 or π , i.e. there is no Majo-
rana CP-violation, and the verifiable/falsifiable prediction
that cos δ = 0, i.e. leptonic Dirac CP-violation is maximal.
We have no statement on the sign of sin δ so that δ can be
either π/2 or 3π/2. Furthermore, we show that a normal
mass ordering (with m2,1 < m3) is allowed in addition to
an inverted one (m2,1 > m3) in the parameter space of the
model.

The rest of the paper is organized as follows. In Sect. 2
we elucidate the meaning of the residual Z2 × Z2 discrete
symmetry of Mν in terms of its invariance under two sep-
arate similarity transformations. Simple real scaling and its
real generalization are discussed in Sect. 3. Section 4 con-
tains a presentation of the procedure of complex exten-
sion; this is first illustrated for μτ interchange symmetry
and then applied to the scaling transformation to lead to
the proposed MCES

ν of (1.6) as well as its main conse-
quences, namely tan θ23 = k−1 and cos δ = 0 plus the
allowed occurrence of a normal mass ordering. The ori-
gin of the neutrino mass matrix MCES

ν in our scheme from
the type-I seesaw mechanism is shown in Sect. 5. Detailed
phenomenological implications of MCES

ν are worked out
numerically in Sect. 6 and fitted with the current data yield-
ing various 3σ -allowed regions in the parameter space; the
application of our results to forthcoming experiments on
nuclear 0νββ decay and neutrino oscillations is also dis-
cussed in the same section. Section 7 summarizes our con-
clusions.
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2 Meaning of residual flavor symmetry of Mν

It would be useful to focus on the feature [23–25] of Mν that
it has a residual (sometimes called ‘remnant’ [26]) Z2 × Z2

flavor symmetry and at the same time review the representa-
tion content of the latter. Such an exercise will enable us to
set up the theoretical machinery needed to apply the idea to
SRS. In addition, this will lead us to its real generalization
as well as to its complex extension.

Let G be a generic 3 × 3 unitary matrix representation
of some horizontal symmetry of Mν effected through the
similarity transformation

GT MνG = Mν . (2.1)

Equations (1.2) and (2.1) lead to the conclusion that the uni-
tary matrix U ′ ≡ GU also puts Mν into a diagonal form by
a similarity transformation, i.e.U ′T MνU ′ = Md

ν . It can then
be shown [23–25] that, if m1, m2 and m3 are nondegenerate,
G has eigenvalues ±1 and is diagonalized by U . Thus

GU = Ud, (2.2)

d2 = I. (2.3)

Here d is a 3 × 3 diagonal matrix in flavor space with
dlm = ±δlm . There are eight possible distinct forms for d.
Two of these are trivial – being the unit and the negative
unit matrices. Of the remaining six, three are negatives of
the other three. Finally, we have three Ga’s (a = 1, 2, 3) but
it is sufficient to consider any two of those as independent
on account of the relation Ga = εabcGbGc. The two inde-
pendent Ga (chosen here as G2,3) are representations of a
residual Z2 ×Z2 symmetry in the Majorana mass term of the
neutrino Lagrangian. It follows from (2.2) and (2.3) that

G2 = I, (2.4)

det G = ±1. (2.5)

The eigenvalue equation (2.2) needs to be considered for the
two independent d,s, i.e. d2 and d3, corresponding respec-
tively to G2 and G3. Suppose we choose

d2 = diag (−1, 1,−1), (2.6)

d3 = diag (−1,−1, 1), (2.7)

for det G =1. (The choice for the case det G = −1 is a
trivial extension with −d2 and −d3.) Now

G2,3 = Ud2,3U
† (2.8)

can be obtained by use of the explicit form of U as given
in (1.3). For instance, let us consider the situation for μτ

interchange symmetry [27–29] which implies θ23 = π/4
and θ13 = 0. Now we obtain

G2 =

⎛
⎜⎜⎜⎝

− cos 2θ12 2− 1
2 sin 2θ12 −2− 1

2 sin 2θ12

2− 1
2 sin 2θ12 − 1

2 (1 − cos 2θ12) − 1
2 (1 + cos 2θ12)

−2− 1
2 sin 2θ12 − 1

2 (1 + cos 2θ12) − 1
2 (1 − cos 2θ12)

⎞
⎟⎟⎟⎠ ,

Gμτ
3 =

⎛
⎝

−1 0 0
0 0 1
0 1 0

⎞
⎠ . (2.9)

The above G3 explicitly implements μτ interchange in the
neutrino flavor basis and hence has been labeled with the
superscript μτ . Thus one can now identify one of the two
residual Z,

2s as Zμτ
2 . The full residual symmetry in this case

is Z2 ×Z
μτ
2 . Our aim would be to perform a similar task with

scaling symmetry in obtaining aZscaling
2 . It may be mentioned

that some authors [30] have generalized Gμτ
3 to

GGμτ
3 =

⎛
⎝

−1 0 0
0 cos 2θ23 sin 2θ23

0 sin 2θ23 cos 2θ23

⎞
⎠ , (2.10)

which can accommodate an arbitrary θ23 but still has θ13 = 0.
A somewhat different use of the residual symmetry approach
with another pair of Z2 was made in Refs. [31–33].

A comment on the use of the residual Z2 × Z2 symmetry
would be in order. One could start from any arbitrary ansatz
on UPMNS , reconstruct the residual Z2 × Z2 symmetry and
work out the consequences. However, the Z2 ×Z2 symmetry
emerging from an arbitrary ansatz may not follow from a
larger symmetry group or have some deeper flavor meaning.
The SRS ansatz has been shown to follow [13,14] from a
larger flavor symmetry group D4 × Z2.

3 Simple real scaling and its real generalization

SRS and the corresponding MSRS
ν , cf. (1.5), were already

introduced in Sect. 1. It is evident from (1.5) that the latter
has a vanishing determinant, i.e. one null eigenvalue. The
corresponding eigenvector, given that θ12 and θ23 are known
to be hugely nonzero, can be identified only with the third
column of USRS and written as

CSRS
3 =

⎛
⎜⎝

0

(1 + k2)− 1
2 ei

β
2

k(1 + k2)− 1
2 ei

β
2

⎞
⎟⎠ . (3.1)

Two immediate consequences are that m3 = 0, i.e. the neu-
trino mass ordering is inverted (m2,1 > m3), and θ13 = 0.
The fullUSRS can be written with an undetermined angle θ12

and the corresponding c12, s12 as
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USRS =
⎛
⎜⎝

c12 s12ei
α
2 0

−k(1 + k2)− 1
2 s12 k(1 + k2)− 1

2 c12ei
α
2 (1 + k2)− 1

2 ei
β
2

(1 + k2)− 1
2 s12 −(1 + k2)− 1

2 c12ei
α
2 k(1 + k2)− 1

2 ei
β
2

⎞
⎟⎠ .

(3.2)

A comparison between (1.3) and (3.2) immediately yields

tan θ23 = k−1. (3.3)

As we shall see, (3.3) is going to survive both the real gener-
alization and the complex CP-transformed extension of SRS.

An expression for Gscaling
3 as a representation for Zscaling

2
can now be derived by use of (2.8). On utilizing USRS from
(3.2) and d3 from (2.7), we have

Gscaling
3 =

⎛
⎝

−1 0 0
0 (1 − k2)(1 + k2)−1 2k(1 + k2)−1

0 2k(1 + k2)−1 −(1 − k2)(1 + k2)−1

⎞
⎠

= (Gscaling
3 )T . (3.4)

The Z
scaling
2 symmetry of MSRS

ν ensures that
(
Gscaling

3

)T
MSRS

ν Gscaling
3 = MSRS

ν . (3.5)

It may be noted that (3.5) does not lead uniquely to the form
(1.5). Further, while the form of Gscaling

3 follows uniquely
from USRS of (3.2) via the relation been G3 and d3, the
reverse is not the case. Indeed, though the third column
of U , reconstructed from Gscaling

3 , must be CSRS
3 of (3.1)

since (d3)33 = 1, its first two columns could be an arbitrary
orthogonal pair. That occurs because of the degeneracy of
the (1,1) and (2,2) elements in d3. The full residual symme-
try of MSRS

ν is Zk
2 × Z

scaling
2 , where a representation for Zk

2
is Gk

2 = USRSd2USRS†. Explicitly,

Gk
2 =

⎛
⎜⎝

− cos 2θ12 k(1 + k2)−1 sin 2θ12 −(1 + k2)−1 sin 2θ12

k(1 + k2)−1 sin 2θ12 −k2(1 + k2)−1(1 − cos 2θ12) −k(1 + k2)−1(1 + cos 2θ12)

−(1 + k2)−1 sin 2θ12 −k(1 + k2)−1(1 + cos 2θ12) −(1 + k2)−1(k2 − cos 2θ12)

⎞
⎟⎠ , (3.6)

which obeys

(Gk
2)

T MSRS
ν Gk

2 = MSRS
ν . (3.7)

A good check is that, for k = 1, the scaling procedure
just reduces to μτ interchange with the additional constraint
Mν

μμ = Mν
μτ . But the point of real interest is that MSRS

ν of
(1.5) is not the most general form obeying (3.5). The latter
may be worked out to be

MGRS
ν =

⎛
⎝

x −Yk Y
−Yk Z − Wk−1(k2 − 1) W
Y W Z

⎞
⎠ , (3.8)

where W is another a priori unknown mass dimensional com-
plex quantity. We call this form of Mν the Generalized Real

Scaling ansatz and denote it by the superscript GRS. Evi-
dently, the specific choice W = −Zk reduces MGRS

ν to
MSRS

ν . The neutrino mass matrix MGRS
ν of (3.8) has inter-

esting properties. For one thing, it has a determinant which
does not appear to vanish. Therefore, we take all neutrino
masses to be nonzero and can accommodate a nonzero m3

and in principle a normal mass ordering with m2,1 < m3.
However, being invariant under a similarity transformation
by Gscaling

3 of (3.4), the third column of the corresponding
UGRS is constrained to be CSRS

3 of (3.1). Consequently, one
obtains a vanishing θ13 which is now experimentally known
to be nonzero. Thus MGRS

ν of (3.8) is unacceptable. A more
extended version of scaling in the neutrino mass matrix is
needed to describe nature. This is what will be provided in
the next section.

4 Complex extension of scaling ansatz

It would be useful to first recall how the complex extension
of μτ interchange symmetry was originally made [27–29].
The μτ interchange invariant Mμτ

ν obeys the condition

(Gμτ
3 )T Mμτ

ν Gμτ
3 = Mμτ

ν (4.1)

with Gμτ
3 given by (2.9). Equation (4.1) forces Mμτ

ν to have
the form

Mμτ
ν =

⎛
⎝
A B B
B C D
B D C

⎞
⎠ , (4.2)

with A, B, C , D as mass dimensional complex quantities.
It is well known that (4.2) leads to θ13 = 0 and cannot be
accepted as it stands.

Grimus and Lavoura made an alternative proposal, namely
the complex-extended invariance relation

(Gμτ
3 )T MνG

μτ
3 = M∗

ν . (4.3)

This was justified [27–29] by means of a non-standard CP-
transformation [34–40] on the νe field which is generally
represented as1

νLα → iGαβγ 0νCLβ (4.4)

1 It is a theoretically interesting question whether such an extended CP-
invariance can arise from an automorphism of a larger flavor symmetry
like in the top-down approach of Ref. [42]. But we do not explore this
possibility here.
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withGαβ as the matrix element of the flavor symmetry. Equa-
tion (4.4) along with (1.1) leads to (4.3) if Gαβ is consid-
ered as Gμτ

3 . Suffice it to say that (4.3) leads to a complex-
extended μτ (CEμτ ) symmetric form of Mν :

MCEμτ
ν =

⎛
⎝

a B B∗
B C d
B∗ d C∗

⎞
⎠ , (4.5)

where a, d are real and B, C are complex mass dimensional
quantities in general. Once again, since the determinant does
not vanish, we take all neutrino masses to be nonzero. The
observable consequences of (4.5) are: θ23 = π/4, cos δ = 0,
α, β = 0 or π while θ13 is in general nonzero. A further
extension of this approach has recently been made [26,41]
allowing nonmaximal values for θ23 and Dirac CP-violation.

We have derived (3.3), i.e. tan θ23 = k−1, so that atmo-
spheric neutrino mixing is not forced to be strictly maximal.
On the other hand, the observed fact that tan θ23 is not far
from unity implies that so is k. Our proposed relation, in
place of (4.3), is
(
Gscaling

3

)T
MνG

scaling
3 = M∗

ν , (4.6)

with Gscaling
3 as given in (3.4) and, as stated earlier, in the

basis where the charged lepton mass matrix is diagonal and
positive. The general form of MCES

ν , as given in (1.6), follows
in consequence. It is important to note that MCES

ν of (1.6) has
a structure that is quite different from that of either MSRS

ν of
(1.5) or MGRS

ν of (3.8). If all imaginary parts in MCES
ν are

set equal to zero, a form similar to that of MGRS
ν is recovered

but with all real entries, while those in MGRS
ν of (3.8) are in

general complex. Therefore, no special choice in MCES
ν can

yield MSRS
ν or MGRS

ν in their respective generalities.
Grimus and Lavoura [27–29] had proved a corollary of

complex-extended invariance. This can be stated with respect
to a relation such as (4.3) or (4.6) as

Gscaling
3 U∗ = Ud̃ (4.7)

with d̃ as a diagonal matrix. Once again, d̃lm = ± δlm if
the neutrino masses m1, m2, m3 are all nonzero and nonde-
generate. The key difference between (4.7) and (2.2) is the
complex conjugation of U in the LHS. Let us take

d̃ = diag (d̃1, d̃2, d̃3), (4.8)

where each d̃i (i = 1, 2, 3) can be +1 or −1. With G3 =
Gscaling

3 , (4.7) can be written explicitly:

⎛
⎜⎜⎜⎝

−(UCES
e1 )∗ −(UCES

e2 )∗ −(UCES
e3 )∗

1−k2

1+k2 (UCES
μ1 )∗ + 2k

1+k2 (UCES
τ1 )∗ 1−k2

1+k2 (UCES
μ2 )∗ + 2k

1+k2 (UCES
τ2 )∗ 1−k2

1+k2 (UCES
μ3 )∗ + 2k

1+k2 (UCES
τ3 )∗

2k
1+k2 (UCES

μ1 )∗ − 1−k2

1+k2 (UCES
τ1 )∗ 2k

1+k2 (UCES
μ2 )∗ − 1−k2

1+k2 (UCES
τ2 )∗ 2k

1+k2 (UCES
μ3 )∗ − 1−k2

1+k2 (UCES
τ3 )∗

⎞
⎟⎟⎟⎠

=
⎛
⎜⎝
d̃1UCES

e1 d̃2UCES
e2 d̃3UCES

e3

d̃1UCES
μ1 d̃2UCES

μ2 d̃3UCES
μ3

d̃1UCES
τ1 d̃2UCES

τ2 d̃3UCES
τ3

⎞
⎟⎠ . (4.9)

It is evident from (4.9) that the choice d̃1 = 1 leads to an
imaginary Ue1 in contradiction with the real (1,1) element of
(1.3); this choice is hence excluded. Note that the choice of
UPMNS in (1.3) is simply due to the choice of the weak basis
where the neutrino fields are phase rotated. However, in the
appendix, we demonstrate that the physical results derived
here are basis independent, i.e., the inclusion of an unphys-
ical phase matrix does not impair our predictions. There are
now four permitted cases a, b, c, d with the following four
combinations allowed for d̃:

d̃a ≡ diag (−1, 1, 1), (4.10)

d̃b ≡ diag (−1, 1,−1), (4.11)

d̃c ≡ diag (−1,−1, 1), (4.12)

d̃d ≡ diag (−1,−1,−1). (4.13)

The above can be written compactly as

d̃a,b,c,d = diag(−1, η, ξ) (4.14)

ηa,b = 1, ηc,d = −1, (4.15)

ξa,c = 1, ξb,d = −1. (4.16)

Comparing with (1.3), we obtain

e−iα = −η, (4.17)

ei(2δ−β) = −ξ. (4.18)

Thus we are led to the result that α = π, 0 for η = +1,−1
respectively; in a similar manner 2δ − β = π, 0 for ξ =
+1,−1, respectively. We can derive from (4.9) altogether six
independent constraint conditions as linear relations among
various elements of UCES and (UCES)∗. These are listed in
Table 1.

More information is obtained by use of the explicit expres-
sions of UCES

lα from (1.3).
Consider the real and imaginary parts of the constraint

condition on UCES
τ3 given in the bottom line in Table 1. Since

c13 is known to be nonzero, it can be canceled from both
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Table 1 Constraint equations
on elements of the mixing
matrix

Element of UCES Constraint condition

μ1 2kUCES
μ1 = (1 − k2)UCES

τ1 − (1 + k2)(UCES
τ1 )∗

τ1 2kUCES
τ1 = −(1 − k2)UCES

μ1 − (1 + k2)(UCES
μ1 )∗

μ2 2kUCES
μ2 = (1 − k2)UCES

τ2 + η(1 + k2)(UCES
τ2 )∗

τ2 2kUCES
τ2 = −(1 − k2)UCES

μ2 + η(1 + k2)(UCES
μ2 )∗

μ3 2kUCES
μ3 = (1 − k2)UCES

τ3 + ξ(1 + k2)(UCES
τ3 )∗

τ3 2kUCES
τ3 = −(1 − k2)UCES

μ3 + η(1 + k2)(UCES
μ3 )∗

sides. Now, from the respective real and imaginary parts, we
have the relations

2kc23 cos
β

2
= [k2(1 + ξ) − 1 + ξ ]s23cos

β

2
, (4.19)

2kc23 sin
β

2
= [k2(1 − ξ) − 1 − ξ ]s23 sin

β

2
. (4.20)

Since ξ2 = 1, the product of the above two equations leads
to the result

sin β = 0, (4.21)

or β = 0 or π . There are now four options:

β = 0, ξ = 1 ⇒ tan θ23 = k−1, (4.22)

β = 0, ξ = −1 ⇒ tan θ23 = −k, (4.23)

β = π, ξ = 1 ⇒ tan θ23 = −k, (4.24)

β = π, ξ = −1 ⇒ tan θ23 = k−1. (4.25)

The option β = 0, ξ = 1 for cases a and c, cf. (4.10) and
(4.12), as well as β = π , ξ = 1 for cases b and d, cf. (4.11)
and (4.13), yield the scaling relation (3.3) while the other two
options require tan θ23 to equal −k. As will be shown below,
the latter possibility is inconsistent with other constraint con-
ditions. Our final result on the Majorana phases is that both
α and β are restricted to be 0 or π . A combination of infor-
mation from 0νββ decay, the cosmological upper bound on
�imi and the effective mass �i |Uei |2mi measured in single
β-decay is expected to experimentally constrain [43] these
phases.

To proceed, consider the constraint condition on UCES
τ2

given in the fourth line from the top of Table 1. The corre-
sponding real and imaginary parts, respectively, yield

2k
[
c12s23 cos

α

2
+ s12s13c23 cos

(
δ + α

2

)]

= [1 − k2 − η(1 + k2)]
[
c12c23 cos

α

2
− s12s13s23 cos

(
δ + α

2

)]
,

(4.26)

2k
[
c12s23 sin

α

2
+ s12s13c23 sin

(
δ + α

2

)]

= [1 − k2 − η(1 + k2)]
[
c12c23 sin

α

2
− s12s13s23 sin

(
δ + α

2

)]
.

(4.27)

Let us now take the two cases at hand.

Case 1: η = 1, α = π

On utilizing that each of s12, s13 and c23 is nonzero, one
obtains from (4.26) and (4.27) the respective relations

(tan θ23 − k−1) sin δ = 0, (4.28)

c12(tan θ23 − k−1) + s12s13(1 + k−1 tan θ23) cos δ = 0.

(4.29)

Case 2: η = −1, α = 0
It is easy to see that here one obtains the same pair of equa-
tions, namely (4.28) and (4.29), but in a reverse sequence.

Equation (4.29) has important implications. If tan θ23 is
put equal to −k, instead of k−1, one is led to c12 = 0 in
contradiction with experiment [9]. Therefore, the two options
β = 0, ξ = 1 and β = π , ξ = −1 need to be retained with
the other two options β = 0, ξ = −1 and β = π , ξ = 1
discarded. Now that tan θ23 does equal k−1, i.e. (3.3) holds,
from (4.29) we have

cos δ = 0, (4.30)

i.e. leptonic Dirac CP-violation is maximal with δ being
either π/2 or 3π/2. However, we are unable to distinguish
between these two options since we have no statement on the
sign of sin δ.

We have checked that (4.30) consistently follows from the
remaining four constraint equations of Table 1 and that no
new condition emerges. Finally, we are left with four options,
as shown in Table 2. Each of these implies (4.30), i.e. the
maximality of leptonic Dirac CP-violation which enters via
UPMNS.

Table 2 Predictions of the CP phases

d̃ α β cos δ

d̃a = diag (−1,+1,+1) π 0 0

d̃b = diag (−1,+1,−1) π π 0

d̃c = diag (−1,−1,+1) 0 0 0

d̃d = diag (−1,−1,−1) 0 π 0
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Table 3 Parameters of MCES
ν in terms of the parameters of mD and

MR

x = −( a2

M1
+ e2

M2
+ f 2

M3
)

y1 = 1
k ( ab1

M1
+ ec1

M2
+ f d1

M3
)

y2 = k( ab2
M1

+ ec2
M2

+ f d2
M3

)

z1 = − 1
k2 (

b2
1

M1
+ c2

1
M2

+ d2
1

M3
) + k2(

b2
2

M1
+ c2

2
M2

+ d2
2

M3
)

z2 = 2b1b2
M1

+ 2c1c2
M2

+ 2d1d2
M3

w = 1
k (

b2
1

M1
+ c2

1
M2

+ d2
1

M3
) + k(

b2
2

M1
+ c2

2
M2

+ d2
2

M3
)

5 Origin of neutrino masses from type-I seesaw

In this section we discuss the realization of the complex-
extended scaling neutrino mass matrix MCES

ν through the
type-I seesaw mechanism via three heavy right-handed neu-
trino fields NlR (l = 1, 2, 3) with a Majorana mass matrix
MR . We choose a weak basis in which the charged lepton
and the right-handed neutrino mass matrices are diagonal
and nondegenarate. With mD as the Dirac mass matrix and
MR = diag (M1, M2, M3), the neutrino mass terms read

− Lν,N
mass = N̄l R(mD)lαLα + 1

2
N̄l R(MR)lδlm N

C
mR + h.c.

(5.1)

The effective light neutrino mass matrix is given by the stan-
dard seesaw relation,

Mν = −mT
DM

−1
R mD. (5.2)

We represent the G, introduced earlier for left-handed fields,
generically by GL and define a corresponding GR for NR .
The residual CP-transformations on the neutrino fields are
defined by [41]

νLα → i(GL)αβγ 0νCLβ, NRα → i(GR)αβγ 0NC
Rβ. (5.3)

The invariance of the mass terms of (5.1) under the CP-
transformations defined in (5.3) leads to the relations

G†
RmDGL = m∗

D,G†
RMRG

∗
R = M∗

R . (5.4)

Equations (5.2) and (5.4) together imply GT
L MνGL = M∗

ν .

Now, specifying GL by Gscaling
3 , we obtain the key equation

(
Gscaling

3

)T
MνG

scaling
3 = M∗

ν . (5.5)

Since we choose the right-handed neutrino mass matrix MR

to be diagonal, the symmetry matrix GR is diagonal with
entries ±1, i.e.

GR = diag (±1,±1,±1). (5.6)

Hence there are eight different structures ofGR . Correspond-
ingly, from the first relation of (5.4), there are eight different
structures of mD . Unlike the complex transformations of mD

and MR in (5.4), we now have real symmetry transformations
G†

RmDGL = mD and G†
RMRG∗

R = MR . It can be shown by
tedious algebra that, except for GR = diag (−1,−1,−1),
all other structures of GR are incompatible with scaling
symmetry, i.e. cannot generate MGRS

ν . Thus we take GR =
diag (−1,−1,−1) as the only viable residual symmetry on
the right-handed neutrino field. Now, G†

RmDGL = m∗
D can

be written as

mDGL = −m∗
D, (5.7)

which is basically a complex extension of the Joshipura–
Rodejohann result mDGL = −mD [15–21]. In our context,
(5.7) can be rewritten as

mDG
scaling
3 = −m∗

D. (5.8)

The most general mD that satisfies (5.8) is

mCES
D =

⎛
⎝
a b1 + ib2 −b1/k + ib2k
e c1 + ic2 −c1/k + ic2k
f d1 + id2 −d1/k + id2k

⎞
⎠ , (5.9)

where a, b1,2, c1,2, d1,2, e, and f are arbitrary real
mass dimensional quantities. Using (5.2), MCES

ν of (1.6)
is obtained with the parameters as given in Table 3. Some
detailed interesting consequences of mCES

D , specifically with
respect to leptogenesis, will be studied elsewhere.

We notice that, for both types of ordering, the neutrino
masses become hierarchical, i.e. m2,1 � m3 for normal
ordering and m2,1 � m3 for inverted ordering, for low val-
ues of the lightest neutrino mass. However, they tend toward
quasi-degeneracy m1 ∼ m2 ∼ m3 as the latter increases to
its permitted maximum value ∼0.07 eV. This is clear from
the mass bands shown in Fig. 1.

6 Phenomenological constraints and consequences

We need to numerically pin down the mass dimensional six
real parameters x , y1, y2, z1, z2 and w of MCES

ν by inputting
the 3σ ranges of quantities measured in neutrino oscillation
experiments. To that end, we use the values from a recent
global analysis [9]. In addition, we use the cosmological
upper limit [44] of 0.23 eV on the sum m1 +m2 +m3 of the
masses of the neutrinos.

These input numbers are shown in Table 4. In terms of
output, we obtain the 3σ allowed intervals of the above men-
tioned six real parameters and from those the 3σ allowed
ranges of the individual neutrino masses m1, m2, m3. Both
types of neutrino mass ordering, normal as well as inverted,
are found to be allowed. All these values are listed in Tables
5 and 6 respectively for the two separate categories of mass
ordering.
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Fig. 1 Plots of the mass band
for normal (left) and inverted
(right) mass ordering. We have
choosen to plot the lightest
eigenvalue also in the ordinate
to bring three mass bands
together. Color code: green
(m3), red (m2) and blue (m1)

Table 4 Input values used
θ12 degrees θ23 degrees θ13 degrees 
m2

2110−5eV2 |
m2
31|10−3(eV2) �imi (eV)

31.29 − 35.91 38.3 − 53.3 7.87 − 9.11 7.02 − 8.09 2.32 − 2.59 < 0.23

Table 5 Output values obtained for normal mass ordering with the best fit m’s given within brackets

x (eV) y1 (eV) y2 (eV) z1 (eV) z2 (eV) w (eV)

−0.20 − +0.21 −0.12 − +0.11 −0.05 − +0.05 −0.17 − +0.17 −0.18 − +0.17 −0.16 − +0.15

m1 (eV) m2 (eV) m3 (eV)

9.2 × 10−5 − 0.071 (0.052) 0.01 − 0.077 (0.054) 0.051 − 0.082 (0.072)

Table 6 Output values obtained for inverted mass ordering with the best fit m’s given within brackets

x (eV) y1 (eV) y2 (eV) z1 (eV) z2 (eV) w (eV)

−0.44 − +0.46 −0.16 − +0.16 −0.14 − +0.14 −0.01 − +0.01 −0.01 − +0.01 −0.05 − +0.06

m1 (eV) m2 (eV) m3 (eV)

0.049 − 0.079 (0.068) 0.051 − 0.085 (0.069) 8.2 × 10−5 − 0.068 (0.048)

Neutrinoless double beta decay 0νββ

This is the lepton number violating process

(A, Z) −→ (A, Z + 2) + 2e− (6.1)

with no final state neutrinos. An observation of the decay
will confirm the Majorana nature of neutrinos which is yet
to be established. The corresponding half-life [45,46] is
given by

1

T 0ν
1 /2

= G0ν |M0ν |2|Mν
ee|2m−2

e . (6.2)

where G0ν is a phase space factor, M0ν is the nuclear matrix
element (NME), me is the electron mass and finally |Mν

ee|
is the (1,1) element of Mν which can also be written as
�imiU 2

ei . Following the PDG parametrization of the mix-
ing matrix UPMNS, one can write Mν

ee as

Mν
ee = c2

12c
2
13m1 + s2

12c
2
13m2e

iα + s2
13m3e

i(β−2δ). (6.3)

There are several ongoing experiments which have put sig-
nificant upper limits on |Mν

ee|. Some recent experiments

like KamLAND-Zen [47] and EXO [48] have improved this
upper bound to 0.35 eV. However, the most significant upper
bound on |Mν

ee| to date is put by GERDA phase-I data [49]
to be 0.22 eV; this is likely to be lowered by GERDA phase
-II data [50] to around 0.098 eV.

In our model there are four sets of values of the CP-
violating phases α and β for each neutrino mass ordering.
Since |Mν

ee| is sensitive to the CP phases, we get four dif-
ferent plots for each mass ordering as shown in Fig. 2. The
same plots are valid for both types of mass ordering provided
the horizontal axis is taken to represent the lightest neutrino
mass m1 or m3—depending on the ordering.

As mentioned earlier, we have used the upper bound of
0.23 eV on �imi . These plots lead to upper bounds on the
lightest neutrino mass for both cases of mass ordering. For
hierarchical neutrinos, |Mν

ee| is found to lead to an upper limit
which is below the reach of the GERDA phase-II data. The
latter appears close to being obtainable only for a quaside-
generate neutrino mass spectrum (mlightest > 0.07 eV). How-
ever, the value predicted in our model could be probed by a
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Fig. 2 Plot of |Mν
ee| vs. the lightest neutrino mass: the top two figures represent Case A (left) and Case B (right) while the figures in the lower

panel represent Case C (left) and Case D (right)

combination of GERDA and MAJORANA experiments [51].
In order to explain the nature of the plots analytically, let us
first consider the inverted mass ordering: In this case, with the
approximations m3 � 0 and m1 � m2, the probed effective
mass |Mν

ee| simplifies to

|Mν
ee| =

√
|
m32|2c2

13

[{
1 − s2

12(1 − cos α)
}2

+s4
12 sin2 α

]1/2
. (6.4)

Clearly, |Mν
ee| is insensitive to the phases β and δ. On the

other hand, for α = 0 and π (6.4) simplifies to

|Mν
ee| =

√
|
m32|2c2

13 (6.5)

and

|Mν
ee| =

√
|
m32|2c2

13

[{
1 − 2s2

12

}2
]

, (6.6)

respectively. Hence, for α = π (cases A, B ), |Mν
ee| is sup-

pressed as compared to the case α = 0 (C, D). For a normal
mass ordering, in addition to the s13 suppression, there is
a significant interference between the first two terms, thus
lowering the value of |Mν

ee|. However, if α = 0, the first two
terms interfere constructively and then we obtain a lower

bound (∼10−3 eV for Case C and ∼5 × 10−3 eV for Case
D) despite this being a case of normal mass ordering. This is
one of the remarkable results of the present analysis. On the
other hand, for α = π , the first two terms interfere destruc-
tively, for the case of a normal mass ordering; consequently,
a sizable cancelation between them brings down the value of
|Mν

ee| and results in the kinks shown by the lower curves in
the top two figures.

CP asymmetry in neutrino oscillations
Here we discuss the determination of our predicted maximal
Dirac CP-violating phase δ by means of neutrino oscillation
studies. This δ will show up in the asymmetry parameter Aαβ ,
defined as

Aαβ = P(να → νβ) − P(ν̄α → ν̄β), (6.7)

where α, β = (e, μ, τ) are flavor indices and the P are tran-
sition probabilities. Let us consider first νμ → νe oscillation
in vacuum. The transition probability can now be written
(with the superscript zero indicating oscillations in vacuum)
as

P0
μe ≡ P0(νμ → νe) = P0

atm + P0
sol

+ 2
√
P0

atm

√
P0

sol cos(
32 + δ), (6.8)
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Fig. 3 Plots of the transition probability (Pμe) and CP-asymmetry
parameter (Aμe) with baseline length L for δ = π/2 (left panel) and
δ = 3π/2 (right panel) with E = 1 GeV. Cases for normal (inverted)

mass ordering have been labeled on top by N (I ). The bands are caused
by the atmospheric mixing angle θ23 being allowed to vary within the
3σ region while the other parameters are kept at their best fit values
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Fig. 4 Plots of the CP-asymmetry parameter Aμe against beam energy
E for δ = π/2 (left panel) and δ = 3π/2 (right panel) for various exper-
iments as shown. Cases for normal (inverted) mass ordering have been

labeled on top by N (I ). The atmospheric mixing angle θ23 is allowed to
vary within the 3σ region, leading to the bands, while the other param-
eters are kept at their best fit values
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Fig. 4 continued

where 
i j = 
m2
i j L

4E is the kinematic phase factor (L being
the baseline length and E being the beam energy) and
P0

atm, P0
sol are, respectively, defined as

√
P0

atm = sin θ23 sin 2θ13 sin 
31, (6.9)
√
P0

sol = cos θ23 cos θ13 sin 2θ12 sin 
21. (6.10)

For an antineutrino beam, δ is replaced by −δ and thus we
have

P̄0
μe ≡ P0(ν̄μ → ν̄e) = P0

atm + P0
sol

+ 2
√
P0

atm

√
P0

sol cos(
32 − δ). (6.11)

Now the CP-asymmetry parameter A0
μe in vacuum [52] can

be calculated as

A0
μe = P0

μe − P̄0
μe

P0
μe + P̄0

μe

=
2
√
P0

atm

√
P0

sol sin 
32 sin δ

P0
atm + P0

sol + 2
√
P0

atm

√
P0

sol cos 
32 cos δ

. (6.12)

Table 7 Predictions of the CP phases for d̃1 = 1

d̃ α β cos δ

d̃e = diag(−1,+1,+1) 0 0 0

d̃ f = diag(−1,+1,−1) 0 π 0

d̃g = diag(−1,−1,+1) π 0 0

d̃h = diag(−1,−1,−1) π π 0

With our prediction cos δ = 0, (6.12) can be rewritten as

A0
μe = ±

2
√
P0

atm

√
P0

sol sin 
32

P0
atm + P0

sol

, (6.13)

with a + (−) sign for δ = π/2 (3π/2).
In order to realistically describe neutrino oscillations in

long baseline experiments, matter effects in neutrino prop-
agation through the earth need to be taken into account. In
that case P0

atm and P0
sol will be modified to

√
Patm = sin θ23 sin 2θ13

sin(
31 − aL)


31 − aL

31, (6.14)

√
Psol = cos θ23 cos θ13 sin 2θ12

sin aL

aL
sin 
21, (6.15)
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respectively. Here a = GFNe/
√

2 with GF as the Fermi
constant and Ne as the number density of electrons in the
medium of propagation. An approximate value of a for the
earth is 3500 km−1 [52]. Now the same formulas for Pμe,
P̄μe and Aμe will hold as in (6.8), (6.11) and (6.12) but with
P0

atm and P0
sol replaced by Patm and Psol, respectively.

In Fig. 3 we plot Pμe and Aμe against the baseline length L
in the two cases δ = π/2 and δ = 3π/2 for both normal and
inverted mass ordering. The lengths corresponding to T2K,
NOνA and DUNE are indicated in these figures. In Fig. 4
the CP asymmetry Aμe is plotted against the beam energy E
again for the cases δ = π/2 and δ = 3π/2 separately for the
three above cited experiments; both normal and inverted mass
ordering cases are included. As expected, Aμe has opposite
signs for δ = π/2 and δ = 3π/2. It is further interesting that
the extrema of the CP-asymmetry parameter exhibit opposite
behavior as a function of E for δ = π/2 and δ = 3π/2.

7 Summary

In this paper we have proposed a complex extension of the
scaling ansatz for the neutrino Majorana mass matrix Mν .
To that end, we have made use of the residual Z2 × Z

scaling
2

symmetry of Mν by obtaining the representation Gscaling
3

from the original simple scaling ansatz on Mν . The resul-
tant form of the neutrino Majorana matrix is given by MCES

ν

of (1.6). We have shown that it admits nonzero values
of all the physical neutrino masses as well as both nor-
mal and inverted types of mass ordering. We have shown
how a nonvanishing θ13 emerges from MCES

ν . The addi-
tional result k−1 = tan θ23, k being the real positive scal-
ing factor, has also been derived. Dirac CP-violation has
been shown to be maximal with cos δ = 0, while Majo-
rana CP-violation has been demonstrated to be absent with
α, β = 0 or π . The type-I seesaw mechanism which
yields nonzero neutrino masses within our scheme has
also been constructed. Phenomenological implications for
both 0νββ decay and neutrino/antineutrino oscillation stud-
ies at long baselines have been worked out and projec-
tions made that will be testable in forthcoming experi-
ments.
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Appendix: Derivation of the results on CP-violation even
with the inclusion of the unphysical matrix

As mentioned in Sect. 1, our calculations have been done in a
weak basis where the unphysical phases are absorbed in the
neutrino fields. However, one can also reproduce our results
including this unphysical phase matrix in the calculation. In
that case the UPMNS of (1.3) can be written as

UPMNS = PφU, (A.1)

with Pφ = diag. (eiφ, 1, 1). Note that there is only a single
unphysical phase in the phase matrix Pφ , since the symmetry
under consideration dictates MCES

ν in (1.6) to contain seven
real parameters which correspond to three nonzero masses,
three mixing angles and an unphysical phase. Now for d̃1 =
−1, Eq. (4.9) and the (1,1) element of UPMNS in (A.1) give

e−2iφ = 1, (A.2)

therefore, φ = 0 or π . From the (1,2) element we get

e−i(α+2φ) = −η. (A.3)

Thus for both values of φ, (A.3) leads to (4.17); therefore,
for each d̃ matrix with d̃1 = −1, the prediction for α, i.e.,
α = 0 or π remain the same. Now, following the same
way as in Sect. 4, the results presented in Table 2 can be
reproduced.

Unlike the previous case, now d̃1 = 1 cannot be ruled
out. In this case, from the (1,1) element of UPMNS in (A.1),
we get φ = π/2 or 3π/2. Now, for both values of φ, Eq.
(A.3) with η = 1 leads to α = 0, and with η = −1 leads
to α = π . Since the predictions for α remain the same, so
do the other parameters which are solved exactly in the same
way as in Sect. 4, by use of both real and imaginary parts
of the relevant complex equations. We put the more general
statements regarding the CP phases for each d̃ with d̃1 = 1
in Table 7. In comparison with Table 2, the values of α have
changed relative to those of β, but the final result that both α

and β are either 0 or π remains the same, though the value
of d̃1 has changed.
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