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Abstract We consider the production of a pseudo-scalar
particle A at the LHC, and present accurate theoretical pre-
dictions for its inclusive cross section in gluon fusion. The
prediction is based on combining fixed-order perturbation
theory and all-order threshold resummation. At fixed order
we include the exact next-to-next-to-leading order (NNLO)
plus an approximate next-to-next-to-next-to-leading order
(N3LOA) which is based on the recent computation at this
order for the scalar case. We then add threshold resumma-
tion at next-to-next-to-next-to leading logarithmic accuracy
(N3LL′). Various forms of threshold resummation are consid-
ered, differing by the treatment of subleading terms, allow-
ing a robust estimate of the theoretical uncertainties due to
missing higher orders. With particular attention to pseudo-
scalar masses of 200 and 750 GeV, we also observe that
perturbative convergence is much improved when resumma-
tion is included. Additionally, results obtained with threshold
resummation in direct QCD are compared with analogous
results as computed in soft-collinear effective theory, which
turn out to be in good agreement. We provide precise pre-
dictions for pseudo-scalar inclusive cross section at 13 TeV
LHC for a wide range of masses. The results are available
through updated versions of the public codes ggHiggs and
TROLL.
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1 Introduction

The discovery of the Higgs boson by ATLAS [1] and CMS [2]
collaborations of the Large Hadron Collider (LHC) at CERN
has put the Standard Model (SM) of particle physics on a
firmer ground. This has led to a better understanding of the
dynamics behind the electroweak symmetry breaking [3–7].
In addition, the measured Higgs decay rates [8,9] to W+W−,
Z Z and heavy fermion pairs are in good agreement with the
predictions of the SM. Moreover, there are continuous efforts
in the ongoing 13 TeV run at the LHC to establish Higgs
quantum numbers such as spin and parity, even though there
are already indications that it is a scalar with even parity [9,
10].

However, in spite of its spectacular success, it is well
known that the SM fails to explain certain phenomena of
the nature such as baryon asymmetry in the universe, the
existence of the dark matter, the tiny non-zero mass of the
neutrinos, etc. Explaining these phenomena requires one to
go beyond the wall of the SM. Among the several existing
models, supersymmetric theories provide an elegant solution
to the aforementioned problems. In one of its simplest real-
isations, the minimal supersymmetric extension of the SM
(MSSM), the Higgs sector contains two CP-even (scalar), one
CP-odd (pseudo-scalar) and two charged Higgs bosons [11–
18]. More generally, the existence of additional scalar and
pseudo-scalar bosons which couple to fermions is a predic-
tion of many models which include two Higgs doublets.

If we were to identify the lighter CP-even Higgs boson
of these models with the observed scalar at the LHC [19–
21], searches of other Higgs bosons become inevitable. In
particular, for small and moderate tan β (the ratio of vacuum
expectation values v1 and v2 of the two doublets), the large
gluon flux at the LHC can provide an opportunity to search for
other Higgs bosons. There are already efforts along this direc-
tion by the LHC collaborations. However, the experimental
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searches crucially depend on precise theoretical predictions.
The goal of this work is to provide precise and accurate theo-
retical predictions for pseudo-scalar Higgs boson production.

The theoretical predictions for the production of a pseudo-
scalar particle at the LHC have been already available up
to NNLO level [22–24] in perturbative QCD in the heavy
top-quark limit. These corrections are large, of the order of
67% at NLO and an additional 15% at NNLO at the central
renormalisation and factorisation scale μR = μF = mA/2,
mA = 200 GeV. To achieve sufficient precision, the inclusion
of higher orders is therefore necessary. This situation is very
similar to that of scalar Higgs boson production, for which
the N3LO contribution is now known [25,26]. This is further
improved by the resummation of threshold logarithms, aris-
ing from soft-gluon emissions, to N3LL′ accuracy [27,28],1

leading to a precise determination of the SM Higgs cross
section at LHC with small and reliable uncertainty.

The computation of the N3LO contribution to pseudo-
scalar boson production in the threshold limit has been
recently presented in Ref. [30]. In this article, we propose
a new determination of the pseudo-scalar boson N3LO cross
section based on the recent result at this order for scalar
production [26]. Then we study the inclusion of threshold
resummation effects to pseudo-scalar production. We do this
both in the standard formalism of direct QCD, as well as in
the soft-collinear effective theory (SCET) approach. We find
that the inclusion of threshold resummation together with the
approximate N3LO provides a significant increase of the pre-
cision for pseudo-scalar production and a marked reduction
of the theoretical uncertainties. Our work extends previous
results [31,32] to the next fixed and logarithmic order in
QCD.

The structure of this paper is the following. In Sect. 2
we introduce the notations and discuss fixed-order results
for pseudo-scalar Higgs production. In Sect. 3 we give an
overview of threshold resummation both in direct QCD and
SCET, and present our strategy for the computation of the
theoretical uncertainties. We describe how to construct a pre-
cise approximation of the pseudo-scalar Higgs cross section
at N3LO in Sect. 4. The numerical impact for pseudo-scalar
Higgs production at LHC is presented in Sect. 5. We conclude
in Sect. 6.

2 Pseudo-scalar production

The inclusive cross section at hadron colliders with cen-
tre of mass energy

√
s for the production of a colourless

1 Here the prime ′ means that in addition to the N3LL terms the
resummed result includes additional (formally higher logarithmic order)
terms coming from the matching to N3LO. For a more detailed discus-
sion, see Refs. [27,29]. We stress that in most of the literature the prime
is omitted.

pseudo-scalar particle A of mass mA can be written as a
convolution

σ(τ,m2
A) = τσ0

∑
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Li j
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)
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and a parton luminosity
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, (2)

which is a convolution of parton distribution functions
(PDFs) fi and f j of the initial state partons i and j , and
τ = m2

A/s. For simplicity, we assume that αs = αs(μ
2
F);

computing αs at a different renormalisation scale μR and sup-
plying the coefficients with the corresponding logarithms of
the scale is a straightforward task. The prefactor σ0, in the
case the production is driven by just a top-quark loop with
mass mt , reads

σ0 = α2
s GF

32
√

2π
cot2 β

∣∣xt f (xt )
∣∣2

, xt = 4m2
t

m2
A

, (3)
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⎧
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xt
xt ≥ 1 ,

− 1
4

(
ln 1−√

1−xt
1+√

1−xt
+ iπ

)2
xt < 1,

(4)

and it is such that Cgg is normalised to δ(1 − z) at LO.
In this equation, we assumed a Two Higgs Doublet Model
with mixing angle β. In the following, we shall not make any
assumption onβ, and present results ignoring the cot2 β term:
the resulting cross sections can then be rescaled multiplying
by cot2 β to obtain a prediction for any desired value of β.

The coefficient functionsCi j can be computed in perturba-
tion theory. The NLO [33–36] and NNLO [22–24] QCD cor-
rections to the coefficient functions are known in the large-mt

effective theory, and the NLO also in the exact theory [36,37].
Finite 1/mt corrections at NNLO have been computed in
Ref. [38]. Threshold contributions at N3LO in the large-mt

limit have been computed in Ref. [30], allowing for the com-
putation of an approximate N3LO prediction based on soft-
virtual terms.

In this work, we propose a new way of approximating
the N3LO contribution, based on the recent result for scalar
Higgs production in the large-mt effective theory, Ref. [26].
This approximation turns out to be much more precise than
any soft-virtual approximation, and allows us to predict the
N3LO cross section for pseudo-scalar Higgs production up
to corrections which we expect to be small. We describe
our approximation in Sect. 4, after introducing the necessary
ingredients in the next section.
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3 Threshold resummation

We now turn to briefly discussing threshold resummation. In
this work we consider both the standard direct QCD (dQCD)
approach [39–43] and the soft-collinear effective theory
(SCET) approach [44–47]. We refer the reader to [48–51]
for a more detailed discussion of the comparison between
the two frameworks.

Since threshold logarithmic enhancement affects only the
gluon–gluon channels, from now on we will focus on the
gluon fusion subprocess, and we will thus drop the parton
indices i , j assuming they are both equal to g. Resum-
mation (in dQCD) is usually performed in Mellin space,
since the soft-gluon emission phase space factorises under
Mellin transformation. The Mellin transformed cross sec-
tion, Eq. (1), is given by

σ(N ,m2
A) ≡

∫ 1

0
dτ τ N−2σ(τ,m2

A) = σ0L (N )C(N , αs),

(5)

where we have defined

L (N ) ≡
∫ 1

0
dz zN−1L (z), (6)

C(N , αs) ≡
∫ 1

0
dz zN−1C(z, αs) (7)

and for simplicity we have suppressed the dependence on the
factorisation scale μF.

In N space the threshold limit z → 1 corresponds to the
limit N → ∞. All the non-vanishing contributions to the
coefficient function C(N , αs) can be computed using stan-
dard techniques developed long ago [39–43], and one can
obtain the all-order resummed coefficient function

CN -soft(N , αs) = g0(αs) expS(αs, ln N ), (8)

where g0(αs) is a power series in αs andS(αs, ln N ) contains
purely logarithmically enhanced terms. This result, which is
the standard form of threshold resummation in dQCD, has
been called N -soft in Ref. [27]. While the function S needed
for N3LL′ accuracy has been known for a while [52], as it
is identical for pseudo-scalar and scalar Higgs production,
the constant function g0 for pseudo-scalar production was
known to second order [31,32] and it has been computed to
third order only recently [30].

Besides N -soft, there exist several prescriptions, formally
equivalent in the large-N limit, which differ by either power
suppressed 1/N (subdominant) contributions or sublead-
ing logarithmic terms. We refer the reader to Ref. [27] for
a more detailed discussion. In this work, we will use the
approach of Ref. [28], where it is suggested to vary both
subleading and subdominant contributions to estimate the

impact of unknown higher-order terms. Specifically, follow-
ing Ref. [28], we consider the so-called ψ-soft prescription,
which essentially amounts to replacing ln N → ψ0(N ) in
the Sudakov exponent and performing a collinear improve-
ment. The resulting default prescription, ψ-soft2 (or ψ-soft
AP2) [27,28], is given by

Cψ-soft2(N , αs) = g0(αs) exp
[
2S(αs, ψ0(N ))

− 3S(αs, ψ0(N + 1))

+ 2S(αs, ψ0(N + 2))
]
. (9)

The linear combination of shifted exponents implements the
collinear improvement AP2, obtained by retaining the LO
splitting function Pgg to second order in an expansion in
1 − z. Alternatively, one can keep only the first order (AP1),
leading to

Cψ-soft1(N , αs) = g0(αs) expS(αs, ψ0(N + 1)), (10)

which differs from ψ-soft2 by subdominant 1/N contribu-
tions. Subleading contributions are probed by moving some
or all constant terms from g0 to the exponent. This does not
spoil the logarithmic accuracy of the result, but different sub-
leading logarithmic contributions are generated by interfer-
ence with the constant terms. The default position of the
constant is determined by retaining in the exponent those
constant terms that naturally arise there from Mellin trans-
formation of threshold logarithms (see Ref. [28] for further
details). The two variations correspond to either having all
constants in the exponent, or no constants in the exponent; in
the latter option all constants are in g0, as in Eqs. (9), (10).

The approach of Ref. [28] consists then in computing the
central value of the resummation according to ψ-soft2 with
the default option for the constants, and the uncertainty on
this result from an envelope of scale variation, variation of
1/N terms (AP1 vs. AP2) and variation of subleading terms
(position of the constants). This rather conservative proce-
dure for estimating the uncertainty has proved very power-
ful in the case of SM Higgs production, where higher-order
corrections are large and fixed-order scale uncertainty is an
unsatisfactory estimator of missing higher orders [28], at
least for the first orders. As we shall see in the next Section,
very similar results are found for pseudo-scalar production,
which also suffers from large perturbative corrections.

Alternatively, soft-gluon resummation can be performed
in the SCET framework [44–47]. In this formalism, the par-
tonic coefficient function C(z, αs, μ

2
F) is written in a fac-

torised form as a result of a sequence of matching steps in
which hard and soft modes are subsequently integrated out

C(z, αs, μ
2
F) = H(μ2

F) S(z, μ2
F), (11)
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where H(μ2
F) and S(z, μ2

F) are known as hard function and
soft function, respectively, and are given as power expansions
in αs computed at their last argument. While the soft func-
tion at N3LO is the same for pseudo-scalar and scalar Higgs
production and it has been known for a while [29,53], the
N3LO hard function for pseudo-scalar production has been
recently computed in Ref. [54].

The hard and soft functions satisfy renormalisation group
equations in μF that can be solved exactly. We can thus write
the hard and soft functions in terms of a hard scale μH and a
soft scale μS, respectively, by introducing evolution factors
which evolve them to the common scale μF:

C(z, αs, μ
2
F) = H(μ2

H) S(z, μ2
S)U (μ2

H, μ2
S , μ

2
F). (12)

The hard and soft scale should be chosen such that the per-
turbative expansions of H and S are well behaved. While for
H μH ∼ mA, for the soft function a typically smaller scale,
related to the scale of soft-gluon emission, is more appro-
priate. Therefore, the evolution U from μS to μF performs
the resummation of the potentially large logarithms due to
soft radiation. For the precise choice of scales, we follow the
prescription of the original work [44].

In this work, we follow Ref. [29] and consider two inde-
pendent variations of the SCET resummation: the varia-
tion of subleading 1/N terms (corresponding in z space
to (1 − z)0 terms), and the inclusion of the so-called π2-
resummation [55–60]. As for dQCD, resumming π2 constant
terms effectively changes subleading terms in the resum-
mation. On the other hand, the variation of 1/N terms is
obtained through the inclusion of a collinear improvement,
which effectively amounts to multiplying the soft function
by an overall factor z [29]. This collinear improvement cor-
responds to the AP1 version of ψ-soft.

4 Approximate N3LO cross section

The recently computed SCET hard function H [54], together
with the known soft function [29,53], allowed the computa-
tion of all soft-virtual terms of N3LO pseudo-scalar Higgs
production [30], i.e. the plus distributions terms and the
δ(1 − z) term of the coefficient Cgg . The quality of such
a soft-virtual approximation can be rather good as well as
very poor. The reason is that the soft-virtual terms alone are
defined only up to next-to-soft contributions, i.e. terms sup-
pressed by at least one power of (1 − z) with respect to
the soft ones, and these next-to-soft terms are usually quite
significant [61–63]. Therefore, the quality of any soft-virtual
approximation strongly depends on the control one has on the
next-to-soft contributions. Moreover, the soft-virtual approx-
imation only predicts the gg channel, while other partonic
channels, which do not present logarithmic enhancement at
threshold, cannot be predicted. However, other partonic chan-

nels, most importantly the qg channel, give a contribution
which is non-negligible. Additionally, including all channels
stabilises the factorisation scale dependence, which is instead
unbalanced when only the gg channel is included.

In this work we exploit the similarity of pseudo-scalar
Higgs production to scalar Higgs production to provide an
approximation which overcomes all the limitations of a soft-
virtual approximation. Calling CH

i j the coefficient functions
for scalar Higgs production, we can write the coefficient func-
tions for pseudo-scalar Higgs production as

Ci j (z, αs) = g0(αs)

gH0 (αs)

[
CH
i j (z, αs) + δCi j (z, αs)

]
, (13)

where g0(αs) is the constant function of dQCD resummation
for pseudo-scalar Higgs, Eq. (8), and gH0 (αs) is the analo-
gous function for scalar Higgs. Eq. (13) effectively defines
δCi j (z, αs) as the correction to the scalar Higgs coefficient
functions such that the rescaling g0/gH0 converts them to
the pseudo-scalar coefficients. Expanding order by order in
αs both sides of Eq. (13), the coefficients δCi j at O(αk

s )

can be constructed from the knowledge of the scalar and
pseudo-scalar coefficients Ci j and CH

i j and of the constant

functions g0 and gH0 up to the same order. All ingredients
are known up to NNLO, allowing the computation of δCi j at
this order. At N3LO, g0 and gH0 are known from resumma-
tion [27,30,64,65] and CH

i j from Refs. [26,63], but Ci j (and

consequently δCi j ) are not known at O(α3
s ). We will argue

that using Eq. (13) to define an approximate Ci j at N3LO
by simply setting to zero the unknown O(α3

s ) contribution to
δCi j provides an excellent approximation.

To prove the quality of the approximation, we first observe
that if the δCi j were unknown the soft part of the pseudo-
scalar coefficients would be predicted exactly by the rescal-
ing in Eq. (13). This observation derives from the fact that
in Eq. (8) the Sudakov exponential expS is identical for
scalar and pseudo-scalar production, and only g0 contains
the process-dependent part. (This, in turn, also shows that
the ratio g0/gH0 is identical to the ratio of the SCET hard
functions H ’s for the two processes.) Therefore, the approx-
imation based on Eq. (13) is at least as good as a soft-virtual
approximation, as it contains the same information. In fact,
Eq. (13) contains much more information, thanks to the sim-
ilarity of the two processes. To see this, we inspect the δCi j

terms order by order. Defining the αs expansion as

δCi j (z, αs) = αs

π
δC (1)

i j +
(αs

π

)2
δC (2)

i j +
(αs

π

)3
δC (3)

i j +· · ·
(14)

we first note that, at NLO,

δC (1)
i j = 0, (15)
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since the difference between scalar and pseudo-scalar pro-
duction at this order is a pure virtual term [35], and therefore
fully accounted for by the rescaling. Note that this is already
highly non-trivial, as by construction δC (1)

i j has just to be free
of soft-virtual contributions; the fact that the only difference
between scalar and pseudo-scalar is corrected by the rescal-
ing is a clear consequence of the similarity between the two
processes considered. At the NNLO, we find

δC (2)
gg = 495 − 171z + (20z − 2)n f

12z
(1 − z)

+ 36 + 21z + 2zn f

2z
ln z + 2n f − 27

3
ln2 z

δC (2)
qg = 173 − 27z

9z
(1 − z) + 24 + 28z

3z
ln z − 28

9
ln2 z

δC (2)
qq̄ = 16

10 + 12z − (1 + z)n f

27z
(1 − z)

+ 32
3 + 8z − zn f

27z
ln z + 32

27
ln2 z

δC (2)
qq = 8

37 − 3z

27z
(1 − z) + 16

6 + 11z

27z
ln z − 64

27
ln2 z

δC (2)

qq ′ = 8
11 − z

9z
(1 − z) + 16

2 + 3z

9z
ln z − 16

9
ln2 z. (16)

These results are extremely interesting. We first observe that
these terms are next-to-next-to-soft, namely they are sup-
pressed by (1−z)2 with respect to the leading soft terms (i.e.,
they vanish in z = 1). Moreover, there are no ln(1−z) terms,
which means that those are predicted exactly for any power
of (1− z). Then we observe that at small-z these expressions
are next-to-next-to-leading logarithmic. Finally, we note that
the δCi j terms do not contain any explicit scale-dependent
contribution at this order.

The fact that the simple rescaling Eq. (13) allows the
prediction of all next-to-soft contributions is very promis-
ing: it shows that the details of the interaction other than
those contained in the virtual contributions are not needed to
describe the next-to-soft terms. This observation, if persist-
ing at higher orders (as we conjecture2), can be an impor-
tant step towards the resummation of next-to-soft contribu-
tions [62,66–71]. Note that the fact that this is true also for
the qg channel is rather informative, as it tells that the large-z
logarithms in this channel, which are formally next-to-soft,
are encoded in the gg subgraphs, as they can be predicted by
the knowledge of the virtual gg terms.

The other main observation is related to the small-z
behaviour. In the large-mt effective theory, the leading small-
z terms at order αk

s are of the form (1/z) ln2k−1 z, which were

2 To support our conjecture, we have tested Eq. (13) on two qq̄ dom-
inated processes: Drell–Yan and bb̄H production. Also in this case,
we find that the δCi j coefficients are next-to-next-to-soft, even though
they are non-zero already at NLO, and terms proportional to powers of
log(1 − z) appear at NNLO.

Fig. 1 Ratio of approximate NNLOA over exact NNLO pseudo-
scalar cross sections, as a function of the pseudo-scalar mass mA
at LHC 13 TeV. Curves are shown for four values of μR =
2mA,mA,mA/2,mA/4 (green, red, blue, purple) and three values of
μF/μR = 2, 1, 1/2 (dotted, solid, dashed)

shown to coincide between scalar and pseudo-scalar produc-
tion processes to all orders in αs in Ref. [72]. The absence of
next-to-leading logarithmic terms of the form (1/z) ln2 z in
Eq. (16) implies that, at this order, small-z contributions in
the scalar and pseudo-scalar cases start to differ at the next-
to-next-to-leading logarithmic level. This is perhaps not sur-
prising, as in the effective theory the two largest power of
the small-z logarithms, being double logarithms, are deter-
mined by just the hard gluon radiation of the external initial
gluon legs. Hence, we expect this to hold at higher orders
as well, thus extending the observation of Ref. [72] to the
next-to-leading logarithmic terms.

Therefore, we have found that the rescaling Eq. (13), even
if the δCi j terms are neglected, reproduces exactly the NLO
and deviates from the NNLO by terms which are both next-
to-next-to-soft and next-to-next-to-leading small-z, and thus
expected to be small.3 To verify this, we plot in Fig. 1 the ratio
of the approximate NNLO cross section (denoted NNLOA,
as obtained setting δCi j = 0) over the exact one, for a range
of pseudo-scalar masses and for various choices of the scales.
(The setting of PDFs and other parameters is the same as in
Sect. 5.) At high masses, i.e. closer to threshold, the differ-

3 We observe that for scalar Higgs production an approximation based
on soft and next-to-soft terms only is in principle not sufficient to deter-
mine the full cross section at high accuracy, neither at N3LO [26,63] and
not even at NLO and NNLO [73]. This derives from the fact that terms
at next-to-next-to-soft and beyond are not uniquely defined, and can be
(somewhat artificially) modified at will by a proper redefinition of the
expansion parameters, leading to sizeable effects. Here, differently, the
definition of δCi j is unique, and the size of their contribution can only
be assessed by a direct evaluation, which (as we shall see) gives a small
effect. This can be understood by the fact that the rescaling Eq. (13) also
predicts some (but not all) next-to-next-to-soft terms and higher, and
in particular those coming from the Pgg splitting function associated
with soft radiation, which are universal and drive most of the higher
soft-order corrections [61].
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ence is at most ∼ 2‰, depending on the value of the renor-
malisation scale, but almost independent of the factorisation
scale (a consequence of the fact that the factorisation scale
dependence is generally mild for this process). At smaller
masses, where unpredicted next-to-next-to-soft corrections
are larger, the discrepancy can reach ∼1% for small renor-
malisation scales. Overall, the agreement is excellent.

At the next order, we do not have the exact result and
therefore we cannot compare. However, we expect that the
δC (3)

i j coefficients share the same features of the δC (2)
i j , and

as such their contribution should be very small, also consid-
ering that the N3LO correction itself is much smaller than the
NNLO one. Numerically, based on the NNLO comparison,
we expect the difference of our approximate N3LOA result to
the exact to be just a few permille, and therefore smaller than
scale variation and many other sources of uncertainties. To
further support this expectation, we consider “variations” of
the approximation itself to probe the effects of the unknown
contributions at N3LO. The third-order coefficient C (3)

i j is
given, according to Eq. (13), and using explicitly Eq. (15),
by

C (3)
i j (z) = CH(3)

i j (z) + r (1)CH(2)
i j (z) + r (2)CH(1)

i j (z)

+ r (3)CH(0)
i j (z) + δC (3)

i j (z) + r (1)δC (2)
i j (z), (17)

where CH(k)
i j (z) are the expansion coefficients of CH

i j (z, αs)

and r (k) are the expansion coefficients of the ratio g0(αs)/

gH0 (αs). Our N3LOA is defined by dropping the δC (3)
i j (z)

term in Eq. (17). We could equally decide to also drop the
last term in the equation, which would be natural if we had
defined δCi j differently, with the rescaling in Eq. (13) applied
only to CH

i j and not to δCi j . With this modified definition we

obtain a N3LO prediction which only differs by less than
0.3‰ from the N3LOA in the considered range of masses
and scales (same as Fig. 1). This excellent agreement might
not be too significant, as it derives from the δC (2)

i j (z) term,
and can therefore be expected to be roughly the same effect
seen at NNLO suppressed by the factor αsr (1) ∼ 0.03, so in
particular it does not take into account possible larger cor-
rections in the unknown δC (3)

i j (z) contribution.
Alternatively, and more drastically, we could ignore the

rescaling and drop all the terms in Eq. (17) except the first:
in this case, the ignored terms contain also leading soft and
next-to-soft contributions. Hence, this variation provides a
conservative estimate of the error on the approximation, as
it also varies contributions (the soft-virtual ones) which are
known and correctly included in our N3LOA. This variation
is also useful to understand how big corrections can be if our
conjecture on the form of δCi j , namely the absence of next-
to-soft terms in them, was wrong. The ratio of this alternative
approximation (denoted in the plot N3LOA′ ) over our default
N3LOA is shown in Fig. 2 (upper panel), where it clearly

Fig. 2 Ratio over approximate N3LOA of the variant approximate
N3LOA′ described in the text (upper panel) and of the soft-virtual
N3LO(sv) (lower panel). Curves are as in Fig. 1

appears that the largest variation never exceeds 2%, and is
smaller than 1% for most scales and masses.

Based on these considerations, we would conclude that a
realistic uncertainty on our approximate result is of the order
of 1%. In addition, one should also consider the uncertainty
coming from the fact that the scalar Higgs N3LO cross sec-
tion is itself not known exactly, but as a threshold expansion
up to order (1 − z)37 [26,63]. The uncertainty coming from
the truncation of the threshold expansion has been estimated
to be 0.37% for the SM Higgs boson at the 13 TeV LHC [26].
Since the relative size of the perturbative contributions at var-
ious orders is roughly the same for scalar and pseudo-scalar,
this value applies also to our case, for the same mass. At
higher masses the process gets closer to threshold, and the
threshold expansion converges more rapidly and is less con-
taminated by small-z terms (which are not predicted correctly
in the threshold expansion), so the uncertainty from the trun-
cation is likely smaller. Therefore, the final estimate on the
uncertainty on our result remains at the percent level.

We now consider the modified soft-virtual (SV) approxi-
mation proposed in Ref. [30], denoted as N3LO(sv). It con-
sists in approximating the third-order coefficient function by
the threshold plus-distributions multiplied by an overall fac-
tor z. This approximation proved to be more powerful at
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Fig. 3 Renormalisation (solid), factorisation (dashed) and simulta-
neous (dotted) scale dependence for pseudo-scalar production with
mA = 200 GeV at LHC 13 TeV. Results at LO (blue), NLO (orange),
NNLO (green) and N3LOA (red) are shown

previous orders, and it works better in the case of the SM
Higgs. The reason can be traced back to the fact that this
modified version includes some collinear contributions, as
proposed in Ref. [61]. Indeed, we notice that this modified
SV approximation is close in spirit to the soft1 approximation
of Ref. [61], where ln z contributions were also retained. In
Fig. 2 (lower panel) we plot the ratio of this N3LO(sv) predic-
tion over our N3LOA result, for several choices of scales. The
agreement is typically within 5%, improving down to 2–3%
at large masses, when the process is closer to threshold and
the soft-virtual approximation is more accurate. We also not
that the μF dependence is significant, since in the N3LO(sv)

it is included only in the gg channel, and is therefore unbal-
anced.

To conclude this section, we present the dependence upon
renormalisation (solid), factorisation (dashed) and simul-
taneous (dotted) scale variation in Fig. 3 for LO (blue),
NLO (orange), NNLO (green) and N3LOA (red). We con-
sider a pseudo-scalar mass mA = 200 GeV at LHC with√
s = 13 TeV. While μF dependence is very flat even at low

orders, μR dependence flattens out significantly at N3LOA.
Simultaneous variation of μR and μF is very similar to μR

variation. These results are very similar to those for scalar
Higgs production [26].

5 Numerical results at N3LOA+N3LL′

We now present the results for the inclusive pseudo-scalar
cross section in gluon–gluon fusion at N3LOA+N3LL′ accu-
racy at LHC

√
s = 13 TeV. We use the NNLO set of parton

distributions NNPDF30_nnlo_as_0118 [74] with αs =
0.118 through the LHAPDF 6 interface [75]. In this study we
assume that the pseudo-scalar couples only to top quark and

we take mt = 173.2 GeV. We have implemented the exact
NNLO and the approximate N3LOA results for pseudo-scalar
production in the public code ggHiggs [28,61,76,77]. We
then use the public code TROLL [27,29,78] to perform the
resummation in the dQCD and SCET formalism.

We recall that there have been a series of experimen-
tal searches at the LHC for a pseudo-scalar boson in gluon
fusion as well as bottom associated production channels. For
instance, the ATLAS collaboration has searched for pseudo-
scalar boson over the mass window 200 GeV < mA <

1200 GeV using 13 TeV data and has put 95% confidence
level (CL) upper limits on the production cross section times
the branching fraction as well as 95% CL exclusion limits
on the model parameter tan β as a function of mA in differ-
ent supersymmetric scenarios. For example, with data corre-
sponding to a luminosity of 3.2 fb−1 [79], the excluded region
is tan β > 7(47) for mA = 200(1000) GeV while with lumi-
nosity of 13.3 fb−1 [80] the excluded region is tan β > 9(42)

for mA = 200(1200) GeV in hMSSM scenarios [81]. There-
fore, at the moment, no mass value is excluded, provided the
model parameter tan β is in the allowed range.

We first focus on an hypothetical pseudo-scalar mass
mA = 200 GeV. In Fig. 4 we show the inclusive cross
section at fixed LO, NLO, NNLO and N3LOA accuracy,
and at NLO+NLL′, NNLO+NNLL′, NNLO+N3LL′, and
N3LOA+N3LL′ accuracy in the dQCD approach. We con-
sider two different values for the central factorisation and
renormalisation scale μF = μR = μ0, namely μ0 = mA/2
(left panel) and μ0 = mA (right panel).

We included in our results both the NNLO+N3LL′ and
the N3LOA+N3LL′ cross sections. These two constructions
have the same fixed order up toO(α2

s ), and share the same all-
order resummed contributions from O(α4

s ) onwards. How-
ever, the contribution of O(α3

s ) is different in the two results:
in the N3LOA+N3LL′ it is given by our approximation of
Sect. 4, while in the NNLO+N3LL′ it is given by the N3LL′
resummation expanded to O(α3

s ). In other words, in absence
of a full N3LO computation, both provide alternative ways
of estimating the N3LO, which share the same soft, virtual
and collinear contributions. Since in our results we vary the
resummation prescription, the NNLO+N3LL′ also contains
an estimate of the uncertainty on the N3LO itself, and there-
fore can be considered as a (much) more conservative esti-
mate of the unknown exact N3LO+N3LL′ cross section.

We show the results obtained using different resummation
prescriptions. Following the approach of Ref [28], predic-
tions are shown for the N -soft and for variants of the ψ-soft
prescriptions which differ by subleading and/or subdomi-
nant contributions, as discussed in Sect. 3. For each variant
we perform a 7-point scale variation varying μF and μR by a
factor 2 up or down and keeping 1/2 ≤ μR/μF ≤ 2. The final
uncertainty on our predictions is computed as the envelope
of the different ψ-soft variants and each scale variation, and
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Fig. 4 Fixed-order (black) and resummed cross section in dQCD at
various orders for mA = 200 GeV at the 13 TeV LHC. The standard
N -soft resummation is shown together with the various variants of ψ-

soft resummation as discussed in the text. The envelope of the various
ψ-soft resummed results is shown as light-red rectangles

it is shown as light-red rectangles in Fig. 4. The uncertainty
of the fixed-order results is computed as a canonical 7-point
scale variation.

As for the SM Higgs, the fixed-order perturbative expan-
sion displays poor convergence, especially at lower orders.
In particular, the NLO correction is more than 100% larger
than the LO, and the NNLO is a significant correction over
the NLO. Ignoring the LO, which does not contain enough
information, we can focus on the behaviour of the series
at higher orders. Because of the large perturbative correc-
tions, canonical scale variation does not guarantee a reliable
estimate of the uncertainty from missing higher orders. In
particular, the NNLO central value is not contained in the
NLO uncertainty band, and the NNLO and the NLO uncer-
tainty bands do not even overlap at μ0 = mA. The N3LOA

is a smaller correction, perhaps an indication that the series
is finally converging. The N3LOA value is contained in the
NNLO uncertainty band, yet is not contained in the NLO
uncertainty band; again there is no overlap of the two bands.

Nonetheless, a robust estimate of the missing higher-
order uncertainty can be attained by resorting to resumma-
tion. On one hand, resummed results exhibit a better per-
turbative behaviour, thereby suggesting that convergence is
improved when resummed contributions are included. On
the other hand, variation of subleading and subdominant
contributions on top of scale variation provides a more
robust method for estimating higher-order uncertainty. Con-
trarily to the fixed order, the NLO+NLL′ total band fully
envelops the NNLO+NNLL′ band, and the NNLO+N3LL′

and N3LOA+N3LL′ are contained in the NNLO+NNLL′
band, which also cover the central value of the N3LOA result.
A similar pattern is observed also if only the default ψ-
soft prescription is considered. This confirms the conclu-
sions of Ref. [28] in the context of SM Higgs production
and extends them to the case of pseudo-scalar Higgs produc-
tion. Similarly, we also confirm that the central scale choice
μ0 = mA/2 seems a better one, as it leads to faster conver-
gence and smaller, yet reliable, final uncertainty.

We now analyse the impact of resummation in a frame-
work complementary to the dQCD approach. In Fig. 5
we compare the fixed-order results with variants of the
resummed results obtained in the SCET formalism. We per-
form two different choices of the soft logarithms and we
consider the effect of the π2 resummation, as discussed in
Sect. 3. For each of the variants we compute the uncertainty
as in Ref. [44]. Specifically, we vary independently μF, μH

and μS, keeping the other scales fixed when one is varied. As
far as μF and μH are concerned, they are varied by a factor of
two up and down, about the central scale μ0, which we again
take to be either μ0 = mA/2 (left panel) or μ0 = mA (right
panel). The definition of the central μS and of its variation
range is more complicated, and we refer to Ref. [44] for a
detailed explanation. For each scale, the largest variation is
then symmetrised, and the final (symmetric) uncertainty is
obtained by adding each individual uncertainty in quadra-
ture. To facilitate the comparison with the dQCD results, in
Fig. 5 we also show the envelope of the ψ-soft variants in
dQCD as light-red rectangles.
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Fig. 5 Same as Fig. 4 but showing the SCET resummed results. The dQCD envelope is also shown to facilitate the comparison

Fig. 6 Same as Fig. 4 but for mA = 750 GeV

We observe that the original formulation of SCET resum-
mation of Ref. [44] leads to a small correction of the fixed-
order result, due to the choice of the soft logarithms. Further-
more, the uncertainty bands are comparable or smaller than
their fixed-order counterparts, suggesting an underestimate
of the theory errors. On the contrary, the impact of resum-
mation is more significant if subleading terms are included
in the form of the collinear improvement of Ref. [29]. In this
collinear-improved variant the bands are larger and always
overlap, indicating a better perturbative stability. The inclu-

sion of π2 resummation further speeds up the convergence at
μ0 = mA/2. The spread of the variants we have considered
lies almost entirely in the dQCD envelope, with the exception
of the NNLO+N3LL′ and N3LOA+N3LL′ without collinear
improvement in the μ0 = mA case.4 Finally, we observe

4 This is not surprising, since it is known [29,61] that the choice of
logarithms performed in [44] underestimates the full result if expanded
in powers of αs . Anyway, the difference is not dramatic, and had one
symmetrised the dQCD envelope about the central ψ-soft prediction
they would be contained in the band.
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that the central scale μ0 = mA/2 turns out to be a better
choice also from the point of view of SCET resummation,
both because the errors are smaller, and because the impact
of higher orders is reduced, as one can understand from the
smaller difference between the original and the collinear-
improved versions.

In Fig. 6 we show the dQCD predictions for a larger
pseudo-scalar mass, mA = 750 GeV. This mass value was of
some interest in the light of recent measurements [82,83]. We
observe exactly the same pattern found for mA = 200 GeV.
The only important difference is that the final uncertainty
on the resummed results at μ0 = mA/2 is smaller than for
the lower mass value, probably due to the fact that at larger
masses the process is closer to threshold and the resummation
is therefore more accurate (i.e. less uncertain) in describing
the higher orders. We do not show the analogous results for
SCET resummation, as they have the same features of the
lower mass results. We then conclude that all the observa-
tions made for mA = 200 GeV remain unchanged for any
pseudo-scalar mass.

The comparison of the SCET results with the dQCD ones
confirms the procedure suggested in Ref. [28] as a robust and
reliable method for computing the uncertainty from missing
higher orders, and confirms the scale μ0 = mA/2 as an opti-
mal central scale. We can now therefore use this procedure
to provide precise and accurate predictions for pseudo-scalar
production at the LHC for generic values of the pseudo-scalar
mass mA.

In Table 1 we collect the predictions for the inclusive
cross section for pseudo-scalar production at LHC 13 TeV
for different values of mA between 100 GeV and 1 TeV.
For each mass value we show predictions at N3LOA+N3LL′.
The central value of the resummed result is computed using
the default variant of ψ-soft2 and the uncertainty is com-
puted as previously discussed, i.e. as the envelope of the
different ψ-soft variants computed for each scale variation
about the central scale μR = μF = mA/2. The predictions
at N3LOA+N3LL′ are also collected in the form of a plot
in Fig. 7, where we show the resummed cross section and
the K -factor σN3LOA+N3LL′/σLO as a function of mA (orange
curve and band). In the K -factor plot we also show, in green,
the NNLO+N3LL′ uncertainty band. It is apparent that the
knowledge of the N3LO improves significantly the precision
of the prediction, as the error band of the N3LOA+N3LL′
result is approximately half of the NNLO+N3LL′ band. The
latter can be interpreted as a more conservative uncertainty,
covering the uncertainty on the approximate N3LOA result
as estimated in Sect. 4.

Note that the large-mt assumption of the effective field the-
ory approach used here is violated for pseudo-scalar masses
mA � 2mt , namely close and after the peak in the upper
panel of Fig. 7. However, it is well known (e.g. [36,84,85])
that the effective theory approach, when rescaled with the

Table 1 Resummed cross section at N3LOA+N3LL′ accuracy in dQCD
for different values of mA at the 13 TeV LHC. The density of mA values
increases close to the t t̄ threshold to accurately describe the peak. The
error corresponds to the dQCD envelope

mA[GeV] σN3LOA+N3LL′ [pb/cot2 β]

100 1.71+0.06
−0.08 × 10+2

150 8.29+0.25
−0.32 × 10+1

200 5.03+0.09
−0.16 × 10+1

250 3.64+0.07
−0.10 × 10+1

300 3.22+0.06
−0.09 × 10+1

310 3.27+0.06
−0.08 × 10+1

320 3.39+0.06
−0.09 × 10+1

330 3.66+0.07
−0.09 × 10+1

340 4.28+0.08
−0.11 × 10+1

341 4.39+0.08
−0.11 × 10+1

342 4.53+0.08
−0.11 × 10+1

343 4.69+0.09
−0.12 × 10+1

344 4.90+0.09
−0.12 × 10+1

345 5.18+0.09
−0.13 × 10+1

346 5.68+0.10
−0.14 × 10+1

347 6.33+0.12
−0.16 × 10+1

348 6.24+0.11
−0.15 × 10+1

349 6.16+0.11
−0.15 × 10+1

350 6.07+0.11
−0.15 × 10+1

360 5.28+0.10
−0.13 × 10+1

370 4.60+0.08
−0.11 × 10+1

380 4.02+0.07
−0.10 × 10+1

390 3.53+0.06
−0.08 × 10+1

400 3.10+0.06
−0.07 × 10+1

500 9.71+0.18
−0.20 × 10+0

600 3.60+0.07
−0.07 × 10+0

700 1.51+0.03
−0.03 × 10+0

750 1.01+0.02
−0.02 × 10+0

800 6.89+0.14
−0.11 × 10−1

900 3.38+0.07
−0.05 × 10−1

1000 1.75+0.04
−0.03 × 10−1

exact LO result, Eq. (3), provides a reasonably good approx-
imation even at large masses, outside the region of formal
validity of the effective approach. This can be understood
in terms of the dominance of soft-collinear contributions,
which indeed factorise. Indeed, the difference between the
exact and the effective theory results at NLO reaches ∼ 10%
for mA � 500 GeV [86,87], but does not increase much
as mA gets larger. The residual effect from missing NNLO
finite-mt terms can then be expected to be a few percent,
as it happens in the scalar case [88,89]. Therefore, once the
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Fig. 7 Resummed cross section at N3LOA+N3LL′ accuracy in dQCD
as a function of mA at the 13 TeV LHC. We show both the absolute
cross section (upper panel), multiplied by m2

A for readability, and the
K -factor σN3LOA+N3LL′/σLO (lower panel). In the lower panel we also
include the prediction for NNLO+N3LL′. The error shown corresponds
to the dQCD envelope

known NLO finite-mt corrections are included, our results
are expected to be reasonably accurate for phenomenology.

6 Conclusions

In this work we presented precise predictions for pseudo-
scalar Higgs boson production at LHC based on a combina-
tion of fixed order at exact NNLO plus approximate N3LO
and of threshold resummation at N3LL′.

We have proposed a new method for predicting the N3LO
cross section, based on the similarity of the pseudo-scalar
production process in gluon fusion with the analogous scalar
production process, for which the exact N3LO result has
been recently made available. This method consists in a
simple rescaling of the perturbative scalar coefficient func-
tions by the ratio of the process-dependent functions g0 (or
hard functions H ) of the resummation for the two processes.
By construction, this procedure reproduces exactly the soft-

virtual-collinear contributions of the pseudo-scalar coeffi-
cients. Interestingly, up to NNLO where the exact result is
known, this procedure also reproduces all next-to-soft terms,
all next-to-leading small-z logarithms and all the terms pro-
portional to ln(1 − z) to any positive power. Assuming this
pattern remains true at N3LO and beyond, these observa-
tions can also give some insight on the structure and origin
of next-to-soft contributions and how to perform their all-
order resummation. In this work, this allowed us to construct
a precise approximation to the N3LO cross section, up to
corrections estimated to be at the percent level.

We then studied the effect of including threshold resum-
mation at N3LL′. We considered threshold resummation both
in the traditional direct QCD approach and in the effective
SCET approach. We pay particular attention to the effect
of including subleading logarithmic and subleading power
(i.e., beyond threshold) contributions in the resummations.
Following Ref. [28], we vary these subleading contributions
in dQCD to obtain a rather conservative uncertainty estimate
due to missing higher orders. This estimate, computed as
the envelope of scale and subleading-term variations of the
resummed result, is very reliable, as demonstrated by the
fact that the resulting error band successfully covers the next
orders. Specifically, it is much more reliable than the uncer-
tainty estimated by scale variation at fixed order, which typ-
ically underestimates the size of higher-order contributions.
Comparison to SCET results further validates the reliability
of the dQCD approach.

Differently from the fixed-order results, the resummed
results are very stable upon variation of the central scale,
except for the size of the error band which is somewhat
dependent on it. We identify μR = μF = mA/2 as an opti-
mal central scale, in the sense that the dQCD error band
turns out to be rather small, but still reliable as demonstrated
by the previous orders and the comparison with SCET. We
therefore use this choice to present resummed pseudo-scalar
production cross sections for a wide range of pseudo-scalar
masses, from mA = 100 GeV to mA = 1 TeV. The K -factor
with respect to the LO cross section ranges from ∼ 3.3 to
∼ 2.3, respectively, and the uncertainty estimate from miss-
ing higher-order ranges from approximately ±4% at small
mass to approximately ±2% at high mass. We observe, how-
ever, that finite top-quark mass effects, neglected in our large-
mt effective theory approach, become sizeable at large mA.
After including the known NLO corrections, the residual
effect from missing NNLO finite mt contributions can pos-
sibly reach a few percent for mA � 2mt .

Our results, although obtained assuming a Two Higgs
Doublet Model like the MSSM for pseudo-scalar boson inter-
actions, can be trivially extended to other more exotic models
by simply changing the Wilson coefficient of the large-mt

effective theory, which encodes the full-theory information.
The approximate N3LOA is available through the public code
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ggHiggs [77], v3.3 onwards, and the threshold resumma-
tion up to N3LL′ is available in the public code TROLL [78],
v3.1 onwards.
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