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Abstract In recent years, some studies have drawn atten-
tion to the lack of large-angle correlations in the observed
cosmic microwave background (CMB) temperature
anisotropies with respect to that predicted within the stan-
dard �CDM model. Lately, it has been argued that such a
lack of correlations could be explained in the framework of
the so-called Rh = ct model without inflation. The aim of
this work is to study whether there is a mechanism to gen-
erate, through a quantum field theory, the primordial power
spectrum presented by these authors. Specifically, we con-
sider two different scenarios: first, we assume a scalar field
dominating the early Universe in the Rh = ct cosmological
model, and second, we deal with the possibility of adding
an early inflationary phase to the mentioned model. During
the analysis of the consistency between the predicted and
observed amplitudes of the CMB temperature anisotropies
in both scenarios, we run into deep issues which indicate
that it is not clear how to characterize the primordial quan-
tum perturbations within the Rh = ct model.

1 Introduction

In addition to solve the horizon and flatness problems of the
standard Big Bang model, inflation generates a nearly scale
invariant power spectrum for density perturbations, which
has been exquisitely tested with observations of the cosmic
microwave background (CMB) angular spectrum [1–6].

Starting with the Cosmic Background Explorer observa-
tions [7], it was noted that the angular two-point correlation
function at angular scales larger than 60◦ is unexpectedly
close to zero, contrary to what the standard �CDM model
predicts. Shortly after, it was rediscovered with the Wilkin-
son Microwave Anisotropy Probe (WMAP) data [8] and later
by the Planck mission [2,9]. This feature at large scales was
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studied in detail by several authors, e.g. [10–14]; it has been
the source of some controversy (see for instance [15]) and
today constitutes one of the persistent large-angle anomalies
in the CMB data [16].

Recently, a series of theoretical and observational motiva-
tions exposed in [17–19] finished merging into what today is
known as the Rh = ct model [20]. This model has received
considerable attention over the last few years, since it has
been claimed to be favored over the standard �CDM by most
observational data [21–28]. Even the authors argue that the
mentioned horizon problem could be solved in the framework
of this model without an inflationary epoch at the beginning
of the Universe [29]. Basically, they hold that the Universe
can be described by a FLRW cosmology, where the cosmic
fluid filling the Universe satisfies, at all times, the overall
equation of state ρ + 3P = 0, where ρ and P are the total
energy density and pressure of the cosmic fluid, respectively.
According to the authors, the condition w = −1/3 at all
times is apparently required by the simultaneous application
of the Cosmological Principle and Weyl’s postulate [30,31].
We remind the reader that in the standard �CDM model, the
equation of state ρ + 3P = 0 would lead to a Universe with
negative curvature.

However, some observational objections were raised, and
also the validity of the physical arguments underlying the
Rh = ct model have been criticized by a number of authors.
Some of them can be found for instance in [32–40]. In partic-
ular, the claim made in Ref. [41], regarding that the analysis
of the CMB anisotropies in the Rh = ct model is preferred
over the �CDM, appears to be incorrect; actually the formal
computation of the angular power spectrum, i.e. the Cl ’s, is
absent (in fact, in Sect. 4 we will show explicitly that it is very
unlikely that the Rh = ct model can be made consistent with
the CMB observational data). Furthermore, the explanation,
within this model, concerning how w is kept at −1/3 through
the transitions from known matter to radiation sounds at least
questionable, and the idea that ρ ∝ a−2 throughout nucle-
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osynthesis, recombination, structure formation and today
seems impossible to reconcile with all the observations put
together. Some of these criticisms are claimed to have been
answered in [42–46]. Nevertheless, after pointing out a num-
ber of objections to the Rh = ct model based on recent obser-
vational data, in Ref. [47] the authors analyzed the central
assumption underlying the original theoretical argument for
the model, namely that the comoving Hubble radius should
be constant, and showed that it is not required.

In the present manuscript, we will focus on the results pre-
sented in [41,48]. There, the authors analyzed the CMB angu-
lar correlation function for a fluctuation spectrum expected
from growth in a Universe, whose dynamics is constrained
by the equation of state w = −1/3. To accomplish this, they
mention that since the exact form of the power spectrum
emerging from the non-linear growth prior to recombination
is unknown, a parameterization for this spectrum can be per-
formed, for example, by assuming a scale-free initial power
law spectrum and incorporating in its shape other relevant
effects. Then they ensure that it is possible to obtain a bet-
ter fit than the �CDM model to the data corresponding to
the angular correlation function, and conclude stating that
the absence of power on large scales exhibited by the angu-
lar correlation function might be evidence in support of the
Rh = ct model simply because it does not require inflation.

In this article, we perform a critical analysis whether there
might be a mechanism for generating, through a quantum
field theory, the primordial power spectrum presented by
those authors in [41]. To do so, we are going to consider two
different scenarios: first, we will assume a scalar field domi-
nating the early Universe in the Rh = ct cosmological model,
and second, we will deal with the possibility of adding an
early inflationary phase to the mentioned model. After that,
we will analyze the consistency between the predicted and
observed amplitudes of the CMB temperature anisotropies
in both scenarios.

The article is organized as follows: in Sect. 2, we review
some basics about the Rh = ct model and how to describe
classical perturbations in that framework; in Sect. 3, we
search for a quantum mechanism to generate the primordial
curvature perturbation, and we obtain the primordial power
spectra within Rh = ct model with and without an infla-
tionary phase. Later, in Sect. 4, we analyze the amplitudes
of the primordial power spectra and the consistency with the
amplitude of the CMB temperature anisotropies. In Sect. 5
we make a discussion of our results, and finally in Sect. 6 we
summarize our conclusions.

2 Classical perturbations in the Rh = ct model

In this section, we provide a summary of the main charac-
teristics of the Rh = ct Universe. Our main focus is the

cosmological perturbations as presented in Refs. [20,41,48].
The first two subsections will be heavily based on the results
presented in those references. However, in the last subsec-
tion, we will show how to relate the curvature power spectrum
with the matter power spectrum proposed in Refs. [41,48].
We will use units in which c = h̄ = 1. We will make use
of the reduced Planck mass M2

P = 1/(8πG) and the “West
Coast” signature (+ − −−) for the metric.

2.1 The background

The Rh = ct Universe is characterized by a spatially flat
FLRW spacetime, which in comoving coordinates is repre-
sented by the line element

ds2 = dt2 − a2(t)δi jdx
idx j .

Additionally, the authors of the Rh = ct Universe claim that
the total matter components in the Universe combined (dark
matter, ordinary matter, radiation and dark energy) behave as
a perfect fluid with the overall equation of state1

P = −ρ

3
, (1)

where ρ and P represent the total energy density and pressure
of the Universe, respectively. Therefore, the Friedmann equa-
tion H2 ≡ (ȧ/a)2 = ρ/(3M2

P) and the continuity equation
ρ̇+3H(ρ+P) = 0 (with the dot over functions representing
derivative with respect to cosmic time t) lead to a scale factor
of the form

a(t) = t/t0, (2)

where we have normalized the scale factor to a(t0) = 1 at
the present cosmic time t0. Consequently, the Hubble radius
evolves as Rh ≡ H−1 = t . This is one of the main features
of the Rh model, i.e., the Hubble radius satisfies the relation
H−1 = t during the whole cosmic evolution and not “just
today” as in the standard �CDM model. Therefore, the total
energy density of the Universe evolves as ρ ∝ 1/a2.

2.2 Cosmological perturbations

The dynamical evolution of the cosmological perturbations
in the Rh = ct Universe follows from Einstein equations
δGab = δTab/M2

P. In particular, by using the Newtonian
(longitudinal) gauge, the Fourier modes associated to the
density contrasts defined as δk(t) ≡ δρk(t)/ρ̄(t) (where ρ̄(t)
is the background energy density) satisfy

1 For the specific motivations behind the aforementioned equation of
state, we refer the reader to the original work by [20,31] and a recent
rebuttal regarding the consistency of the physical motivations of the
Rh = ct Universe [40,47].
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δ̈k + (2 − w + 3c2
s )H δ̇k

−3

2
H2(1 + 8w − 3w2 − 6c2

s )δk = −k2c2
s

a2 δk . (3)

Therefore, by considering the equation of state associated to
the Rh = ct Universe, it is assumed that w = c2

s = −1/3.
Thus, the motion equation for δk is given by

δ̈k + 3

t
δ̇k − 1

3

�2
k

t2 δk = 0 (4)

where �k ≡ k/(aH). Note that aH = H0 is a constant
(H0 denotes the Hubble parameter today). It is not hard to
find the solutions of (4); nevertheless, the solutions depend
on whether k is greater or less than aH , i.e. �k > 1 or
�k < 1. If �k > 1, then the solutions are a growing mode
δk ∼ tα (with α > 0) and a decaying mode. On the contrary,
if �k < 1, then the solutions are a constant and a decaying
mode. In the Rh = ct Universe one is primarily interested
in the modes such that k > aH since these are the modes
that can grow into the large scale structure. As a matter of
fact, motivated by the angular correlation of the CMB and
the solution corresponding to the growing modes of Eq. (4),
the authors of Refs. [41,48] proposed that the initial matter
power spectrum is of the form

Pδ(k) ∝ k − b

(
2π

Re(te)

)2 1

k
(5)

where b is an unknown constant to be adjusted, and Re is the
proper distance to the last scattering surface at time te, which
corresponds to the cosmic time at the decoupling epoch. The
power spectrum (5) can be recast as

Pδ(k) = AH
[
k

H − b

(
θmax

a(te)

)2 H
k

]
(6)

where A is the amplitude of the power spectrum, H ≡ aH
and θmax is the maximum angular size of any fluctuation
associated with the CMB emitted at te, that is, θmax =
[2πa(te)]/[kmaxRe(te)]; also kmax/H = 1.

2.3 Curvature and matter power spectra in the Rh = ct
Universe

Our next step is to relate, also through a classical analysis, the
matter power spectrum with the curvature power spectrum
in the Rh = ct Universe. Later, we will investigate whether
it is possible to find a quantum mechanism for generating
the curvature perturbation. If possible, we will relate that
spectrum with the matter power spectrum, and then we will
compare it with the one proposed in (6).

We start the discussion by switching to conformal time
η, i.e. dt2 = a2dη2. In these coordinates H ≡ aH =
a′(η)/a(η), where a prime denotes derivative with respect
to conformal time. As a matter of fact, using the equation of

state P = −ρ/3, the continuity equation ρ′+3H(ρ+P) = 0
and Friedmann equation H2 = a2ρ/3M2

P, we arrive at the
important result

H = H0. (7)

That is,H is a constant of motion in the Rh = ct Universe and
has the value of the Hubble parameter today. For the sake of
completeness, we present the explicit form of the scale factor
in conformal time coordinates:

a(η) = eH0(η−η0) (8)

where η0 corresponds to the conformal time today.
The most generic metric associated to a flat FLRW Uni-

verse with linear scalar perturbations is

ds2 = a2(η){(1 − 2ϕ)dη2 + 2(∂i B)dxidη

−[(1 − 2ψ)δi j + 2∂i∂ j E]dxidx j }, (9)

where ϕ,ψ, E, B are scalar functions of the spacetime. In
the Newtonian gauge, ϕ = 
, ψ = �, and E = B = 0.

In the absence of anisotropic stress, Einstein equations
(EE) δGab = δTab/M2

P lead to 
 = �. Moreover, consider-
ing once again that in the Rh = ct Universe c2

s = w = −1/3,
the equation of motion for the Fourier mode
k(η) that results
from combining EE is


′′
k + 2H
′

k − k2

3

k = 0. (10)

The general solution of the former equation is a linear
combination of exp[(q − H)η] and exp[−(q + H)η], with
q ≡ +√

k2/3 + H2. Furthermore, using Eqs. (7) and (8),
we can express the scale factor as a(η) ∝ exp(Hη). Con-
sequently, if k � H then q ∼ H, thus the linearly inde-
pendent solutions of (10) can be approximated by a con-
stant and a decaying mode exp(−2Hη) ∝ a(η)−2. On the
other hand, if k � H then q ∼ k/

√
3, and the linearly

independent solutions of (10) are approximately given by a
growing mode 
k ∼ exp[(k − H)η] and a decaying mode
exp[−(k+H)η] ∝ exp(−kη)/a(η) (note that the conformal
time η is an increasing variable).

The EE with component δG00 = δT00/M2
P is useful to

relate the density contrasts with the metric perturbation 
.
That is,

δk = −2

3

k2

H2 
k − 2
k − 2

H
′
k . (11)

As we mentioned in the previous subsection, in the Rh =
ct Universe one is interested in the modes such that k > H;
that is, the modes whose associated proper wavelength is less
than the Hubble radius. These are the modes that evolve as

k ∼ exp (k − H)η; consequently 
′

k = (k − H)
. By
using that result, Eq. (11) becomes

δk = −2

3

k2

H2 
k − 2
k

H
k . (12)
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We emphasize that Eq. (12) is valid only for k > H and
w = c2

s = −1/3.
At this point we have to do a technical digression.

The quantum analysis of the field perturbations usually
involves the so-called Mukhanov–Sasaki variable, and then
one relates that variable with the comoving curvature pertur-
bationR. We will follow such an analysis in the next section;
however, Eq. (12), which will help us to relate the matter
power spectrum with the curvature one, was obtained in the
Newtonian gauge. Therefore, it will be useful to change from
the Newtonian gauge to the comoving gauge. That relation
is generically given (for constant w) by [49]

R = −5 + 3w

3 + 3w

 − 2

3 + 3w
H−1
′. (13)

Thus, for w = −1/3, Eq. (13) leads to R = −2
−H−1
′.
Moreover, if we focus on the modes such that k > H and
recall that for such modes 
′

k = (k − H)
k , then we arrive
at

− Rk =
(

1 + k

H
)


k . (14)

With Eqs. (12) and (14) at hand, it is straightforward (in
the comoving gauge) to relate the corresponding matter and
curvature spectra, namely

Pδ(k) 
 4

9
PR(k)

(
k2

H2 + 4
k

H − 2

)
, (15)

where we have retained only the first three dominant terms
in powers of k/H.

Equation (15) is the main result of this subsection. One
can immediately observe that if PR ∝ k−1, then the resulting
matter power spectrum will be of a similar structure as the
one shown in Eq. (6), except for a constant term.

In the following section, we will attempt to construct
a mechanism for generating the curvature power spectrum
PR(k).

3 Generation of the primordial curvature perturbation

In this section, we will consider two possibilities for gen-
erating the primordial curvature perturbations: a scalar field
dominating the early Rh = ct Universe, and a preceding
inflationary era in the Rh = ct Universe.

Since in the Rh = ct model the combination of different
types of matter is such that it mimics a perfect fluid with an
overall equation of state P = −ρ/3 (which involves a neg-
ative pressure), we will make the standard assumption that
the early Universe was dominated by a scalar field φ(x, t),
with some potential V (φ), such that P and ρ associated to
φ satisfy P(φ) = −ρ(φ)/3 at all times. Afterwards, the
scalar field should decay into particles of the standard model

and possibly into dark matter particles, and the evolution
of the Universe then follow the Rh = ct model. Since we
are considering a canonical scalar field, the action is given
by

S[φ] =
∫

d4x
√−g

(
1

2
gab∇aφ∇bφ − V (φ)

)
. (16)

In contrast with the standard�CDM model (plus inflation)
in which the end of a different cosmological era is linked to a
change in the equation of state, in the Rh = ct Universe the
equation of state P = −ρ/3 should be satisfied at all times
during the evolution of the Universe. As a consequence, we
need to provide a condition that marks the end of the early
cosmological era dominated by the field φ. We propose that
the value of the adiabatic speed of sound c2

s will help to
provide such condition.

For ordinary matter and constant equation of state we
know that w = c2

s . However, for a scalar field generically
c2

s �= w. In particular, for a canonical scalar field (a field
with canonical kinetic term), c2

s = 1 [49]. In fact, in standard
slow-roll inflation c2

s = 1 and w 
 −1. Therefore, in the
Rh = ct Universe, we will consider a canonical scalar field
that dominates the matter content of the early Universe, and
such scalar field will be characterized by c2

s = 1. Then, at
some point during the evolution, the scalar field will decay in
such a way that c2

s will decrease from c2
s = 1 to c2

s = −1/3.
Note from Eq. (3) that it is crucial to have c2

s = w = −1/3
in order to obtain Eq. (4), which results in a solution for the
growing modes. It is important to mention that other combi-
nations of w and c2

s would lead to a solution of Eq. (3) with
a growing mode; in particular, the condition for the Rh = ct
model is w = −1/3. Hence, other values of c2

s , but maintain-
ing w = −1/3 could lead to a growing mode in the Rh = ct
model. On the other hand, Eq. (4) is the main equation used
by the authors of the Rh = ct model to analyze the growth
of structure in [41,48]; and to obtain Eq. (4) from Eq. (3),
one must satisfy c2

s = w = −1/3.
To continue, we split the scalar field into an homo-

geneous part plus small inhomogeneities, i.e. φ(x, t) =
φ0(t)+δφ(x, t). The homogeneous part of the field drives the
background evolution, that is, the one characterized by the
Rh = ct Universe, and the quantum theory of δφ(x, t) will
result in the primordial power spectrum of the perturbations.
In the following, we will attempt to construct a quantum the-
ory for δφ, but first we will derive some useful quantities to
describe the background.

Since the background field, φ0, drives the evolution of the
Rh = ct Universe, we can associate the standard energy-
momentum tensor T α

β to the field φ0. In particular, from the

time component T 0
0 = ρ(φ), we infer ρ = φ′2

0 /2a2 + V (φ);
additionally, T i

j = −P(φ)δij implies that P = φ′2
0 /2a2 −

V (φ).
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Using the fact that H is constant [see (7)], and from the
continuity equation ρ′+3H(ρ+P) = 0 applied to the scalar
field φ0, one obtains

φ′′
0 = 0. (17)

Consequently, from Eqs. (7) and (17), it is clear that in the
Rh = ct Universe, H and φ′

0 are exactly constants of motion.
As a matter of fact, using the Friedmann equations, it can be
shown that

φ′
0

H = √
2MP. (18)

Furthermore, using that φ′′
0 = 0 and that H is a con-

stant, we can find a potential that is consistent with P(φ) =
−ρ(φ)/3. This potential turns out to be

V (φ) = H4e−2φ/H. (19)

Now, let us focus on the linear scalar perturbations. The
field perturbations δφ induce metric perturbations δgμν via
EE. As we mentioned in Sect. 2.3, Eq. (9) represents the most
generic metric associated to a FLRW Universe with scalar
perturbations. As is well known, the relativistic perturbation
theory has the issue of gauge redundance [50,51]. However,
the gravitational part can be characterized by a single, gauge-
invariant object known as the Bardeen potential defined as
[52]


B(x, η) = ϕ + 1

a
[a(B − E ′)]′. (20)

In the same manner, the matter sector can be described by
the gauge-invariant field perturbation

δφ(gi)(x, η) = δφ + φ′
0(B − E ′). (21)

The Einstein equations relate 
B and δφ(gi) through a
constraint equation. That implies that the scalar sector can be
characterized by a single object; this object is the so-called
Mukhanov–Sasaki variable, defined by

v(η, x) ≡ a

[
δφ(gi) + φ′

0

B

H
]

. (22)

All other relevant quantities can be expressed in terms of
v(η, x), i.e. it fully characterizes the scalar sector.

Moreover, we can expand the action of our theory, that is,
the action of a scalar field minimally coupled to gravity, up
to second order in the scalar perturbations, obtaining

δS(2) = 1

2

∫
dηd3x

[
(v′)2 − δi j∂iv∂ jv + z′′

z
v2

]
, (23)

where z ≡ aφ′
0/H. From Eq. (18) we obtain in the Rh = ct

model

z = √
2MP a. (24)

From the action (23), the equation of motion is

v′′ − ∇2v − z′′

z
v = 0. (25)

Notice that Eq. (24) implies that z′′/z = a′′/a. Additionally,
the fact thatH′ = 0 implies that a′′/a = a′2/a2 = H2. Thus,
the equation of motion can be rewritten as

∂2v − H2v = 0, (26)

where we have defined the operator ∂2 ≡ ∂2
η − ∇2. Since

H2 is a positive constant, Eq. (26) is a Klein–Gordon type
of equation with the “wrong” mass sign, that is, the motion
equation of a free tachyon field. This can also be read directly
from action (23), which is δS(2) = ∫

dηd3xL, where

L = 1

2
∂2v + 1

2
H2v2. (27)

Thus, quantizing the scalar field v(η, x) in the Rh = ct Uni-
verse, is equivalent of quantizing a free tachyon with constant
mass given by m2 = −H2 < 0.

There are various methods proposed for constructing a
quantum field theory of a free tachyon in the past [53–58].
Nevertheless, there are some issues that seem to be always
present in such theories [59]. Among them, we can men-
tion the non-locality of the tachyonic field, represented in
the present paper by the field v(x) [the short-hand notation
x refers to a point in spacetime (x, η)], in the sense that the
commutator (as well as the anti-commutator in some meth-
ods) [v̂(x), v̂†(x ′)] does not vanish for spacelike arguments.
Another puzzle is that the energy operator, normally asso-
ciated to the Hamiltonian, does not have a lower bound on
its spectrum, i.e. there are infinitely negative energy states,
which requires some reinterpretation principle [60]. But per-
haps the most serious difficulty in formulating a theory of
tachyons is that the resulting S-matrix is non-unitary. Thus,
it is unknown how to describe interactions within the theory
of a tachyonic field [59].

In spite of the aforementioned issues, we could proceed in
a pragmatic way, and construct a quantum theory of the field
v(x) but only considering the modes such that k > H, i.e.
modes with a proper wavelength less than the Hubble radius
λp < H−1. Also, according to Ref. [41] those modes are
the ones that can grow and evolve into large scale structure.2

Afterwards, we could compute the quantum two-point corre-
lation function and extract its corresponding power spectrum.

There are various known methods for constructing a quan-
tum theory for a field with the Lagrangian (27) that ignores
the “problematic modes”. Among those, we can mention the
one proposed by Feinberg [56] and another one developed
by Arons and Sudarshan (AS) [57]. We will focus on those

2 Note that modes with k � H are always less than H in the Rh = ct
model, therefore they will not be relevant at all observationally.
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methods as they illustrate the kind of puzzles one encounters
when trying to compute 〈v̂(x, η)v̂(x′, η)〉.

Both methods assume that the field v(x) possesses non-
vanishing Fourier components only for k ≥ H and is
expanded as

v(x) = 1

(2π)3/2

∫
k≥H

d3k√
2w(k)

[c+(k)e−iw(k)|η|+ik·x

+ c−(k)eiw(k)|η|−ik·x], (28)

where w(k) ≡ +√
k2 − H2. Then one promotes the field

v into an operator v̂. The difference between the AS and
Feinberg’s method is the quantum interpretation of the coef-
ficients c+(k) and c−(k).

Feinberg’s method follows the traditional approach of pro-
moting c+(k) → ĉ(k) and c−(k) → ĉ(k)† into annihila-
tion and creation operators respectively. Furthermore, ĉ(k)

and ĉ(k)† satisfy anti-commutator relations {ĉ(k), ĉ(k′)†} =
δ3(k − k′). The anti-commutator replaces the commuta-
tor since the former is compatible with Lorentz invariance,
within the quantization of a free tachyon. However, under a
suitable Lorentz transformation, ĉ(k) can be converted into
ĉ(k)†. Thus, the vacuum state defined as ĉ(k)|0〉 = 0 is not
an invariant vacuum state since in another frame of refer-
ence it takes the form ĉ(k)†|0〉 = 0. For this reason, we find
Feinberg’s method not to be suitable for the problem at hand.

On the other hand, in the AS method both coefficients are
promoted to annihilation operators. The fact that both oper-
ators ĉ+(k) and ĉ−(k) are annihilation operators is needed in
this approach in order to preserve the Lorentz invariance sym-
metry of the vacuum state [53,59]. Moreover, one also has
anti-commutation relations {ĉ±(k), ĉ±(k′)†} = δ3(k − k′)
and the vacuum state defined as c±(k)|0〉. Consequently, we
can compute 〈0|v̂(x, η)v̂†(x′, η)|0〉, which yields

〈0|v̂(x, η)v̂†(x′, η)|0〉 =
∫ ∞

0

dk

k

sin k|x − x′|
k|x − x′|

k3

2π2w(k)
.

(29)

In the comoving gauge, the curvature perturbation is given
by R = v/z. That is, from (29) we can extract the primordial
power spectrum PR(k, η) = Pv(k)/z(η)2, which, using Eq.
(24), results in

PR(k, η) = 1

2M2
Pa

2(η)w(k)

 1

2M2
Pa

2(η)k
. (30)

The previous approximated expression is valid only for k >

H. As a matter of fact, PR(k, η) = 0 for k < H; i.e. there
are no “super-Hubble” modes (see footnote 2).

Substituting Eq. (30) into Eq. (15) yields the matter power
spectrum,

Pδ(k, η) 
 2

9M2
Pa

2(η)H

(
k

H + 4 − 2
H
k

)
, (31)

which is valid for k > H, while Pδ(k) = 0 if k < H. The
quantum theory proposed above resulted in a matter power
spectrum (31) of the same structure in k, plus a constant
term, as the one in Eq. (6), whose form was proposed by the
authors of [41,48] motivated by observational data. It may be
the case that the spectrum (31), including the constant term,
could reproduce the results obtained from the one proposed
heuristically in Refs. [41,48], Eq. (6), for some values of
the parameters considered in those references. However, the
quantum theory of the primordial perturbation in the present
section contains at least two fundamental issues: (i) the theory
describes a free tachyon field and (ii) the final primordial
spectrum, Eq. (30), depends on the scale factor. We will study
the implications of the second issue in the next section. Here,
let us focus on the first issue.

The fact that the spectrum obtained involved the quantum
theory of a free tachyon field could discourage some readers
to consider the quantum theory of the field v(x) as a seri-
ous mechanism for generating the primordial spectrum in
the Rh = ct Universe. The reasons are vast and we entirely
subscribe to most of them. However, a possible way to deal
with that issue is to abandon the Rh = ct model framework
for the early Universe and instead use the standard inflation-
ary paradigm. In other words, we can assume that inflation
did occur in the early Universe, but then, after the reheat-
ing era, the Universe followed the evolution described by the
Rh = ct Universe.

In slow-roll inflation, one has the standard theory of the
inflation field, and the end of the inflationary era is achieved
when the slow-roll parameters are close to unity. As is well
known, the quantum theory of single field slow roll inflation
leads to the following expression for the Mukhanov–Sasaki
variable:

vk(η) 
 1√
2k

(
1 − i

kη

)
e−ikη, (32)

and z = √
2εMP a, where ε is the standard Hubble slow-roll

parameter defined as ε ≡ 1 − H′/H and during inflation
ε � 1. As a consequence, the primordial spectrum for slow-
roll inflation is PR 
 |vk(η)|2/z2, that is,

PR(k) 
 1

4M2
Pεa2k

(
1 + H2

k2

)
, (33)

where we used that H 
 −1/η during inflation. For the
“super-Hubble” modes, i.e. modes that k � H during infla-
tion, one has the familiar result (ignoring the numerical fac-
tors)

PR(k) 
 H2

M2
Pεk3

, (34)

that is, the scale invariant primordial spectrum, which
remains constant after the “horizon crossing.” On the other
hand, the “sub-Hubble” modes, which satisfy k � H during
inflation, lead to a spectrum of the form
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PR(k) 
 1

M2
Pa

2εk
. (35)

In the standard �CDM model, the sub-Hubble modes are
ignored since they decay as ∼ a−2. However, in the Rh = ct
Universe these modes need not to decay so much because in
the Rh = ct model there is no “horizon problem” (see Ref.
[29]). Consequently, there is no minimum value of e-folds
needed for inflation to solve the horizon problem. Thus, the
inflationary era could end after a few e-folds and the sub-
Hubble modes still contribute to the observable modes in the
CMB.

Additionally, in the inflation plus Rh = ct Universe sce-
nario, the dynamical evolution of H, ignoring the reheating
era, is

H =
{

− 1
η

if η < η f (inflation)

H0 if η ≥ η f (theRh = ct Universe),
(36)

where η f denotes the conformal time at which inflation ends,
thus, η f = −1/H0.

Equation (36) implies that super-Hubble modes k < H
during inflation, stay super-Hubble at all times, namely they
do not re-enter the horizon as in the standard �CDM model,
instead, if a mode satisfies k < H during inflation, then
it also satisfies k < H during the whole evolution of the
Rh = ct Universe. Therefore, taking into account that 
k is
a constant for super-Hubble modes and that w = −1/3, one
obtains from Eqs. (11) and (13) the matter power spectrum,

Pδ(k) 
 H2∗
M2

Pε∗k3
, (37)

where H∗ and ε∗ are valuated at the time −kη∗ = 1 during
inflation.

On the other hand, Eq. (36) implies that if a mode is sub-
Hubble during the Rh = ct Universe expansion, k > H =
H0, then it is also sub-Hubble during inflation −kη > 1 (or
equivalently k > Hinf). As a consequence, the primordial
spectrum associated to these modes, Eq. (35), should be eval-
uated at some conformal time η̃ after inflation ends, namely
when ε = 1 and a(η̃) > a(η f ). Therefore, after substituting
Eq. (35) into Eq. (15), the matter power spectrum associated
to the super-Hubble modes, at leading order in k/H, is

Pδ(k) 
 k

M2
Pa

2(η̃)H (38)

Thus, adding a standard inflationary era to the Rh = ct
model, results in a matter power spectrum of the form

Pδ(k) ∝
{
k if k > H = H0

k−3 if k < H = H0.
(39)

The spectrum (39) has a resemblance to the standard pre-
diction of the �CDM model but with an important differ-
ence. In the traditional model, one divides the parts pro-

portional to k and k−3 using the value keq., instead of the
value H0 as in (39), where we have defined keq. ≡ 1/ηeq.

and ηeq. denotes the conformal time at the epoch of matter-
radiation equality. If k � keq., then the mode enters the
horizon (or becomes sub-Hubble) during the matter domi-
nated epoch and Pδ(k) ∝ k. On the contrary, if k � keq.,
then the modes becomes sub-Hubble during the radiation era
and Pδ(k) ∝ k−3.

Also, note that the matter power spectrum shown in (39)
is not of the form proposed by the authors of the Rh = ct
Universe [see (6)], which we obtained by adding a previous
inflationary phase to the Rh = ct model. The only similarity
between the two expressions, Eqs. (39) and (6), is in the term
that goes as k, the rest of the terms are not equivalent. The
spectrum of Eq. (6) was proposed heuristically (not deduced
from a physical mechanism) by the original authors of the
Rh = ct model in order to provide a solution for the low
correlation observed at large angles. Given that Eq. (39) is
not the same as (6), we cannot say if the analysis made by
the authors of Rh = ct model still is valid for Eq. (39), i.e.
we cannot claim that the spectrum (39) solves the low large-
angle correlation. In the next section, we will deepen the
discussion regarding the viability of the primordial spectra
obtained when considering the amplitude of the temperature
anisotropies in the CMB.

4 Amplitude of the primordial spectra and the CMB
temperature anisotropies

In the previous section, we proposed a mechanism for deriv-
ing the primordial spectrum from the quantum fluctuations
of a field φ that dominated the early Universe, but with the
condition that the field must satisfy P(φ) = −ρ(φ)/3. That
procedure resulted, albeit the need of a quantum theory for a
free tachyon, in a prediction with a similar shape to the one
proposed by the authors of the Rh = ct Universe [41,48], but
with the difference that the final primordial spectrum showed
in Eq. (30) depends on the scale factor. In the present sec-
tion, we return to this subject by analyzing the amplitude of
the spectrum, which is tightly related to the amplitude of the
CMB temperature anisotropies.

We will consider the Sachs–Wolfe effect on the tempera-
ture anisotropies. That effect is the dominant source for the
anisotropies at large angular scales (l ≤ 20). It also relates the
anisotropies in the temperature observed today on the celes-
tial sphere to the inhomogeneities in the Newtonian potential
on the last scattering surface,

δT

T
(θ, ϕ) 
 1

3

(ηD, xD). (40)

Here, ηD is the conformal time of the decoupling era and
xD = RD(sin θ sin ϕ, sin θ cos ϕ, cos θ), with RD the comov-
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ing radius of the last scattering surface. It is useful to perform
a multipolar series expansion δT

T = ∑
l,m almYlm(θ, ϕ).

Using the Fourier expansion of 
(ηD, xD) and the expres-
sion for the Sachs–Wolfe effect, the coefficients alm can be
expressed as

alm 
 4π i l

3

∫
d3k

(2π)3/2 jl(kRD)Y ∗
lm(k̂)
k(ηD), (41)

with jl the spherical Bessel functions of order l. The observed
data is presented in terms of the angular power spectrum
defined asCl ≡ 1/(2l+1)

∑
m |alm |2, that is, Eq. (41) yields

Cl 
 2

9π

∫ ∞

0
dk k2 jl(kRD)2|
k(ηD)|2. (42)

It is straightforward to check that if |
k(ηD)|2 = A/k3,
with A some constant, then Cl = A/[l(l + 1)]. In other
words, for l ≤ 20, the quantity l(l + 1)Cl is a constant A
and is equal to the amplitude of the squared temperature
anisotropies ∼ 10−9 [5]. Thus, it is a necessary condition that
the squared amplitude of the Newtonian potential at the time
of decoupling should scale as ∼k−3 if Cl is to be consistent
with the temperature anisotropies of the CMB.

In the standard �CDM model, the value of |
k(ηD)|2
is determined by the modes that became super-Hubble dur-
ing inflation. Those modes behave as |
inf

k |2 = A/k3 and
remained constant during the whole cosmological evolution
up until they became sub-Hubble at some point. If the modes
became sub-Hubble during the matter dominated epoch, then
they remain constant even for k > H. On the other hand, the
modes that became sub-Hubble during the radiation domi-
nated epoch decayed as ∼a2. Thus, in the traditional scenario
once |
inf

k |2 is generated during inflation, it remains fixed at
that value and then one simply relates |
k(ηD)|2 ∝ |
inf

k |2.
In other words, the amplitude A = k3|
inf

k |2 is fixed during
inflation and is the same for all modes up to the decoupling
epoch.

Now, let us focus on the value of |
k(ηD)|2 in the Rh = ct
Universe. As mentioned previously, the potential 
k corre-
sponds to the general solution of Eq. (10), which is a linear
combination of exp[(q−H)η] and exp[−(q+H)η], withq ≡
+√

k2/3 + H2. Moreover, using a(η) ∝ (expHη), the two
linearly independent solutions can be rewritten as follows:
the first solution is exp[(q − H)η] = exp[(q/H − 1)Hη] =
exp[(α − 1)Hη] ∝ aα−1. We have defined α ≡ q/H; sim-
ilarly, the second solution is given by a−α−1. Since α > 0
the second solution corresponds to a decaying mode; on the
other hand, the first solution is explicitly


k(η) = Cka(η)α−1. (43)

If k < H then α ∼ 1; on the contrary, if k > H then α > 1.
Therefore, depending on whether k < H or k > H, the first
linearly independent solution of (10) can be approximated
by a constant or a growing mode [which is consistent with

the discussion after Eq. (10)]. In the Rh = ct model one is
interested in the growing mode, hence k > H and α > 1.

The primordial spectrum PR(k) obtained in Eq. (30) can
be related to the amplitude of the Newtonian potential |
k |2
through Eq. (14), which results in

|
k(ηp)|2 = H2

2M2
Pa

2
pk

3
. (44)

Note that we have evaluated the scale factor, and conse-
quently the power spectrum, at some conformal time ηp, i.e.
a(ηp) = ap.

At this point, we will make the assumption that the value
of |
k |2 obtained during the period dominated by the scalar
field φ [Eq. (44)], when c2

s = 1, is the same as the one given
by (43), when c2

s = −1/3 at the time ηp. Note, however,
that in both cases w = −1/3, hence the Rh = ct Universe
expansion remains unchanged. In particular, we are assuming
that the following condition is satisfied:

|
k(ηp)|2c2
s =1 = |
k(ηp)|2c2

s =−1/3 (45)

but w = −1/3 in both situations. In other words, we are
assuming that the “reheating” period in the Rh = ct Universe
is practically instantaneous.

Furthermore, with the condition (45) and expression (44),
we can find the explicit value of the integration constant Ck

in (43):

C2
k = H2

2M2
Pk

3a2α
p

. (46)

Consequently, the expression for |
k(η)|2 in the Rh = ct
model is given by

|
k(η)|2 = H2

2M2
Pk

3a2α
p

a(η)2α−2. (47)

The Newtonian potential obtained, Eq. (47), has a scale
dependence k−3, which could guarantee the same ampli-
tude for all the modes. But, unfortunately, it also carries an
additional k-dependence through α; specifically, for modes
k > H, we can approximate α 
 k/H. Therefore, different
modes, grow at a different rate, and for that reason, the ampli-
tude of each mode at the time of decoupling would be differ-
ent for each mode. Nevertheless, we could make use of the
fact that up to this point ap has remained unspecified. Then,
to avoid the mentioned issue, we must have a2α

p = N 2a2α−2
D ,

with N 2 some normalization constant and aD the scale factor
at the time of decoupling. In other words, we are adjusting the
value of ap for each mode in order to achieve that all modes
arrive with the same amplitude at the time of decoupling, and
thus we obtain a nearly scale invariant spectrum as observed
in the CMB.
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By using the expression a2α
p = N 2a2α−2

D and Eq. (47), we

obtain the value of |
k |2 evaluated at the time of decoupling,

|
k(ηD)|2 = H2

2M2
Pk

3N 2
. (48)

Afterwards, we could simply adjust N 2 so that

H2/(M2
PN

2) 
 10−9.

However, the condition a2α
p = N 2a2α−2

D can be rewritten as

log ap = 1

α
log N +

(
1 − 1

α

)
log aD, (49)

which implies that if α � 1 (or equivalently k � H) then
ap 
 aD. That is, for these modes, the epoch dominated by
the scalar field φ should last up until the decoupling epoch in
order to the primordial spectrum obtained can have a consis-
tent amplitude with the corresponding observed in the tem-
perature anisotropies of the CMB.

Another way to show that the spectrum (47) presents some
issues with the CMB is to calculate the angular power spec-
trum l(l + 1)Cl from Eq. (42) using precisely Eq. (47). It is
known that, for low l, say l < 20, the shape of the angular
power spectrum must be essentially a constant, independent
of l, which results from a nearly scale invariant primordial
power spectrum. That is, the region of the angular spectrum
where the Sachs–Wolfe effect is dominant must not depend
on l in order to be consistent with the CMB. Thus, our next
task will be to compute the angular power spectrum using
the spectrum (47) for l < 20.

Assuming that ap = aD/γ , with γ > 1 a constant and
evaluating Eq. (47) at the time of decoupling, we have

|
k(ηD)|2 = H2

2M2
Pa

2
D

γ 2α

k3 . (50)

Substituting Eq. (50) into Eq. (42), we find

Cl 
 1

9π

H2

M2
Pa

2
D

∫ ∞

H0

dk

k
jl(kRD)2γ 2α. (51)

Since the spectrum (47) was obtained for the modes k > H =
H0 note that the lower limit of integration is H0. As a matter
of fact, the modes with k < H vanished when we consid-
ered the quantum theory of a free tachyon. The value of RD,
which corresponds to the comoving radius of the last scatter-
ing surface, was calculated in Refs. [41,48] in the context of
the Rh = ct model resulting RD 
 10/H0. Additionally, for
k > H we can approximate α 
 k/H = k/H0. Performing
the change of variable in the integral (51) of x ≡ k/H0 yields

Cl 
 1

9π

H2

M2
Pa

2
D

∫ ∞

1

dx

x
jl(10x)2γ 2x . (52)

Noting that the asymptotic form of the functions jl(10x)2

contribute with a factor of 1/x2 as x → ∞ and that γ > 1,
we can conclude that the integral in Eq. (52) diverges.

We remind the reader that the standard �CDM prediction,
which is consistent with the CMB data, would have resulted
in l(l + 1)Cl = const. for the lowest multipoles (approxi-
mately for l < 20). On the other hand, the result of Eq. (52)
diverges even for the lowest values of l. Thus, in addition
to the aforementioned problems, e.g. the need of a quantum
theory of a free tachyon and that the epoch dominated by the
scalar field φ should last up until the decoupling epoch, the
resulting angular power spectrum is divergent.

Furthermore, the condition (49) also applies to the situ-
ation in which one drops the Rh = ct model in the early
Universe in favor of an inflationary era. As we described
in Sect. 3, during inflation, the dynamical evolution of the
Mukhanov–Sasaki variable v leads to the following expres-
sion for the comoving curvature perturbation:

|Rk(η)|2 
 1

4M2
Pεa2k

(
1 + H2

k2

)
, (53)

which for sub-Hubble modes k > H is approximated by
|Rk(η)|2 
 (4M2

Pεa2k)−1. Next, we evaluate |Rk(η)|2 at
some time ηp near the end of inflation, i.e. when ε = 1, and
we make the assumption that

|Rk(ηp)|2w
−1 = |Rk(ηp)|2w=−1/3, (54)

once again neglecting the reheating era.
Using Eq. (14), which allows us to relate |Rk(η)|2 with

|
(η)|2 when w = −1/3, and since we are connecting the
inflationary regime with the Rh = ct Universe expansion, we
haveH = H0. Consequently, the amplitude of the primordial
Newtonian potential is

|
(ηp)|2 
 H2

4M2
Pk

3a2
p
, (55)

which is essentially the same as the one in (44). Therefore,
all the mathematical steps that lead from (44) up to (49) are
equivalent, including Eq. (47). And, from condition (49), one
is led to conclude that inflation should last until the decou-
pling epoch in order to the primordial spectrum obtained can
have a consistent amplitude with the temperature anisotropies
of the CMB. Moreover, the discussion regarding the shape of
the angular power spectrum also remains the same since the
spectrum obtained in Eq. (47) will be exactly the same in the
present scenario of adding an inflationary era to the Rh = ct
model.

Given that both approaches, for generating the primordial
perturbation, require very unlikely conditions to be compat-
ible with the observed shape and amplitude of the tempera-
ture anisotropies, we could do a search for the initial value of
|
k(ηp)|2 so that it is consistent with the CMB temperature

123



626 Page 10 of 13 Eur. Phys. J. C (2016) 76 :626

anisotropies based solely on the dynamics of the Rh = ct
model.

The equation of motion for 
k , Eq. (10), implies that

d

dη

(

k(η)a(η)1−α

)
= 0. (56)

That is, 
k(η)a(η)1−α is a constant of motion in the Rh =
ct Universe. Consequently, we have the relation 
k(ηD) =
(
k(ηp)/aα−1

p )aα−1
D , which implies that

|
k(ηD)|2 = |
k(ηp)|2
a2α−2

p
a2α−2

D . (57)

We now select the value of the scale factor at the initial time
ηp. Hence, we assume that aP = CaD, with C some normal-
ization constant and C < 1, which from Eq. (57) yields

|
k(ηD)|2 = |
k(ηp)|2
C2α−2 . (58)

Therefore, if the initial amplitude of the Newtonian poten-
tial is of the form

|
k(ηp)|2 = C2α

k3 , (59)

then the amplitude of the Newtonian potential at the time of
decoupling, Eq. (58), is |
k(ηD)|2 = C2/k3, which will be
consistent with the amplitude of the temperature anisotropies
if C2 
 10−9.

It is evident that Eq. (59) is not equivalent to (44) and/or
(55), which corresponds to the primordial amplitude obtained
in the two approaches described in the previous section.
Thus, any mechanism proposed for generating the primor-
dial curvature perturbation in the Rh = ct Universe must
be of the form of Eq. (59) in order to be consistent with the
CMB temperature anisotropies. However, neither a scalar
field dominating the early Universe satisfying an equation of
state P(φ) = −ρ(φ)/3 nor the inflation yield a primordial
spectrum compatible with Eq. (59).

5 Discussion

In this work, we began by proposing that the small inhomo-
geneities of a scalar field δφ could generate the primordial
spectrum in the same fashion as the one in the standard infla-
tionary scenario, but with the important difference that during
the period dominated by the scalar field, the equation of state
P(φ) = −ρ(φ)/3 should be satisfied at all times. That is an
important condition in the Rh = ct cosmological model.

Under that proposal, the quantum theory of perturba-
tions led to a theory of a free tachyon field with mass
m2 = −H2 = −H2

0 < 0. We pushed forward and followed
a suitable method for dealing with that kind of theory, which
resulted in a matter power spectrum (31) that is similar in

structure in k, plus a constant term, to the one proposed in an
empirical manner in Refs. [41,48], Eq. (6). It might be the
case that, for some values of the parameters corresponding
to the spectrum proposed by the authors of the Refs. [41,48],
the spectra (31) and (6) coincide and the analysis of Refs.
[41,48] continues to be valid for the matter power spectrum
given in Eq. (31). Nevertheless, as we will see in the rest of
this discussion there are other important problems associated
to the spectrum, Eq. (31).

The fact that the quantum theory of the perturbations in
the Rh = ct Universe resulted in that of a free tachyon car-
ries deep issues. Among them, perhaps the most important
issue in the cosmological context is that the corresponding
S-matrix is non-unitary. Therefore, there is no clear way how
to describe interactions. The interactions with other fields are
important since at some point the scalar field φ, dominating
the early Universe in the Rh = ct model, should decay into
the particles of the Standard Model, and in the absence of
a well defined S-matrix, it is a puzzle how to describe such
interactions. Another related issue with the non-unitarity of
the S-matrix is that the self-interactions of the scalar degree of
freedom, characterized here by the Mukhanov–Sasaki vari-
able, result in primordial non-Gaussianities; however, since
there is no way to characterize the interactions, one cannot
quantify the amount of primordial non-Gaussianities gener-
ated by the perturbations in the Rh = ct Universe.

Since in the Rh = ct framework z′′/z = a′′/a, the action
given in Eq. (23) will be identical for a hypothetical analysis
of tensor modes. Thus, if one wanted to study the tensor case,
the quantum field theory used here for scalar perturbations
would be equivalent. Therefore, in the light of our results, it
is not obvious how tensor modes could be generated within
the framework of a quantum theory in the Rh = ct model.
In case of adding an inflationary epoch prior to the Rh = ct
evolution, tensor modes could be generated but since the
modes satisfying k > H are relevant, their amplitudes will be
exponentially suppressed and the suppressing will continue
also during the Rh = ct evolution.

Those issues added to the technical and conceptual prob-
lems raised by a quantum theory of a free tachyon might
suggest that we should abandon the idea of describing the
quantum perturbations in the Rh = ct Universe.

The aforementioned problems led us to consider the quan-
tum theory of perturbations during an inflationary era preced-
ing the Rh = ct cosmological expansion. However, given the
nature of the Rh = ct Universe, we needed to focus on the
primordial spectrum of the sub-Hubble modes. The primor-
dial spectrum that resulted from inflation for the sub-Hubble
modes is not consistent with the matter power spectrum pro-
posed by the authors of the Rh = ct Universe.

In fact, the matter power spectrum that we obtained by
adding an early inflationary regime in the Rh = ct model,
resembles to the traditional one from the �CDM model, but
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it is not exactly the same. More precisely, the matter power
spectrum obtained by adding an early inflationary regime
to the Rh = ct model, can be separated into two cases. In
one case the spectrum goes as k, and in the second case the
spectrum goes as k−3. In the �CDM model the matter power
spectrum can also be separated into two cases, one that goes
as k and a second case where the spectrum goes as k−3.
However, as mentioned after Eq. (39), the conditions for the
separation into two cases in the Rh = ct model are not the
same as the conditions in the standard model. Consequently,
the functional form of the �CDM matter power spectrum
is completely different from the Rh = ct model. Moreover,
the matter power spectrum obtained by adding an early era
of inflation to the Rh = ct model leads to a matter power
spectrum that is different from the one proposed empirically
by the authors of the Rh = ct model. The main motivation,
as stated by those authors when proposing such a spectrum,
was to solve the observed low correlation at large angles
in the angular correlation, and since the spectrum that we
have obtained, Eq. (39), is not equal to the one heuristically
proposed, Eq. (6), we cannot claim that the spectrum in Eq.
(39) explains the observed low angular correlation at large
angles.

Finally, we investigated the predicted amplitude of the
CMB temperature anisotropies following the two approaches
described. In the first approach, we considered an early phase
dominated by a scalar field φ satisfying the equation of state
of the Rh = ct model; in the second framework, we assumed
an inflationary stage preceding the Rh = ct cosmological
evolution. In both approaches, the amplitude of the Newto-
nian potential at the time of decoupling, which is the main
source of the temperature anisotropies at low angular mul-
tipoles, depends on the wavenumber k in a non-trivial way.
The reason is that in the Rh = ct Universe the evolution of
each mode associated to the Newtonian potential evolves as
∼ aα−1, with α 
 k/H. As a consequence, we were forced
to choose a particular initial condition for the evolution of
the modes that translates into adjusting the value of the scale
factor for each mode at the initial time ηp. Specifically, we
had to choose a2α

p = N 2a2α−2
D , with N some normalization

constant and aD the value of the scale factor at the time of
decoupling. Such an election implies that, for modes k � H,
the initial value of the scale factor is ap 
 aD. That is, the
era dominated by the scalar field φ, in the first approach, or
the inflationary era preceding the Rh = ct evolution, should
last up to the decoupling epoch in order to the primordial
spectrum obtained can have a consistent amplitude with the
corresponding observed in the temperature anisotropies of
the CMB. Another related problem that emerges from con-
sidering the Newtonian potential Eq. (47) is that the predicted
angular power spectrum Eq. (52) diverges in the region where
the Sachs–Wolfe effect is dominant. The expected behavior
for the angular power spectrum, which is consistent with the

CMB data in the Sachs–Wolfe region, is l(l + 1)Cl 
 con-
stant.

We ended our analysis by obtaining the desired form of
the initial amplitude of the Newtonian potential based solely
on the dynamics of the Rh = ct Universe, and that it could be
consistent with the CMB temperature anisotropies. That pri-
mordial amplitude should be |
k(ηp)|2 = C2α/k3, which is
not the one obtained from the two approaches considered so
far. Thus, we think that any proposed mechanism for gener-
ating the primordial spectrum should predict that particular
initial amplitude to be consistent with the observed CMB
anisotropies. In fact, if some physically motivated mecha-
nism, within the Rh = ct model, can reproduce the primor-
dial spectrum |
k(ηp)|2 = C2α/k3 then all the concerns
raised in our paper would possibly disappear. Nevertheless,
neither slow roll inflation based on a single scalar field nor
a scalar field dominating the Rh = ct Universe can produce
that kind of spectrum.

6 Conclusions

Some studies have drawn attention to the lack of large-angle
correlations in the observed CMB temperature anisotropies
with respect to that predicted within the standard �CDM
model. Recently, some authors have suggested that this lack
of correlations could be explained in the framework of the
so-called Rh = ct model without inflation, by selecting an
explicit form for the matter power spectrum and showing that
it could achieve a better fit than the �CDM model to the data
corresponding to the CMB angular correlation function. The
aim of this work was to critically investigate whether there
may be a mechanism to generate, through a quantum field
theory, the primordial power spectrum presented by these
authors.

During this search we run into deep issues and, we also
studied the possibility of adding an inflationary phase prior
to the evolution given by the mentioned model. The resulting
power spectrum for the relevant sub-horizon modes within
this approach is not consistent with the matter power spec-
trum displayed by the mentioned authors; thus, it cannot
explain the unexpectedly close to zero angular two-point cor-
relation function observed at angular scales larger than 60◦.

Also, we analyze the consistency between the pre-
dicted and observed amplitudes of the CMB temperature
anisotropies with and without the inflationary epoch added
prior to the Rh = ct evolution. We found that for modes
satisfying k � H, the epoch dominated by the scalar field
(representing the matter field in the Rh = ct Universe or
the inflaton) should last up to the decoupling epoch in order
to the primordial spectrum obtained can have a consistent
amplitude with the corresponding observed in the tempera-
ture anisotropies of the CMB. That is an implausible con-
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dition. Additionally, we have performed a brief analysis by
focusing on the lowest angular multipoles l < 20, where
we expect the Sachs–Wolfe effect to be the dominant effect,
and we obtained, for l < 20, the angular power spectrum
l(l + 1)Cl is divergent; clearly not consistent with the obser-
vations from the CMB.

Finally, we showed the generic form that a primordial cur-
vature power spectrum should exhibit in the Rh = ct frame-
work to be consistent with the CMB temperature anisotropies
observed. Neither a scalar field dominating the early Universe
satisfying an equation of state P(φ) = −ρ(φ)/3 nor slow
roll inflation based on a single scalar field yield a primor-
dial spectrum compatible with this requirement. Based on
the results obtained in this paper, we conclude that (in addi-
tion to the criticisms already raised by other authors) it is not
clear how to characterize the quantum perturbations within
the Rh = ct Universe, rendering this model a very unlikely
alternative to the standard �CDM model.
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