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Abstract We derive formulas for the classical Chern—
Simons invariant of irreducible SU (n)-flat connections on
negatively curved locally symmetric three-manifolds. We
determine the condition for which the theory remains consis-
tent (with basic physical principles). We show that a connec-
tion between holomorphic values of Selberg-type functions at
point zero, associated with R-torsion of the flat bundle, and
twisted Dirac operators acting on negatively curved man-
ifolds, can be interpreted by means of the Chern—Simons
invariant. On the basis of the Labastida—Marifio—-Ooguri—
Vafa conjecture we analyze a representation of the Chern—
Simons quantum partition function (as a generating series of
quantum group invariants) in the form of an infinite product
weighted by S-functions and Selberg-type functions. We con-
sider the case of links and a knot and use the Rogers approach
to discover certain symmetry and modular form identities.
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1 Introduction

The Chern—Simons theory is one of the two archetypal
field theories in physics, together with Yang—Mills theory,
that describe the interaction of gauge fields. In 3D, the
number of dimensions we wish to consider in this paper,
the dynamics is so constrained as to leave room only for
non-dynamical (topological) correlators. The corresponding
topological quantum field theory was defined and developed
by Witten [1] and Reshetikhin and Turaev [2], and it was
applied to the mathematical theory of knots and links in
three-dimensional manifolds. From a field theory point of
view, the observables of the Chern—Simons theory are corre-
lators of Wilson lines (beside the partition function). In this
paper we will analyze some properties of the latter.

A well-known characteristic of the Chern—Simons path
integral is that its well-definiteness is connected to the proper-
ties of a topological invariant in four-dimensional manifolds.
Such invariant is related to the Chern—Simons form via the
transgression formula. The invariant of a four-manifold in the
topological field theory involves its signature and Euler char-
acteristic (see for example [3]). The Chern character allows
one to map the analytical Dirac index in terms of K-theory
classes into a topological index, which can be expressed in
terms of cohomological characteristic classes. This results
in a connection between the Chern—Simons action and the
Atiyah—Singer index theorem. Such a connection will be
used in this paper in order to determine the Chern—Simons
invariant of irreducible SU (n)-flat connections on negatively
curved locally symmetric three-manifolds. Indeed a critical
point of the Chern—Simons functional is just a flat connec-
tion; it corresponds to a representation of the fundamental
group 71 (X) associated to a three-manifold X. The value
of the Chern—-Simons functional at a critical point can be
regarded as a topological invariant of a pair (X, p), where p
is a representation of 71 (X). Due to a well-known adiabatic
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argument, knowing these invariants allows us to compute the
partition function.

On the other hand, the Chern—Simons partition function is
a generating series of quantum group invariants weighted by
S-functions. Recall that the Chern—Simons theory has been
conjectured to be equivalent to a topological string theory
1/N expansion in physics. The Chern—Simons/topological
string duality conjecture identifies the generating function
of Gromov—Witten invariants as Chern—Simons knot invari-
ants [4]. The existence of a sequence of integer invariants is
conjectured [4,5] in a similar spirit to the Gopakumar—Vafa
setting [6]. This provides essential evidence of the duality
between Chern—Simons theory and topological string theory.
Such an integrality conjecture is called the LMOV conjec-
ture. In the context of this conjecture we derive a new rep-
resentation of the Chern—Simons quantum partition function
in the form of an infinite product in terms of Selberg-type
functions.

Deeply related with the content of this paper is the prob-
lem of anomalies. In field theory anomalies may prevent the
path integral from being well defined. In the case of CS
in three-dimensional manifolds there are no local anoma-
lies, but there may be global anomalies. To guarantee their
absence one must restrict to integer values the (suitably nor-
malized) coupling appearing in front of the action. For this
reason it is of utmost importance to know the value of the
Chern—Simons invariant in any given space—time. Strictly
connected with this is the issue of existence of fermionic path
integrals (fermion determinants) in three-dimensional man-
ifolds. There are also other indeterminacies in this theory
when links and knots are involved, related to the evaluation
of overlapping Wilson loops. The problem of such framing
anomalies was pointed out and solved by Witten [7].

Our Kkey results More specifically the content and main
results of our paper are as follows.

e In Sect. 2.1 we derive the formula for the Chern—Simons
invariant of irreducible SU (n)-flat connections on a
locally symmetric manifold of non-positive sectional cur-
vature. For this Chern—Simons invariant our result, Eq.
(2.19), determines the condition for which the quantum
field theory is consistent. The results of Sect. 2.1 are
preparatory for the generalization of the Chern—Simons
invariant to the case of other manifolds (X = §3/ T, for
example) and of nontrivial U (n)-bundle over X (Sect.
2.4).

e In Sect. 2.4 X = I'\X with X is a globally symmetric
space of non-compact type and I" a discrete, torsion-free,
co-compact subgroup of orientation-preserving isome-
tries. X inherits a locally symmetric Riemannian metric g
of non-positive sectional curvature. If D : C*°(X, V) —
C*°(X, V) is adifferential operator acting on the sections
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of the vector bundle V, then ® can be extended canoni-
cally to a differential operator D, : C*(X,V ® F) —
C*®(X,V ® F), uniquely characterized by the property
that ©,, is locally isomorphic to ® ® --- ® D (dim F
times) [8]. We show that a connection between holomor-
phic values of Selberg-type functions at point zero, asso-
ciated with R-torsion of the flat bundle, and twisted Dirac
operators ®, on negatively curved locally symmetric
spaces, can be interpreted by means of the Chern—Simons
invariant. This leads to our main result, Eq. (2.18). We
also briefly describe the possibility to derive the Chern—
Simons invariant for locally symmetric spaces of higher
rank in terms of the spectral function R(s; ¢).

e The quantum sly invariant in the case of links and a knot
is analyzed in Sect. 3. On the basis of LMOV conjec-
ture we derive a new representation of the Chern—Simons
quantum partition function in the form of an infinite prod-
uct in terms of Selberg-type functions. In addition, we
discuss the symmetry and modular form properties of
infinite-product formulas.

2 Chern-Simons invariants for negatively curved
manifolds

2.1 Flat connections and gauge bundles

Flat connections on fibered hyperbolic manifolds The
Chern character allows one to map the analytical Dirac index
in terms of K-theory classes into a topological index which
can be expressed in terms of cohomological characteristic
classes. This results in a connection between the Chern—
Simons action and the celebrated Atiyah—Singer index the-
orem. The goal of this section is to use this fact in order to
present explicit formulas for the Chern classes and gauge
Chern—Simons invariant of an irreducible SU (n)-flat con-
nection on real compact hyperbolic three-manifolds.

Let P = X x G be a trivial principal bundle over X with
the gauge group G = SU (n) and let Q! (X; g) be the space
of all connections on P; this space is an affine space of one-
forms on X with values in the Lie algebra g of G. Let Ax =
Q!(X; g) be the space of connections and Axr = {A €
Ax|F4 = dA+ A A A = 0} be the space of flat connections
on P. Then the gauge transformation group Gx = C*° (X, G)
acts on Ay via pull-back: g*A = g~'Ag + g~ 'dg, g € Gx,
A € Ax. This action preserves Ax r.

It is known that the Chern—Simons invariant is a real val-
ued function on the space of connections Ay on a trivial
principal bundle over an oriented three-manifold, and it is
given by

1 2
CS(A):W/XTr<AAdA+§A/\AAA>. @2.1)
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A well-known formula related to the C'S integrand is

dTr(ANdA+ 2/3)ANANA)=Tr(Fa A Fa). (22)
Equation (2.2) provides another description of the Chern—
Simons invariant. Indeed, let X be a closed manifold, and M
be an oriented four-manifold with dM = X. We denote an
extension of A over M by A. Then the Stokes theorem gives

1
CS(A) = W/I;ITI(FA/\ Fp). 2.3)

We note the difference of the Chern—Simons invariants
under the action of the gauge transformation group Gx. In
the case A € Ay and g € Gx the following formula holds
[9]:

CS(g*A) — CS(A)

1
=—— | Tr(AAdgg™!
8n2/3X r( g9~ )

Tr(g_ldg/\g_ldg/\g_ldg). 2.4)

2472 Jx
The last term in Eq. (2.4) is known as the Wess—Zumino—
Witten term; the integrand of this term represents the gen-
erator of H 3(G; 7Z) = 7. If the manifold X is closed, i.e.
aX = (J, the Wess—Zumino—Witten term takes its value in
Z. In this case the function CS : Ax/Gx — R/Z is well
defined. On the other hand, when X # @, although the
Chern—Simons invariant does not give a well-defined func-
tion on the space Ay /Gx (with values in R/Z), one can regard
it as the section of a certain line bundle over the moduli space
of connections Ay /Gx.

Let us consider now the moduli space of flat connections
Xx = Ax r/Gx on X. This space has an alternative topo-
logical description: the holonomies of the parallel transport
of flat connections on P give the identification of Xx with
the space of conjugacy classes of representations of 71 (X)
into G, since any principal G-bundle P over a compact ori-
ented three-manifold X is trivial [9]. We use the notation
CS(p) := CS(A,) for a representation p of 1 (X), where
A, is a flat connection corresponding to a representation p.
This gives a topological invariant for a pair (X, p). Since the
Chern—Simons invariant is additive with respect to the sum
of representations, we have
CS(p1 @ p2) = CS(p1) + CS(p2). (2.5)

Let X be a compact oriented hyperbolic three-manifold,
and p be an irreducible representation of 71 (X) into SU (n).
Denote the corresponding flat vector bundle by £, and a flat
extension of A, over M (M = X) corresponding to p by A ,.
The second Chern character chy(E,) = CS(A) of E, can
be expressed in terms of the first and second Chern classes

cha(E,) = (1/D)er(E,)? — e2(E,), 2.6)
while the Chern character is given by
ch(E)) =rank E, +c1(E,) + cha(E,)

=dimp +ci1(E)) + cha(E,). 2.7

The crucial point in our calculation is the Atiyah—Patodi—
Singer result for a manifold with boundary [10—12]: the Dirac
index is given by

Index D, = /Mch(gp)/?(lvl) - %(n(o, D,) + h(0,D,)).
(2.8)

Here X(M) EX(Q (M))-genus is the usual polynomial in
terms of the Riemannian curvature 2 (M) of a four-manifold
M with boundary dM = X. It is given by A(M) =

1/2

<det (mﬁgﬂ%)) P 1= (1/24) py (M), where p (M) =
p1(2(M)) is the first Pontrjagin class. 2(0, © ) is the dimen-
sion of the space of harmonic spinors on X (h(0,9,) =
dimKer ®, = multiplicity of the 0-eigenvalue of D, acting
on X with coefficients in p). The n-invariant was introduced
by Atiyah, Patodi, and Singer [10-12] treating index theory
on even dimensional manifolds with boundary and it first
appears there as a boundary correction in the usual local
index formula. Let as before X be a closed odd dimensional
spin manifold (which in their index theorem is the bound-
ary of an even dimensional spin manifold). nx(s, ®) :=
1n(s, D p=uivial) i analytic in s and has a meromorphic con-
tinuation to s € C; itisregular ats = 0, and its value there is
the n-invariant. The result (2.8) holds for any Dirac operator
on a Spin® manifold coupled to a vector bundle with connec-
tion (the metric of manifolds is supposed to be a product near
the boundary). One can attach an n-invariant to any opera-
tor of Dirac type on a compact Riemannian manifold of odd
dimension. (On even dimension manifolds Dirac operators
have symmetric spectrum and, therefore, trivial n-invariant.)

n is a spectral invariant which measures the symme-
try of the spectrum of an operator ®, and admits a mero-
morphic extension to the whole s-plane, with at most sim-
ple poles at (dimX — k)/(ord®) (k = 0,1,2,...) and
locally computable residues. For X a compact oriented (4n-
1)-dimensional Riemannian manifold of constant negative
curvature, a remarkable formula relating n to the closed
geodesics on X has been proved in [13]. Citing [8], the appro-
priate class of Riemannian manifolds for which a result of
this type can be expected is that of non-positively curved
locally symmetric manifolds, while the class of self-adjoint
operators whose eta invariants are interesting to compute is
that of Dirac-type operators, even with additional coefficients
in locally flat bundles. It is one of the purpose of this paper

@ Springer
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to formulate and prove for Chern—Simons invariants (2.12)
below such an extension as the one in [13] (see Sect. 2.4).

For a trivial representation p one can choose a trivial flat
connection A; then F4 = 0. For this choice using Egs. (2.6)
and (2.7) we have

h(E )AM) = KE, +ci(E
/MC (E,)AM) /M(ran E,+ci(E,)
1 1
e (BN = o piM) = —c— fM Tr(Fa, A Fa,)

dim p
— M
7 /I;Ipl( )

(2.9)

while feh@ﬁ(l\/l):—i/ p1(M) —ln(o,@).
" 24 Ju 2
(2.10)

Note that in this formula the zero eigenvalue multiplicity of
D, acting on X with coefficients in p has been excluded
(s € iSpec’ (D), Spec’ (D) = Spec(®) — {0}). From Egs.
(2.9) and (2.10) we obtain

Index®, — dim p - Index ©

1
=CS(4,) = 5((0.9,) — dimp - n(0,D)). (2.11)

Then the Chern—Simons invariant can be derived from Eq.
(2.11),

CS(A,) = (1/2)(5(0, D) — dimp - 7(0, D)) +modulo Z.
(2.12)

2.2 The Chern—Simons- and the n-invariants

Gluing properties for n Let M’ and M” be oriented mani-
folds and let —M’ be the manifold with opposite orientation
with respect to M”. If M” and M” have a common boundary
we can glue them along it and form a new oriented and closed
manifold N = M" | J(—M"). Then the following gluing for-
mula holds:

exp(irn(M”)) = exp(irn(M")) - exp(inn(N)),  (2.13)
This property is instrumental for the main conclusion of this
part of the paper contained in résumé: A critical point of the
Chern—Simons functional is just a flat connection, and it cor-
responds to a representation of the fundamental group 71 (X).
Thus, the value of this functional at a critical point can be
regarded as a topological invariant of a pair (X, p), where p is
a representation of 571 (X). This is the Chern—Simons invari-
ant of a flat connection on X. Taking into account a pair
(M, 9M = X) we have derived Eq. (2.12) for the Chern—
Simons invariants of irreducible SU (n)-flat connections on
a locally symmetric manifolds of non-positive section cur-
vature.

@ Springer

By making use Eq. (2.12) one can rewrite the multiplica-
tive structure of eta invariants, associated with twisted Dirac
operators © pl

exp(iZnCS(Ap))

=exp(inn(0,D,)) - exp(—im dimp - n(0,D)). (2.14)

Dirac operators on locally symmetric spaces of rank
one One can repeat the technique and arguments discussed
in Sect. 2.1 for the construction of the eta-functions and
the Chern—Simons invariant. The Chern—Simons invariant
admits a representation in terms of Selberg-type spectral
function Z(s, ®,), which is a meromorphic function on C
and given for Re(s%) > 0 [8,14]. logZ(s, 9,) has a mero-
morphic continuation given by the identity

D
logZ(s, ®,) = logdet’ ( p— ¥
N

D, 1 )—I—inn(s,@p), (2.15)

Z(s,®,) satisfies the functional equation Z(s, ®,)Z(-s,
D,) = exp (2ni77(s, Qp)) , where the “twisted” zeta-
function Z(s, ®,) is meromorphic on C. Zeta-functions are
given by the formulas [8]

log Z (s, ®)
L 7@ —st
=7 ) det(1 (yP ())) 2 . (2.16)
eenr 194 n(y DIVE my
log Z(s, D))
L(y,D) et

=(=D? > Trp(y)
[yle&i(I)

|det(I — Pp(y)I'/? my
(2.17)

where £(y) is the length of the closed geodesic ¢, in the free
homotopy class corresponding to [y ], m(y) is the multiplic-
ity of ¢, L(y,®) are the Lefschitz numbers, and P (y) is
the hyperbolic part of the linear Poincaré map P(y) (see for
details [8]).

Taking into account that the Dirac operator is Hermitian,
and the function CS(4 ) is real, it is possible to formulate
the following result:

' Cf. Eq. (2.13): the p-invariant of locally symmetric manifolds of non-
positive curvature can be expressed as spectral values of zeta-functions
constructed out of the periodic geodesics [8, 14]. In this case a necessary
regularization can be given by the geodesic spectrum. For the time being
we assumed the other regularization for the n-invariant, which involves
the “dual” data, namely the spectrum of the Laplace operator associated
to the metric [14].
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Z(0, D)%m »
Z0,9))
= (- l)dim ker(® ,—dim p-D)

exp(i2nCS(A,)) =

(2.18)

as follows from Eq. (2.12). In particular Z(0, ®)%m # .
Z(0, @,))’] = %1 ([8], Corollary 7.5). There is an inde-
terminacy of sign unless

dimker(®, —dim p - D) = 2n,

nel. (2.19)

2.3 Determinant line bundles

In the previous subsections we have studied the connection of
the CS invariant with the n-invariant. The latter, on the other
hand, features also in the context of anomaly formulas, which
are related to the geometry of the determinant line bundles. In
this subsection we would like to recall such a connection. We
have in mind in particular a three-dimensional manifold X, as
above, but it is possible to stick to a more general treatment.
In the sequel we suppose that Y is a compact Spin(c-
manifold with nonempty boundary. The Dirac operator ©
on a closed SpinC-manifold Y (coupled to a vector bundle
with connection) is self-adjoint and has a discrete spectrum
Spec (D). We suppose that the metric of Y near the bound-
ary has explicit product structure, and in a neighborhood of
the boundary there is a given isometry with (—1, 0] x 9Y.
n(s, ®) is analytic for Re (s) > —2 [15,16], and we set

ty = exp(i27é&y) = exp (i (n(0, D) + dimker D)) € C.
(2.20)

Under a smooth variation of parameters (for example, the
metric on Y) the n-invariant jumps by integers (the gen-
eral theory shows that |[ty| = 1), whereas & (mod 1) is
smooth. Therefore the invariant (2.20) is defined and we have
Ty € detg\}, where detyy is the determinant line of the Dirac
operator ® 3y on the boundary.

Fiber bundles Let us discuss some aspects of Dirac opera-
tors in the case of fiber bundles. Let 7 : W — Z be a smooth
fiber bundle with a Riemannian metric on the tangent bundle
T (W/Z), which is endowed with spin structure. Here and
in the following W/Z denotes the fiber of W — Z. A spin
structure on a manifold means a spin structure on its tan-
gent bundle, in this case the tangent bundle 7 (W/Z) along
the fibers. Every point in Z determines a Dirac operator act-
ing on the corresponding fiber. We will eventually identify
the fiber dW/Z with a three-dimensional manifold X with-
out boundary, but for the time being we keep as general as
possible.

Assume that the Riemannian metric on the fibers is a
product near the boundary. The determinant line carries the
Quillen metric and a canonical connection V [15] and the

exponentiated £-invariant is a smooth section tyw,z : Z —
deta_vlv 1z

For Dirac operators coupled to complex bundles in K-
theory one can express the Chern character of the index in
terms of the Chern character of a complex vector bundle E
by means of the formula [17]:

w/z

chm, nlN/Z

(IED) = 7" “(A(W/Z)ch (E)), (2.21)
where 7, is the pushforward map in rational cohomology.
Note that for a family of closed manifolds this is a result of
Atiyah—Patodi—Singer (see Eq. (2.8)).

Let the fibers 9W/Z be odd-dimensional and closed. Then
the determinant line bundle det Dyw,z(E) is well defined
as a smooth line bundle (it carries a canonical metric and
connection) [15]. The complex Dirac operator for the fibers
0W/Zis self-adjoint and there is a geometrical invariant Ty z
defined by Atiyah—Patodi-Singer,
tw,z(E) = exp(im(n(0, D) + dim ker D)yw,z). (2.22)

The 2-form curvature of the determinant line bundle is
[17]

Q (det Dy z(E))
:iZn/ AQW/2)ch (QE)) o) € QX2), (2.23)
W/zZ

where Q(W/Z) and Q (E) are the curvature forms.

Now itis possible to apply this geometric setup to compute
the holonomy on Z. Let 3Y — S! be a loop of manifolds.
A metric and spin structure on dY could be induced by a
metric and bounding spin structure on S!. The holonomy of
the determinant line bundles around the loop takes the form
hol det Dy /51 (E) = a—limz,y (E), (2.24)
where a-lim is the adiabatic limit, i.e. the limit as the met-
ric on S! blows up (¢ — 0 : gg1 — ggie~2). For the flat
determinant line bundles no adiabatic limit is required. A
nontrivial result for (2.24) means that the determinant line
bundle (fermion determinant; see below) is nontrivial, which
is tantamount to saying that there is a global anomaly. Equa-
tion (2.24) is in fact known as the global anomaly formula
[15,16,18].

Let us summarize. The differential geometry of determi-
nant line bundles has been developed in [19] in a special
case and in [15,16] in general. In [20,21] the results on &-
invariants were used to re-demonstrate the holonomy for-
mula for determinant line bundles, known as Witten’s global
anomaly formula [18]. For a family of Dirac operators the
exponentiated &-invariant is a section of the inverse determi-
nant line bundle over the parameter space. In [20] the usual

@ Springer
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formula for the variation of the £-invariant was been general-
ized to a formula for the covariant derivative. The variational
formula relates the exponentiated &-invariant to the natural
connection on the (inverse) determinant line bundle [20]. One
canuse such a connection to compute the holonomy, or global
anomaly. The latter can expressed as the adiabatic limit of
the exponentiated &-invariant.

Returning to Chern—Simons invariants, we have seen that
the latter are strictly connected to the 5 invariants and to
the global anomaly formula. In the original papers, Atiyah,
Patodi, and Singer discuss the relationship of n-invariants
(and so exponentiated &-invariants) to classical Chern—
Simons invariants for closed manifolds. It has been shown
[10-12] that certain ratios of exponentiated &-invariants are
topological invariants which live in K ~!-theory with R/Z
coefficients. The exponentiated &-invariant is local and there-
fore it can serve as an action for a field theory, the same one
can say for the Chern—Simons invariant. But there is also a
crucial difference: the Chern—Simons invariant is multiplica-
tive in coverings, whereas the exponentiated & -invariant is not
(nevertheless the gluing law does exhibit some local proper-
ties of the n-invariant).

The last considerations lead us to the physical interpreta-
tion of the material collected so far.

Note on fermion theories In theories containing fermions
interacting with a gauge potential A, by formally integrat-
ing out the fermionic fields, one gets an expression which
is interpreted as the determinant of the corresponding Dirac
operator (fermion determinant). One of the most important
problems in quantum field theory is the definition of such a
determinant. In some cases they are ill-defined due to anoma-
lies. In a three-dimensional manifold X we can assume that
there are no local anomalies and we have only to worry about
global anomalies. Formal calculations show for the determi-
nant, as a result of the fermion integration, the exponential of
aterm to be precisely proportional to the CS action for A; see
[22]? and references therein. Thus the fermion determinant
is well defined if this exponential is and this is so if condition
(2.19) is satisfied. For instance, this global anomaly vanishes
if the number of integrated out Dirac fermions is even (or the
number of integrated out Majorana fermions are a multiple of
four). This, however, is not enough. Since exp(2i7 CS(A )
must have the same value whatever is the manifold M over
which we perform the integral (2.3), Eq. (2.13) requires

exp(irn(N)) =1 (2.25)
for any three-manifold N without boundary. This condition,
relying on the Dai—Freed theorem, has been analyzed in [23].

2 The result is obtained by considering a theory of a massive fermion
and taking the mass to 0.
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Whether a theory satisfies or not (2.25) depends on the num-
ber of fermions and the type of fermions in it, i.e. whether
they are Majorana or Dirac.

The same anomaly (the so-called parity anomaly) also
originates from the presence of massless Majorana fermions
on the three-dimensional space X. They give rise to a deter-
minant line bundle which leads precisely to the calculation
outlined above. The result shows up in the form of the n
invariant (or, better, the t invariant), but the analysis is par-
allel to the previous one and leads to the same conclusions.

In [23] the previous results are used to analyze the 3+1
dimensional theories that describe the so-called topological
insulators and topological superconductors. These theories
are defined on a 3 + 1 manifold with a boundary and it is
usually necessary to enforce complementarity between the
fermions in the bulk and those in the boundary in order to
cancel the global anomalies and satisfy the condition analo-
gous to (2.25).

2.4 Adiabatic limit and twisted spectral functions

Suppose that X = '\ X with X a globally symmetric space of
non-compact type and I a discrete, torsion-free, co-compact
subgroup of orientation-preserving isometries. Thus X inher-
its a locally symmetric Riemannian metric g of non-positive
sectional curvature. In addition the connected components
of the periodic set of the geodesic flow @, acting on the unit
tangent bundle T X, are parametrized by the nontrivial con-
jugacy classes [y]in I' = 71 (X). Therefore each connected
component X,, is itself a closed locally symmetric manifold
of non-positive sectional curvature.

Suppose that ¢ : ' — U(F) be a unitary representation
of I" on F. The Hermitian vector bundle E = X x F over X
inherits a flat connection from the trivial connection on X x F .
For any vector bundle E over X let E denote the pull-back to
X.IfD: C®X, V) — C®(X, V) is a differential operator
acting on the sections of the vector bundle V, then ® extends
canonically to a differential operator ®, : C*(X, V® F) —
C*®(X, V ® F), uniquely characterized by the property that
D, is locally isomorphic to ® ® --- ® ® (dim F times).

Example 2.1 Equation (2.12) suggests the generalization of
the Chern—Simons invariant (2.1) to the case of nontrivial
U (n)-bundle over X. As an example, for any representation
p : I' = U(n), a vector bundle E, over a certain four-
manifold M with 3M = X = S/ T" (which is an extension of
a flat vector bundle E, over $3/T') has been constructed in
[9]. In the case A o is any extension of a flat connection A,
corresponding to p the index theorem for the twisted Dirac
operator D, is given by (cf. Eq. (2.8))

Xp (V)
ITI2 — x- ()
(2.26)

Index®, = /MCh(Ep)Z(M) - Z
y#1
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Here r denotes the two-dimensional representation induced
by the inclusion I' — SU(2), x denotes the character of
a representation, while |I"| is the order of I" (see [9,24] for
more details).

In connection with a real compact hyperbolic manifold
X consider a locally homogeneous Dirac bundle E over X
and the corresponding Dirac operator ® : C*(X, E) —
C>®(X, E). As before, assume that X = 9M, that E extends
to a Clifford bundle on M.? and that ¢ : 7(X) — U(F)
extends to a representation of 771 (M). Let A 0 be an extension
of a flat connection A, corresponding to ¢.

The Cayley transform determinant and adiabatic limit
Let us consider a determinant construction for a self-adjoint
operator on a finite dimensional Hilbert space. The classical
Cayley transform [25] for such an operator © is the unitary
operator C = (0 —i)/(® +1i). For s € C we have a family
of operators

D —is
D +is

C(s) = (2.27)

This family is meromorphic, has poles at s € iSpec’ (D)
(Spec’ (D) = Spec(D) — {0}), these poles being simple and
having residue Res_;; C(s) = 2iA Py, where P, is projection
onto the iA eigenspace. One has (see for details [8])

logdet'C(s) = Y m(A)log (%) (2.28)

A€Spec’ (D)

where m (1) denote the multiplicity.

Let © be a Dirac operator, as defined above; the family of
operators C(s) = (D) —is)/(® + is) is meromorphic with
simple poles at s € iSpec’ (D). The determinant satisfies the
functional identity det’ (D +is) /(D —is)-det’ (D —is)/(D+
is) = 1. The following result holds [8] (Proposition 2.2):

lim det’ C(x) = ¢ 7102

x—>—+00

(2.29)

Set ¢ = x~!. Then if one replaces the metric g on X by
ge = ge~ ! then Eq. (2.29) says that the adiabatic limit (a—
lim) of the Cayley transform of ®, is exp(—imn(0, D)) (cf.
Eq. (2.24))

. D —je!
a—lim det’

5T - = e—inn(O,’D).
£—0 X

(2.30)

3 A Clifford module bundle is called a Dirac bundle if it has a connec-
tion V satisfying the compatibility condition V(v - s) = (VZRv) -85+
v - (V,s). Here s is a local section of E, v is a local section of C£(M),
z a vector field and (-) denote the module multiplication. On a Dirac
bundle one then has a Dirac operator defined by Ds = jej - (Ve;s),
where {e;} is any local orthonormal frame for M.

Locally symmetric spaces of higher rank It has been shown
[26,27] that for variety flows the zeta-function associated to
any cyclic flat bundle is actually meromorphic on a neigh-
borhood of [0, 00), regular at s = 0, and its value at s = 0
coincides with R-torsion with coefficients in the given flat
bundle, and thus is a topological invariant. Recall that Ray
and Singer defined an analytic torsion t;‘“(X) € (0, co) for
every closed Riemannian manifold X and orthogonal repre-
sentation p : 71 (X) — O(n) [28]. Because of the analogy
with the Lefschetz fixed point formula, Fried proved that the
geodesic flow of a closed manifold of constant negative cur-
vature has the Lefschetz property [29]. He also conjectured
that this remains true for any closed locally homogeneous
Riemannian manifold.

Fried’s conjecture has been proved and an adequate theory
of Selberg-type zeta-functions for locally symmetric spaces
of higher rank was constructed in [14]. Difficulties have been
avoided by constructing certain super Selberg zeta-functions,
7zt (5,9¢),0 < £ < 2m < dim X, as alternating products
of formal Selberg-like functions, which reduce to Selberg
zeta-functions only in the three-dimensional rank one case.
Each function Z%(s, D) is meromorphic on C and, more-
over, satisfies a functional equation (see [14] for details).
Not surprisingly, the functional equations play a crucial role
in identifying the special value of the Selberg-type spectral
function R (s; ¢) with the R-torsion. Finally, R(s; ¢) can be
expressed as an alternating product of Z¢,

dim X—1
Reip)= [] Z'6—dimX+1+¢6 D)D" (231
=0

On this basis we conjecture that the Chern—Simons invariant
for locally symmetric spaces of higher rank admits a repre-
sentation in terms of the spectral function R(s; ¢). This is an
interesting and important conclusion and we hope to come
back to this analysis in the future.

3 Infinite products for the quantum s|y invariant

In this section we consider more general correlators in a
CS theory, and view them as generating series of quan-
tum group invariants weighted by S-functions. The quantum
group invariants can be defined over any semi-simple Lie
algebra g. In the SU(N) Chern—Simons gauge theory we
study the quantum sl invariants, which can be identified as
the so-called colored HOMFLY polynomials*

4 The framed HOMFLY polynomial of links (an invariant of framed
oriented links), is denoted by (L), and can be normalized as follows:

HQO) = (t_% —t 2 )/(q_% —q 7 ). (These invariants can be recursively
computed through the HOMFLY skein.) The colored HOMFLY poly-
nomials are defined through the satellite knot. A satellite of knot K is

@ Springer
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One important corollary of the LMOV conjecture is the
possibility to express a Chern—Simons partition function as
an infinite product. In this article we derive such a product.
During the calculations we use the characters of the sym-
plectic groups. The latter were found by Weyl [30] using a
transcendental method (based on integration over the group
manifold). However, the appropriate characters may also be
obtained by algebraic methods [31]. Following [32] we have
used algebraic methods. This allows us to exploit the Hopf
algebra methods to determine (sub)group branching rules and
the decomposition of tensor products.

The motivation for studying an infinite-product formula,
associated to topological string partition functions, based on
a guess on the modular property of partition function, stim-
ulated by properties of S-functions.

Preliminaries To derive the infinite-product formula, we
need some preliminary material. First of all we denote by
Y the set of all Young diagrams. Let x4 be the charac-
ter of the irreducible representation of the symmetric group
labeled by a partition A. Given a partition p, define m; =
card(ury = j;k > 1). (The order of the conjugate class
of type u is given by 3, = szl Jj™im!.) The symmetric
power functions of a given set of variables X = {x;};>1
are defined as the direct limit of the Newton polynomials:
pn(X) = ijlx;’, Pu(X) = []i=1 pu; (X), and we have
the following formula which determines the Schur function
and the orthogonality property of the character:

C
sax) = Y 24D %),
m du

5 1CxC) g

A.B> 3.1
dn

m

where C,, denotes the conjugate class of the symmetric group
S|u| corresponding to partition p (for details see Sect. 3 of
[33]).

Given X = {x,'},-zl, Y = {yj}jzl, define X * Y = {X,' .
Yjti=1,j=1. We also define x4 = {xl.d}izl. The dth Adams
operation of a Schur function is given by s4 (X¢). (An Adams
operation is type of algebraic construction; the basic idea of
this operation is to implement some fundamental identities
in S-functions. In particular, s4(X?) means operation of a
power sum on a polynomial.)

We use the following conventions for the notation:

Footnote 4 continued

determined by choosing a diagram Q in the annulus. Draw Q on the
annular neighborhood of K determined by the framing, to give a satellite
knot /C x Q. One can refer to this construction as decorating KC with the
pattern Q. The HOMFLY polynomial H(ICx Q) of the satellite depends
on Q only as an element of the skein C of the annulus. {Q; },cy forma
basis of C. C can be regarded as the parameter space for these invariants
of /I, and can be called the HOMFLY satellite invariants of K.

@ Springer

e L will denote a link and L the number of components in
L.

e The irreducible U, (sly) module associated to £ will be
labeled by their highest weights, thus by Young dia-
grams. We usually denote it by a vector form 74) =
(Al,;).. , AL,

e Let X = (x1,...,xz) be a set of L variables, each
of which is associated to a component of £ and 7% =
(u', ..., ut) € YL be atuple of L partitions. We write

L L
(1= []e) 570 =[] ane
a=1 a=1

L
X7 (C) = [ xae(Cpo),

a=1

L)

L
57 (X) = [ saeCa)e a0 = [P (20,
i=1

a=1

L
(%) =[] P ).

a=1

The case of links and a knot The quantum sly invari-
ant for the irreducible module Vyi,..., V41, labeled by
the corresponding partitions Al ... AL, can be identi-
fied as the HOMFLY invariants for the link decorated by
Qut, ..., Q4e. The quantum sly invariants of the link is
given by P (Liq,1) = H(L * ®L_, Qa«). The colored
HOMEFLY polynomial of the link £ can be defined by [33]

L L o
P4 = g~ Zamt bR Dan W0 Kad (£ 4 @L_ | 0 a),
3.2)

where w (ICy,) is the number of the ¢-component /C, of £ and
the bracket (L % ®é:1 0 4e) denotes the framed HOMFLY
polynomial of the satellite link £ x ®é:1 0 4«. We can define
the following invariants:

a=1

L
W (Lig. = ), (]‘[m(cﬂa))PX(c;q,r).
— AL)
3.3)

The Chern—Simons partition function W(sjlg (L;q,t) and
the free energy F(L;q,t) of the link £ are the following
generating series of quantum group invariants weighted by

Schur functions s— and by the invariants W

—_—
WES(L; g, 1) =14 P2(L;q, )53 (X)
s



Eur. Phys. J. C (2016) 76:625

Page 9of 11 625

Wz (Lig. 1) -

=1+) ————rpX). G4
z u
F(L;q.1) =1logWcs(L; g, 1)
L
_Z “( 9.1 p (X). 3.5)

Based on LMOV conjecture the infinite-product for-
—
mula for the case of links, ng(ﬁ; q,t; X) and a knot
g‘g(lC; q,t; X) are given by [34,35]
o0

WE%(E;CM;Y):H [T IT 11

7 Q€Z/2 m=1k=—c0

X <1 _ gkmge 73>_"7:g'g L (3.6)
o o0
weksg. =TT IT 11 TI
n QeZ/2 m=l k=—o0
x (1 — ghtm@xmy=mnugo — (37)

. —
Here 70 = (u!,..., ub), the length of u! is ¢;, X =

(x1,...,x1),and n,; ¢ o are invariants related to the integer
invariants in the LMOV conjecture. For a given u, n ;¢ o
vanish for sufficiently large |Q| due to the vanishing prop-
erty of n,; 4 0. The products involving Q and k are finite
products for a fixed partition p.

The symmetric product (I — g¥*¢2X") and the gener-
alized symmetric product (1 — gk+¢ €@ 7()) in Egs. (3.7) and
(3.6), respectively, are defined by the formula [35]

(I-yx= J[ a-ypaf'x, G
Xiqseees xif(u)
L
(1-y X" =[] H
a=lig1,.ria by
( —y l_[«xa) (o ))
(3.9)

where 1 is a generic variable.

Double series and certain modular forms In Egs. (3.6),
(3.7) and (3.8), (3.9) the blocks for affine-like denomina-
tors admit representations in the form of spectral functions
of hyperbolic geometry (see for example [36]). One can
successfully construct quantum homological invariants and
express the formal character of the irreducible tensor repre-
sentations of the classical groups in terms of the symmetric
and spectral functions of hyperbolic geometry [37]. Indeed,
he products in Egs. (3.6) and (3.7) can be represented in
the form of Selberg-type spectral function R(s) of hyper-
bolic three-geometry. R(s) is an alternating product of more
complicated factors, each of which is a so-called Patterson—

Selberg zeta-functions Zry [38,39] (R(s) can be continued
meromorphically to the entire complex plane C),

[Ja-q
n={

=[] zrr(@at+e)0 —io@) +1-a
p=0,1
+a(l +io®)p) V"
=R =(@+e)(1l—io®)+1—a),

l_[(l + qan+a)

n=~
=[] zrv @t +e)d —ie) +1—a+ioc®)
p=0,1
+a(l +io@®)p) V"
=R(s = (@l +e)(1 —io®)+1—a+ioc®)), (3.11)
where ¢ = exp(2wi?d), o(¥¥) = Red/Imd, o(¥) =

(2In19)’1, a is a real number, ¢,b € C, £ € Z;. In
terms of R(s) functions, Eq. (3.10) (see also [37], Eq (3.41))

SL(L:q.1; X ) and WEL(KC; . 1 X) take the form

an+8)

N

(3.10)

N

wzgu:;q,r;%
oo L oo
=[TIT ITII IT II
TI Q€Z/2 k=—00 a=1 ig1,....iq 0, m=1

W80

xR(s = (m+ Qs 9K 9) (1 — ig(ﬂ))>_n w0

(3.12)
WS (K; ¢, 15 X)
o0 o0
W Q€Z[2 k==00 Xijs s Xipy m=1
X(R(s = (m 4+ Q2 X g"; 9)(1 —io(®)))) "wee,
(3.13)
where Q(¢* 12 X"; 9) = log(¢*1Cx)!" - -- XY i,

_— !
Calculations in the case of Kauffman polynomlals, relative

to the orthogonal group, can be found in Ref. [37].

To finish we consider one more topic of interest, the sym-
metries and the modular form identities. Both Hecke [40] and
Rogers [41] recognized that certain modular forms could be
represented by combinations of the following double series:

Z (= 1)yHonm) g LOnn)+Q0m.n)

(m,n)e

(3.14)

Here H, L are linear forms, Q is an indefinite quadratic form
and  is some subset of Z x Z.°

5 We also mention on this topic the deep results of [42,43], where
a number of identities in the representation theory of Kac—Moody

@ Springer
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Infinite double series of type (3.14) and their connection
with the R(s) function have been investigated in [36]. For
the functions (see [36] for details)

Onk(ar, az, a3, as, as; q)

= (_1)n+kqa1n+azk+a3nk+a4n2+a5k2 (315)
J (a1, az, a3, as, as; q)
=Y =Y | Quilararas.as.a5:9)  (3.16)
n,k>0 n,k<0
one can find an infinite family of identities,
> 2 2
Z (— 1)t g (P =3n) /240402
n,k=—o00; k>|2n|
(3.17)

=[Ta-q¢?
n=1

2_13,42 (3.16), (3.10)
Z (_1)n+kq(k 3n7)/24+(n+k)/2

n,k=—00; k>|2n|

S v (L0 2L
n,k>|2n| 27 27 ) 2’ 25 q

n,k=—o0

=R(s=1—io®)%. (3.18)

The identity (3.17) was conjectured by Rogers and has been
proved in [40,43]. We finally remark that Rogers’ approach
can be used to discover possible modular identities and sym-
metry properties of the infinite products considered in this
paper (the simplest symmetry is ¢ — ¢~!), by using con-
nections between Hecke—Rogers modular form identities and
functional equations for R(s).
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Footnote 5 conitinued

Lie algebras has been obtained. A family of modular functions satisfy-
ing Rogers—Ramanujan-type identities for arbitrary affine root systems
has been obtained in [44]. Extensive work in the theory of partition
identities shows that basic hypergeometric series provide the generat-
ing functions for numerous families of partition identities.
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