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Abstract In this paper we investigate the corrections of
vacuum nonlinear electrodynamics on rapidly rotating pulsar
radiation and spin-down in the perturbative QED approach
(post-Maxwellian approximation). An analytical expression
for the pulsar’s radiation intensity has been obtained and ana-
lyzed.

1 Introduction

Vacuum nonlinear electrodynamics effects is an object that
piques a great interest in contemporary physics [1–4]. First of
all it is related to the emerging opportunities of experimental
research in terrestrial conditions using extreme laser facili-
ties like extreme light infrastructure (ELI) [5–7], Helmholtz
International Beamline for extreme fields (HIBEF) [8]. It
opens up new possibilities in fundamental physics tests [9–
11] with an extremal electromagnetic field intensities and
particle accelerations that have never been obtained before.

At the same time the investigation of the effects of vac-
uum nonlinear electrodynamics in astrophysics gives us an
additional opportunity to carry out versatile research using
the natural extreme regimes of strong electromagnetic and
gravitational fields with intensities unavailable yet in lab-
oratory conditions. Compact astrophysical objects with a
strong field, such as pulsars and magnetars, are best suited
for vacuum nonlinear electrodynamics research. Nowadays,
there are many effects of vacuum nonlinear electrodynam-
ics predicted in the pulsar’s neighborhood. For example vac-
uum electron–positron pair production [12] and photon split-
ting [13], photon frequency doubling [14], light by light scat-
tering, and vacuum birefringence [15], transient radiation ray
bending [16,17] and normal waves delay [18]. Some of the
predicted effects are indirectly confirmed by astrophysical
observations. For instance the evidence of the absence of the
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high-field (surface fields more than Bp > 1013G) radio loud
pulsars can be explained by pair-production suppression due
to photon splitting [19].

In this paper we calculate vacuum nonlinear electrody-
namics corrections to electromagnetic radiation of rapidly
rotating pulsar and analyze pulsar spin-down under these cor-
rections.

This paper is organized as follows. In Sect. 2, we present
vacuum nonlinear electrodynamics models and discuss their
main physical properties and predictions. In Sect. 3 pulsar
radiation in post-Maxwellian approximation is calculated.
Section 4 is devoted to an analysis of the pulsar’s spin-down
vacuum nonlinear electrodynamics influence. In the last sec-
tion we summarize our results.

2 Vacuum nonlinear electrodynamics theoretical models

Modern theoretical models of nonlinear vacuum electrody-
namics suppose that the electromagnetic field Lagrange func-
tion density L = L(I(2), I(4)) depends on both independent
invariants I(2) = Fik Fki and I(4) = Fik Fkl Flm Fmi of the
electromagnetic field tensor Fik . The specific relationship
between the Lagrange function and the invariants depends
on the choice of the theoretical model. Nowadays the most
promising models are Born–Infeld and Heisenberg–Euler
electrodynamics.

Born–Infeld electrodynamics is a phenomenological the-
ory originating from the requirement of self-energy finite-
ness for a point-like electrical charge [20]. In subsequent
studies, the attempts of quantization were performed [21,22]
and also it was revealed that Born–Infeld theory describes
the dynamics of electromagnetic fields on D-branes in string
theory [23–25]. As the main features of Born–Infeld electro-
dynamics one can note the absence of birefringence (how-
ever, there are modifications of the Born–Infeld theory [26]
with the vacuum birefringence predictions) and dichroism for
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electromagnetic waves propagating in external electromag-
netic field [27]. Furthermore, this theory has a distinctive
feature – the value of electric field depends on the direction
of approach to the point-like charge. This property was noted
by the authors of the theory and also eliminated by them in
the subsequent model development [28].

Lagrangian function in Born–Infeld electrodynamics has
the following form:

L = − 1

4πa2

⎧
⎨

⎩

√[

1 − a2

2
I(2) − a4

4
I(4) + a4

8
I 2
(2)

]

− 1

⎫
⎬

⎭
,

(1)

where a is a characteristic constant of theory, the inverse
value of which has a meaning of maximum electric field for
the point-like charge. For this constant only the following
estimation is known: a2 < 1.2 × 10−32 G−2.

The other nonlinear vacuum electrodynamics – the Hei-
senberg–Euler model [15,29] – was derived in quantum field
theory and describes one-loop radiative corrections caused by
vacuum polarization in a strong electromagnetic field. Unlike
the Born–Infeld electrodynamics, this theoretical model pos-
sesses vacuum birefringent properties in a strong field.

The effective Lagrangian function for Heisenberg–Euler
theory has the following form:

L = I(2)

16π
− αB2

c

8π2

∞∫

0

e−σ dσ

σ 3

[
xyσ 2ctg(xσ)cth(yσ)

+σ 2

3
(x2 − y2) − 1

]
dσ, (2)

where Bc = m2c3/eh̄ = 4.41 × 1013 G is the value of the
characteristic field in quantum electrodynamics, e and m are
the electron charge and mass, α = e2/h̄c is the fine structure
constant, and for brevity we use the notations

x = − i√
2Bc
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. (4)

Many attempts to find the experimental status for each
of these theories were made a long time ago, but nowadays
it still remains ambiguous. There is experimental evidence
in favor of each of them. Heisenberg–Euler electrodynamics

predictions were experimentally proved in Delbrück light
by light scattering [30], nonlinear Compton scattering [31],
Schwinger pair production in multiphoton scattering [1]. At
the same time the recent astrophysical observations [32,33]
point on the absence of the vacuum birefringence effect
which favors the Born–Infeld theory prediction. The mea-
surements performed for the speed of light in vacuum show
that it does not depend on wave polarization with the accuracy
δc/c < 10−28. So clarification of the vacuum nonlinear elec-
trodynamics status requires the expansion of the experimen-
tal test list both in terrestrial and astrophysical conditions.
The main hopes as regards this way to proceed are assigned
to the experiments with ultra-high intensity laser facilities [4]
and astrophysical experiments with X-ray polarimetry [34]
in pulsars and magnetars neighborhood.

As follows from the Lagrangians (1)–(2) vacuum non-
linear electrodynamics’ influence becomes valuable only
in strong electromagnetic fields, comparable to E, B ∼ 1/a
for Born–Infeld theory and E, B ∼ Bc for Heisenberg–
Euler electrodynamics [35]. In the case of relatively weak
fields (E, B << Bc) the exact expressions (1) and (2) can be
decomposed and written [36] in the form of a unified para-
metric post-Maxwellian Lagrangian:

L = 1

32π

{
2I(2) + ξ

[
(η1 − 2η2)I

2
(2) + 4η2 I(4)

]}
, (5)

where ξ = 1/B2
c = 0.5 × 10−27 G−2, and the post-

Maxwellian parameters η1 and η2 depend on the choice of
the theoretical model. In the case of Heisenberg–Euler elec-
trodynamics the post-Maxwellian parameters η1 and η2 are
coupled to the fine structure constant α [37]:

η1 = α

45π
= 5.1 × 10−5, η2 = 7α

180π
= 9.0 × 10−5. (6)

For Born–Infeld electrodynamics these parameters are
equal to each other and they can be expressed through the
field induction 1/a typical of this theory [37]:

η1 = η2 = a2B2
c

4
< 4.9 × 10−6. (7)

The electromagnetic field equations for the post-Maxwellian
vacuum electrodynamics with the Lagrangian (5) are equiv-
alent [35] to the equations of Maxwell electrodynamics of
continuous media,

∂mFik + ∂i Fkm + ∂k Fmi = 0, (8)

∂Qki

∂xi
= −4π

c
jk, (9)

with the specific nonlinear constitutive relations [18]
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Qki = Fki + ξ
[
(η1 − 2η2)I(2)F

ki + 4η2F
ki
(3)

]
, (10)

where Fki
(3) = FknFnmFmi is the third power of the elec-

tromagnetic field tensor. The tensor Qik can be separated
into two terms Qki = Fki + Mki , one of which, Mki , will
have a meaning similar to the matter polarization tensor in
electrodynamics of continuous media.

Also it should be noted that in a post-Maxwellian approx-
imation the stress-energy tensor T ik and Poynting vector S
have the form

T ik = 1

4π

{
(1 + ξη1 I(2))F

ik
(2) − gik

8

[
2I(2)

+ ξ(η1 + 2η2)I
2
(2) − 4η2ξ I(4)

]}
, (11)

Sμ = cT 0μ = c

4π

[
1 + ξη1 I(2)

]
F0μ

(2) , (12)

where Fik
(2) = gni FnmFmk is the second power of the electro-

magnetic field tensor, gik is the metric tensor; and the Greek
index takes the value μ = 1, 2, 3.

As was shown in [38], post-Maxwellian approximation
turns out to be very convenient for vacuum nonlinear electro-
dynamics analysis, so we will use this representation (8)–(12)
to calculate the radiation of the rapidly rotating pulsar.

3 Rapidly rotating pulsar radiation in post-Maxwellian
nonlinear electrodynamics

Pulsars are the compact objects best suited for vacuum non-
linear electrodynamics tests in astrophysics. They possess
sufficiently strong magnetic fields with the strength vary-
ing from Bp ∼ 109G up to Bp ∼ 1014G; as these values are
close to Bc the vacuum nonlinear electrodynamics’ influence
can be manifested. At the same time, the pulsar’s fast rotation
may enhance the nonlinear influence on its radiation.

Let us consider a pulsar of radius Rs , rotating around an
axis passing through its center with the angular velocity ω.
We shall suppose that the rotation is fast enough, so the linear
velocity for the points on the pulsar’s surface is comparable
to the speed of light ωRs/c ∼ 1. We assume that the pulsar’s
magnetic dipole moment m is inclined to the rotation axis at
the angle θ0, therefore the cartesian coordinates of this vector
vary under rotation as m = {mx = m sin θ0 cos ωt, my =
m sin θ0 sin ωt, mz = m cos θ0}.

As the vacuum nonlinear electrodynamics’ influence in
post-Maxwellian approximation has the character of a small
correction to Maxwell theory one can represent the total elec-
tromagnetic field tensor Fki in the form

Fki = Fki
(0) + f ki , (13)

where Fki
(0) is the electromagnetic field tensor of the rotating

magnetic dipole m in Maxwell electrodynamics and f ik is
the vacuum nonlinear correction. Substituting (13) into (10)
and retaining only the terms linear in a small value f ik it can
be found that

Qik � f ik + Fik
(0) + Mik

(0), (14)

where Mik
(0) = Mik(Fnj

(0)) is the polarization tensor calcu-
lated in the approximation of the Maxwell electrodynamics
field Fnj

(0). The electromagnetic field equations (8)–(9) with
account of (13)–(14) then will take the form

∂mF
(0)
ik + ∂i F

(0)
km + ∂k F

(0)
mi + ∂m fik + ∂i fkm + ∂k fmi = 0,

∂ f ki

∂xi
+ ∂Fki

(0)

∂xi
+ ∂Mki

(0)

∂xi
= −4π

c
jk . (15)

The solution of these equations may be obtained by the suc-
cessive approximation method. In the initial approximation
we assume that F (0)

mi is the solution of the Maxwell electro-
dynamics equations

∂mF
(0)
ik + ∂i F

(0)
km + ∂k F

(0)
mi = 0,

∂Fki
(0)

∂xi
= −4π

c
jk, (16)

corresponding to rotating magnetic dipole m and a current
density which by j k is represented in the right hand side of
these equations. In this case, from (15) it follows that the
vacuum nonlinear electrodynamics’ corrections fik may be
obtained as a solution of linearized equations:

∂m fik + ∂i fkm + ∂k fmi = 0, (17)

∂ f ki

∂xi
+ ∂Mki

(0)

∂xi
= 0. (18)

To satisfy the homogeneous equation (17) electromagnetic
potential Ak should be introduced fki = ∂k Ai −∂i Ak . Using
this potential the inhomogeneous equation (18) under the
Lorentz gauge will take the form

∂n∂
n Ak = ∂Mki

(0)

∂xi
. (19)

It is more convenient to rewrite the last equation in terms of
the antisymmetric Hertz tensor �ki defined by

Ak = −∂�ki

∂xi
. (20)

In this case Eq. (19) will take the simple form

−∂n∂
n�ki = ��ki = Mki

(0), (21)

123



612 Page 4 of 8 Eur. Phys. J. C (2016) 76 :612

where � = −∂n∂
n is the D’Alembert operator. Six indepen-

dent equations in (21) may be expressed in vector form by
introducing the Hertz electric � and magnetic Z potentials
[39]:

�α = �α0, Zα = 1

2
εαμν�μν, (22)

where εαμν is the Levi-Civita symbol and all of the indices
take values α,μ, ν = 1, 2, 3. In terms of these potentials
Eq. (21) can be rewritten

�� = P0, �Z = M0, (23)

where the source vectorsP0 andM0 are expressed from polar-
ization tensor M (0)

ik by the equalities

Pα
0 = Mα0

(0), Mα
0 = 1

2
εαμνM (0)

μν . (24)

The explicit components of these vectors may easily be
obtained in Minkowski space-time with the use of (10) and
(24):

P0 = 2ξ{η1(E2
0 − B2

0)E0 + 2η2(B0 E0)B0}, (25)

M0 = 2ξ{η1(E2
0 − B2

0)B0 − 2η2(B0 E0)E0}, (26)

where E0 and B0 are the electromagnetic field components
of the rotating magnetic dipole in Maxwell electrodynamics,
the expressions for which are well described in the literature
[40] and the field vectors themselves have the form

B0(r, t) = 3(m(τ ) r)r − r2m(τ )

r5
− ṁ(τ )

cr2

+3(ṁ(τ ) r)r
cr4 + (m̈(τ ) r)r − r2m̈(τ )

c2r3 , (27)

E0(r, t) = [r, ṁ(τ )]
cr3 + [r, m̈(τ )]

c2r2 , (28)

where τ = t−r/c is the retarded time and the dot corresponds
to the derivative of the magnetic dipole moment m(τ ) with
respect to the retarded time τ . Therefore, the right hand side
of Eq. (23) can be obtained by using of (25)–(28). Equations
(23) themselves are the inhomogeneous hyperbolic equations
the exact solution methods of which are well developed and
described in the literature [41–43]. Since we are interested
only in the radiative solutions for the pulsar’s field, when
solving Eq. (23) one should retain only the terms decreas-
ing not faster than ∼ 1/r with the distance to the pulsar.
At the same time there are no restrictions on the rotational
velocity so ωRs/c ∼ 1. Due to the excessive unwieldiness
here we will not represent the whole solutions for the Hertz
potentials � and Z, but we will use the results for them to

find the components of the electromagnetic field tensor fik
and radiation properties such as the Poynting vector S and
the tonal intensity I . The Poynting vector components rep-
resented by (12) in post-Maxwellian electrodynamics can be
simplified by the radiative asymptotic condition Sμ ∼ 1/r2,
which actually means that for the radiation description we
can use the Maxwellian expression for this vector:

Sμ = cT 0μ ∼ c

4π
F0μ

(2) . (29)

Finally, the total intensity can be obtained by integrating of
the Poynting vector by the surface with the normal n directed
to the observer located at the large distance r >> Rs from
the pulsar:

I =
∫

(S n)r2d�, (30)

where d� is the solid angle.
Solutions of Eq. (23) with the right hand side (25), (26)

lead to the following expression for the pulsar radiation inten-
sity:

I = 2ω4B2
p R

6
s
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c

(
24Y 9
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]
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[
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45
η1

]
Ci(2Y )

+Y 3
[η1 − 15η2

5
(2Y 4 − 3Y 2)

−18η1 − 10η2

]
cos(2Y ) sin2 θ0

+Y

6

[45η2 − 311η1

15
(2Y 6 − 3Y 4) + (172η1 − 60η2)Y

2

−336η1

]
cos(2Y ) + Y 2

[30η2 − 2η1

5
(2Y 6 − Y 4)

−41η1 + 85η2

5
Y 2 + 9η1 + 5η2

]
sin(2Y ) sin2 θ0

+1

3

[311η1 − 45η2

15
(2Y 8 − Y 6 + 3Y 4)

+(15η2 − 141η1)Y
2 + 84η1

]
sin(2Y )

)}
, (31)

where the following notations are used for brevity: k = ω/c
andY = kRs, also Bp is the surface magnetic field inductance
and Ci(x) = ∫ x

∞
cos u
u du is an integral cosine.

It is obvious that the intensity obtained can be represented
in a form which distinguishes the Maxwell radiation intensity
and the vacuum nonlinear electrodynamics correction. In this
representation it is convenient to introduce the “correction
function” �(θ0,Y ), which is a multiplier before the scaling
factor B2

p/B2
c determining how strong the vacuum nonlinear
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electrodynamics’ influence on the pulsar radiation is,

I = 2ω4B2
p R

6
s

3c3 sin2 θ0

{

1 + B2
p

B2
c

�(θ0,Y )

}

. (32)

For most known rapidly rotating pulsars [44] with Y ∼ 1
the factor B2

p/B2
c � 1 is small, which matches the require-

ments of the post-Maxwellian approximation. At the same
time this means that the vacuum nonlinear electrodynam-
ics corrections will be sufficiently suppressed in comparison
with the Maxwell electrodynamics radiation. However, this
assessment may be waived for special sources of so-called
fast radio bursts (FRB’s), six cases of which have recently
been discovered [46]. One of the hypotheses explaining the
nature of FRBs assumes that their source is a rapidly rotating
neutron star with the strong surface magnetic field Bp > Bc

called blitzar [45]. In this case vacuum nonlinear electrody-
namics corrections to the pulsar radiation became significant
but at the same time this makes a strict solution (31) inappli-
cable because it was obtained in the low-field limit. So our
further evaluations will be applied to the case of the typi-
cal rapidly rotating pulsar, for instance PSR B1937+21 with
Bp ∼ 4.2 × 108G � Bc, and maybe for blitzars but with the
restriction Bp < Bc. The main purpose of our analysis will
be the identification of new qualitative features of the pul-
sar radiation and comparing vacuum nonlinear corrections
to the electromagnetic radiation with the other weak energy
loss mechanisms.

Let us investigate the properties of the correction func-
tion �(θ0,Y ). First of all, it should be noted that there is
no radiation when the pulsar dipole moment is coaxial with
the rotation axis i.e. when θ0 is zero. The correction func-
tion depends both on the angle θ0 and the angular velocity
through Y = ωRs/c, so �(θ0,Y ) may be represented as a
surface defined in the region where its coordinates take val-
ues 0 ≤ Y < 1 and 0 ≤ θ0 ≤ π/2. Some isolines – the
relations θ0(Y ) at which this surface takes a constant value,
�(θ0,Y ) = const – are represented in the Fig. 1, the numer-
ical values for which were obtained with the η1 and η2 from
the Heisenberg–Euler theory.

The obtained isolines differ from each other by the abso-
lute value of the correction function but all of them have a
pronounced extremum at some point which lies on the red
line. This means that for each fixed angle θ0 between the pul-
sar dipole moment and the rotation axis there is an angular
velocity at which the vacuum nonlinear electrodynamics cor-
rections become the most pronounced. Increasing Y at con-
stant θ0 up to the value marked by the red line increases the
correction of vacuum nonlinear electrodynamics. The sub-
sequent Y and angular velocity increase become ineffective
because the vacuum corrections in this case will be reduced.
It should be noted that increasing Y → 1 also will enhance
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Fig. 1 Correction function isolines and the best contrast line

the total pulsar luminosity, which is I ∝ ω4 sin2 θ0, but at the
same time, as mentioned, this will decrease the vacuum non-
linear electrodynamics correction on the Maxwell radiation
background. For instance, if θ0 ∼ π/2 the correction will
most significantly stand out for the pulsars with Y ∼ 0.5. So
the correction function �(θ0,Y ) plays the role of a contrast.
And the red line in Fig. 1 marks the relation between θ0 and
Y for the best contrast.

Another distinctive feature of the pulsar radiation is
manifested in a sophisticated, non-polynomial dependence
between the radiation intensity (31) and the angular veloc-
ity, which greatly complicates the analysis. Performing a
power-law approximation of (31) will allow us to describe
the vacuum nonlinear electrodynamics’ influence on the pul-
sar spin-down, in traditional terms of braking-indices and
torque-functions [47]. It also provides a possibility for com-
parison of the pulsar spin-down caused by different non-
electromagnetic dissipative factors with the power-law rela-
tion between the radiation intensity and angular velocity, for
instance with the quadrupole gravitational radiation. Let us
investigate the features of the pulsar spin-down as a result
of the radiation, with the amendments of vacuum nonlinear
electrodynamics.

4 Pulsar spin-down

The observed spin-down rate [47] can be expressed by the
derivative of the angular velocity as

ω̇ = − I

Jω
= −2B2

p R
3
s

3J
sin2 θ0

{

Y 3 + B2
p

B2
c
Y 3 �

}

, (33)

where J is the pulsar’s inertia momentum and the dot means
the time derivative. For a description in terms of torque func-
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Table 1 Expansion coefficients

θ0 α7 × 104 α6 × 104 α5 × 104 α4 × 104 α3 × 104

π/2 1.7 −4.0 2.4 −0.3 −0.2

π/3 1.5 −3.8 2.7 −0.5 −0.3

π/6 1.1 −3.6 3.3 −0.9 −0.5

tions, the right hand side of Eq. (33) should be represented
in a polynomial form of the angular velocity,

Y 3�(θ0,Y ) =
N∑

n

αn(θ0) Y
n =

N∑

n

αn(θ0)
(ωRs

c

)n
, (34)

where αn are decomposition coefficients and the number
of the terms N should be selected sufficient to ensure the
required accuracy of the decomposition. We will take the
number of terms in the expansion (34) equal to N = 8. This
choice ensures the accuracy of a power-law approximation
for the pulsars with Y > 0.6 better than 0.1%. It should
be noted that the series does not converge at Y ∼ 1 but its
replacement by the partial sum with the specially selected
number of terms allows one to accomplish the polynomial
approximation, which provides a good match with the exact
expression near Y ∼ 1 but leads to significant errors when
Y � 1. In this case the expansion coefficients (with the η1

and η2 from the Heisenberg–Euler theory) for the terms pro-
viding the largest contribution are represented in Table 1.
The coefficients not listed in the table are small and can be
neglected in further consideration.

For quantitative analysis, we will take the inclination angle
equal to θ0 = π/2. This choice is justified because it provides
the greatest total intensity of the pulsar radiation and in our
comparison of nonlinear electrodynamics spin-down with the
other non-electrodynamical dissipative factors, it gives the
upper limit of the nonlinear electrodynamics’ influence.

After the expansion, the right hand side of the spin-down
equation (33) will take the form

ω̇ = KM +
∑

n

Knω
n, (35)

where KM corresponds to the torque function of the dipole
magnetic radiation in Maxwell electrodynamics [48,49]:

KM = −2B2
p R

6
s

3Jc3 sin2 θ0, (36)

and Kn are the torques originating from the nonlinear vacuum
electrodynamics:

Kn = αn(θ0)KM

( Bp

Bc

)2( Rs

c

)n−3
. (37)

Let us compare the pulsar spin-down caused by nonlinear
vacuum electrodynamics and dissipation caused by gravi-
tational waves radiation. Among several possible ways of
gravitational radiation by an isolated pulsar we will choose
the two most relevant scenarios – quadrupole mass radiation
[50] and the radiation caused by Rossby waves [51], called
r-modes.

Quadrupole gravitational radiation may originate by the
strain caused by the pulsar rotation, which is especially likely
for rapidly rotating pulsars. The spin-down under this kind
of radiation can be represented by

ω̇ = KQ ω5 = −32

5

GJε2

c5
ω5, (38)

where G is a gravitational constant and ε is the pulsar ellip-
ticity, which is in accordance with modern representations
ε < 10−4 [47].

Another reason for gravitational wave emission by an iso-
lated pulsar are the oscillations modes induced by the pulsar
rotation. Gravitational radiation is caused by the instability
of such oscillations. As was shown by Owen et al. [52] for
young rapidly rotating pulsars, spin-down caused by r-modes
can be expressed in the form

ω̇ = KR ω7 = −217πF2GM2R6
s β2

sat

3752 Jc7 ω7, (39)

where M and Rs are the pulsar mass and its radius, the r-mode
oscillations saturation amplitude 10−7 ≤ βsat ≤ 10−5 was
defined by [53], and the dimensionless constant F as has been
shown in [54] is to be strictly bounded within 1/(20π) ≤
F ≤ 3/(28π).

So the torque function for the quadrupole gravitational
radiation KQ can be compared with the nonlinear electrody-
namics torque K5 and the r-mode radiation torque KR can
be compared with the torque K7. For this comparison we
suppose the pulsar with the typical radius Rs = 30 km, mass
M = 2M
 and inertia momentum J = 1045 g cm2. Also we
assume that the dipole moment inclination is θ0 = π/2 and
the post-Maxwellian parameters correspond to Heisenberg–
Euler theory (the choice of Born–Infeld parameters in first
estimation gives a similar order).

For the pulsar with the surface magnetic field Bp ∼
1011G, for which ellipticity reaches the maximum value
ε ∼ 10−4, the r-mode saturation amplitude βsat ∼ 10−6

and F = 1/(20π), and we have the following estimation:
K5/KQ ∼ 1.3 × 10−11 and K7/KR ∼ 2.6 × 10−7. So the
quadrupole and r-mode gravitational radiation torque will
significantly exceed the nonlinear electrodynamics torque
coupled with the terms ∼ω5 and ∼ω7 in the spin-down equa-
tion. For another parameter set the opposite case takes place.
If the pulsar distortion and ellipticity is two orders of mag-
nitude lower (ε ∼ 10−6), and the pulsar field is stronger
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Bp ∼ 1013G than K5/KQ ∼ 12.6 and K7/KR ∼ 25.6.
However, it should be noted that rapidly rotating pulsars with
such a strong field have not been observed yet. Nevertheless,
the theoretical models assuming the blitzars as the sources of
fast radio bursts [45] do not eliminate the possibility of such
strong electromagnetic fields for the rapidly rotating pulsar.
Therefore the obtained ratio between the torques seems very
exotic but still cannot be completely discarded.

5 Conclusion

In this work, we have studied the vacuum nonlinear electro-
dynamics’ influence on rapidly rotating pulsar radiation in
parameterized post-Maxwellian electrodynamics. Under the
assumption of a flat space-time the analytical description of
radiation intensity (31) was obtained. Despite the fact that
the expression for the intensity is quite complicated for an
analysis some new features of pulsar’s radiation have been
obtained. For instance, it was shown that for the rapidly rotat-
ing pulsar vacuum nonlinear electrodynamics’ corrections
observation is optimal only for certain relations between the
inclination angle θ0 of the magnetic dipole moment to the
rotation axis and the angular velocity ω. Such a relation plays
the role of a contrast for nonlinear corrections on the total
pulsar radiation background. It follows that enhancing of the
vacuum nonlinear electrodynamics’ influence on pulsar radi-
ation requires not only an increasing magnetic field, but one
also needs compliance of conditions marked on Fig. 1 to
ensure the best possible contrast for the nonlinear correc-
tions.

The obtained radiation intensity was used to estimate the
pulsar spin-down. In this framework, for a description in
terms of the torque functions the power-low expansion of the
intensity (31) was carried out (35)–(37) with the decompo-
sition coefficients listed in Table 1. This provided an oppor-
tunity to compare the nonlinear electrodynamics torque with
the weak mechanisms of the energy dissipation, for instance
with gravitational wave radiation. For such a comparison
the most realistic scenarios of gravitational radiation by iso-
lated pulsars were selected – quadrupole gravitational radia-
tion and r-mode radiation. The quantitative comparison has
shown that, for the common rapidly rotating pulsar, grav-
itational radiation torques significantly exceed the nonlin-
ear electrodynamics torques coupled with the terms of the
same ω powers in the spin-down equation. This result can be
explained by the low surface magnetic field Bs < 1011G spe-
cific for most of the rapidly rotating pulsars’ population. The
implementation of similar estimates for the compact object
possessing a stronger magnetic field (hypothetical blitzar)
Bs ∼ 1013G shows the possibility of the opposite case when
the vacuum nonlinear electrodynamics’ torques exceed the

gravitational torque and play a more significant role in the
spin-down equation under certain conditions.
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and reproduction in any medium, provided you give appropriate credit
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