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Abstract This paper is dedicated to the study of interac-
tions between external sources for the electromagnetic field
in the presence of Lorentz symmetry breaking. We focus on
a higher derivative, Lorentz violating interaction that arises
from a specific model that was argued to lead to interest-
ing effects in the low energy phenomenology of light pseu-
doscalars interacting with photons. The kind of higher deriva-
tive Lorentz violating interaction we discuss are called non-
minimal. They are usually expected to be relevant only at
very high energies, but we argue they might also induce rele-
vant effects in low energy phenomena. Indeed, we show that
the Lorentz violating background considered by us leads to
several phenomena that have no counterpart in Maxwell the-
ory, such as nontrivial torques on isolated electric dipoles, as
well as nontrivial forces and torques between line currents
and point like charges, as well as among Dirac strings and
other electromagnetic sources.

1 Introduction

The standard model (SM) of particle physics describes the
fundamental forces as well as the elementary particles that
make up all matter, being Lorentz and CPT invariant. How-
ever, in high energy scales of the order of the Planck energy
EP ∼ 1019GeV, it is believed that quantum gravitational
effects can not be neglected, and there is the possibility of a
spontaneous breaking of Lorentz and CPT symmetries [1], or
even a fundamental change in the nature of quantum space-
time and its symmetries [2]. In the last decades, the study
of possible Lorentz symmetry violations became an active
field of theoretical and experimental research. The motiva-
tion is essentially twofold: first, one hopes to learn from
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eventual positive signs of Lorentz violation (LV) more on
the fundamental theory that operates at the Planck scale;
second, from each negative measure of LV one obtains a
further test of Lorentz symmetry, leading to an extensive
set of contemporary, nontrivial tests of relativistic symme-
try [3].

An early model to investigate the consequences of an
explicit Lorentz symmetry violation was proposed by Car-
roll, Field and Jackiw [4]. In that work, the Maxwell
Lagrangian was augmented by a kind of four dimensional
Chern-Simons term kμεμνρσ AνFρσ , where the photon field
couples to the Lorentz violating parameter kμ. A result of this
violation is a change in the propagation of electromagnetic
waves in the vacuum, which could be detected by exper-
iments, and whose absence induces an experimental con-
straint on the LV parameter kμ.

A very systematic approach for the introduction of LV
in the SM was developed by Colladay and Kostelecký,
in the form of the so-called Standard Model Extension
(SME). This model incorporates in the SM structure all
the Lorentz and CPT violating terms which respect renor-
malizability and gauge invariance [5,6]. The SME consti-
tutes a quite general framework that facilitates investigations
on the breaking of Lorentz and CPT symmetries. Theoret-
ical aspects of LV have been investigated in Maxwell elec-
trodynamics [7–11], QCD [12], gravity [13,14], noncommu-
tative theories [15], statistical mechanics [16], QED [17–
20], supersymmetry [21–24], electromagnetic wave prop-
agation [25–27], to name a few. Experimental tests of
LV have been performed in experiments involving pho-
tons [28,29], electrons [30,31], muons [32,33], and many
others [3].

The SME, understood as an effective field theory, includes
renormalizable LV interactions as well as higher derivatives,
non renormalizable ones. These later are called nonminimal
terms, and by dimensional analysis alone are expected to be
subdominant relative to the minimal ones, so in principle they
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could be disregarded except if one deals with extremely high
energy phenomena. The systematic study of the nonmini-
mal terms of the SME was started in [34,35], where higher
derivatives terms in both photon and fermion sectors were
considered. Besides, some studies of different nonminimal
LV interactions were carried out in [25,36–41], for exam-
ple.

In [42], it was shown that nonminimal terms can induce
nontrivial effects even in low energy phenomenology, in par-
ticular in searches for light pseudoscalars. The QCD axion
being its most important representative, these kind of parti-
cles are extremely light and weakly interacting, thus consti-
tuting a class of WISPs (weakly interacting, slim particles)
candidates for dark matter [43,44]. A particular set of non-
minimal LV interactions was shown to provide a mechanism
for generating the standard, Lorentz invariant (LI), interac-
tion between the photon and light pseudoscalars that is inves-
tigated by current experimental efforts. Despite the nonmin-
imal LV interactions being assumedly very small, they might
represent a relevant contribution to these phenomenology,
since the standard LI interactions involving WISPs are them-
selves very feeble.

The lesson is that there might exist open windows for
the investigation of nonminimal LV effects in low energy
physics, and photon physics is a natural place to start look-
ing for this window. A starting point in this direction was
the work [45], in which the complete low energy photon
effective action for the nomminimal LV interaction stud-
ied in [42] was calculated. This result paves the way to
investigate possible nonminimal LV effects in electrody-
namics. A first result, already discovered in [45], is that the
propagation of electromagnetic waves in the vacuum is not
affected by the particular LV coupling considered in these
articles.

In the present work, we look further for nontrivial effects
of nonminimal LV in the classical interaction between elec-
tromagnetic sources. Our analysis parallels that of refer-
ence [46], which considered a minimal LV term from the non
birefringent sector of the SME. As in that paper, we will find
essential modifications due to the LV, with some effects that
have no counterparts in the standard Maxwell theory. These
will be results obtained without the recourse to perturbation
theory.

The paper is organized as follows: in Sect. 2 we define the
specific model we will study, and calculate the (exact) photon
propagator. This result is used to obtain the classical inter-
action between different electromagnetic sources: point-like
stationary charges (Sect. 3), a steady line current and a point-
like stationary charge (Sect. 4), and Dirac strings (Sect. 5).
Finally, Sect. 6 is dedicated to our final remarks and conclu-
sions. Along the paper we shall deal with models in 3 + 1
dimensional space-time and use Minkowski coordinates with
the diagonal metric with signature (+,−,−,−).

2 The model

The explicit model we will consider in this work is defined
by the following Lagrangian density,

L = −1

4
FμνF

μν − 1

2γ

(
∂μA

μ
)2 + 1

2
dλdα∂μFνλ∂

νFμα

+JμAμ , (1)

where Aμ is the electromagnetic field, Fμν = ∂μAν −∂ν Aμ

is the field strength, Jμ is the external source, γ is a gauge
parameter, and dλ is a background vector taken to be constant
and uniform in the reference frame where the calculations
are performed. The parameter dλ embodies the LV in our
model. We restrict ourselves to the case of dμ being a time-
like background vector, namely d2 = dμdμ > 0. The case
of a light-like background vector can be obtained from our
results by taking the limit d2 → 0, in which case all effects
due to the LV disappear. The case of a space-like background
vector is more subtle. Some preliminary results suggest that
the interaction energy could exhibit an imaginary part in some
circumstances, making the vacuum unstable in the presence
of external sources; in addition, we could have tachyonic
modes. These facts can be an indication that the model is
not consistent for a space-like background vector, so this
situation will not be considered in this paper.

Differently from the minimal LV coefficients appearing in
the SME, the parameter dλ is not adimentional but instead has
length dimension one. The LV term in (1) is one of the low
energy interactions obtained in [45], starting from the basic
LV interaction Fμνdνψγ μψ , between the photon and a very
massive fermion field ψ which is integrated out to study the
low energy phenomenology of the model.

The propagator Dμν(x, y) for the Lagrangian (1) satisfies
the differential equation
{
∂2ημν −

[(
1 − 1

γ

)
− (d · ∂)2

]
∂μ∂ν + dμdν∂4

−∂2 (d · ∂)
(
dμ∂ν + dν∂μ

)}
Dν

β (x, y)

= ημβδ4(x − y). (2)

Fixing the Feynman gauge γ = 1, one can solve this
equation obtaining the exact propagator in the form of the
Fourier integral

Dμν(x, y) =
∫

d4 p

(2π)4

{
−ημν

p2 + 1

[1 − d2 p2 + (p · d)2]
×

[
−dμdν − (p · d)2

p4 pμ pν

+ (p · d)

p2 (pμdν + dμ pν)

]}
e−i p·(x−y) . (3)
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This propagator is the basic ingredient we need to obtain
several relevant physical quantities of the model. We shall use
it to compute the interaction mediated by the electromagnetic
field between several different sources in the next sections.

3 Point-like charges

In this section we consider the interaction between two steady
point-like charges in the model defined by Eq. (1). This
charge configuration is described by the external source

J I
μ(x) = q1η

0
μδ3 (x − a1) + q2η

0
μδ3(x − a2), (4)

where the location of the charges are specified by the vectors
a1 and a2. The parameters q1 and q2 are the coupling con-
stants between the vector field and the delta functions, and
can be interpreted as electric charges.

The theory is quadratic in the field variables Aμ, so it
can be shown that the contribution of the source J (x) to the
vacuum energy of the system is given by [47–49]

E = 1

2T

∫
d4y

∫
d4x Jμ(x)Dμν(x, y)Jν(y), (5)

where the integration in y0 is from −T/2 to T/2, and the
limit T → ∞ is implicit.

Substituting (4) into (5), discarding the self-interacting
energy of each charge, we have

E I = q1q2

T

∫
d4y

∫
d4x d4y D00(x, y)

× δ3 (x − a1) δ3(y − a2). (6)

By using the explicit form of the propagator in Eq. (3),
computing the integrals in the following order: d3x, d3y, dx0,
dp0 and dy0, using the Fourier representation for the Dirac
delta function δ(p0) = ∫

dx/(2π) exp(−i px), and identify-

ing the time interval as T = ∫ T
2

− T
2

dy0, we can write

E I = q1q2

∫
d3p

(2π)3

exp(ip · a)
p2

−q1q2(d0)2

d2

∫
d3p

(2π)3

exp(ip · a)
(
p2 + (d·p)2

d2

)
+ 1

d2

, (7)

where d = √
d2 and we defined a = a1 − a2, which is the

distance between the two electric charges. Remembering that
∫

d3p
(2π)3

exp(ip · a)
p2 = 1

4π |a| , (8)

we can note that the first term in Eq. (7) gives the well-known
Coulombian interaction.

In order to calculate the second integral in Eq. (7), we shall
perform a change in the integration variables. For this task,
we first split the vector p into two parts,

p = pn + pp , (9)

pp being parallel and pn normal to the vector d; more explic-
itly,

pp = d
(d · p

d2

)
, pn = p − d

(d · p
d2

)
. (10)

We also define the vector q as follows,

q = pn + pp

√

1 + d2

d2 (11)

= p + d
(d · p

d2

)
(∣

∣d0
∣
∣

d
− 1

)

. (12)

With the previous definitions, we can write

pp = d(d · q)

d2

d

|d0| , pn = q − d(d · q)

d2
, (13)

which implies in

p = q + (d · q)d
d2

(
d

|d0| − 1

)
, (14)

and

q2 = p2 + (d · p)2

d2 . (15)

Defining the spatial vector

b = a +
(

d

|d0| − 1

)
d · a
d2 d , (16)

and using Eq. (13), we can show that

p · a = b · q . (17)

The Jacobian of the transformation from p to q can be
calculated from Eq. (13), resulting in

det

[
∂p
∂q

]
= 1

√
1 + d2

d2

= d

|d0| . (18)

Putting all this together, we end up with

E I = q1q2

4π |a| − q1q2|d0|
d

∫
d3q

(2π)3

exp(ib · q)

q2 + 1
d2

. (19)
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Using the fact that, for d2 > 0 [48],

∫
d3q

(2π)3

exp(ib · q)

q2 +
(

1
d2

) = 1

4π |b| exp

(
−|b|

d

)
, (20)

and performing some manipulations we arrive at,

E I = q1q2

4π

[
1

|a| − |d0|
d

1

|b| exp

(
−|b|

d

)]
, (21)

where,

|b| =
√

a2 − (d · a)2

|d0|2 . (22)

It is important to realize that |b| vanishes only of a = 0.
This can be seen by taking a coordinate system where d lies
along the ẑ axis. In spherical coordinates, with θ standing for
the polar angle for a, Eq. (22) reads

|b| = |a|
√

1 −
( |d|

|d0| cos(θ)

)2

. (23)

The restriction d2 > 0 guarantees that the term inside the
square root will always be strictly positive.

Equation (21) gives the interaction energy between two
point-like charges mediated by the electromagnetic field with
the specific Lorentz violating coupling contained in Eq. (1).
The dμ dependent term in (21) is a correction to the Coulomb
interaction due the Lorentz symmetry breaking, leading to
an anisotropic interaction between the charges. The LI limit
dμ → 0 of this result must be taken with the restriction
(d0)2 > d2: in this case, it can shown that the second term
inside the brackets vanishes and we are left with the stan-
dard Coulombian interaction between the charges. The same
happens for the light-like limit of the vector dμ, i.e., if d → 0.

If d = 0, Eq. (21) reduces to the simple form

E I (d = 0) = q1q2

4π

[
1

|a| − 1

|a| exp

(
− |a|

|d0|
)]

, (24)

which is the Coulombian interaction corrected by an Yukawa-
like interaction, with 1/|d0| as a mass parameter. It is interest-
ing to notice that the same structure for E I can be found for
another (Lorentz invariant) gauge field theory which exhibits
higher order derivatives [50], the Podolsky–Lee–Wick elec-
trodynamics [51–55]. As another noteworthy particular case,
if the distance vector a is perpendicular to the background
vector d, Eq. (21) becomes

E I (d · a = 0) = q1q2

4π

[
1

|a| − |d0|
d

1

|a| exp

(
− |a|

|d0|
)]

. (25)

The force between the two charges can be calculated from
Eqs. (21) and (22), resulting in

FI = −∇E I

= q1q2

4π

[
a

|a|3 − |d0|
d

1

|b|3
(

1 + |b|
d

)

× exp

(
−|b|

d

)(
a − (d · a) d

|d0|2
)]

. (26)

The interaction energy (21) exhibits anisotropy due to the
presence of the background vector dμ. An interesting conse-
quence of this is the emergence of an spontaneous torque on
an electric dipole. To see this, we consider a typical dipole
composed by two opposite electric charges, q1 = −q2 = q,
placed at the positions a1 = R+ A

2 and a2 = R− A
2 , A taken

to be a fixed vector. From Eq. (21), we obtain

Edipole = − q2

4π |A|
[

1 − |d0|
d

1

f (�)
exp

(
−|A| f (�)

d

)]
,

(27)

where

f (�) =
√

1 − d2 cos2 �

|d0|2 , (28)

with � ∈ [0, 2π) standing for the angle between A and
the background vector d. This interaction energy leads to an
spontaneous torque on the dipole as follows,

τdipole = − ∂Edipole

∂�

= q2

8π |A|
d2

d|d0|
1

f 3(�)

(
1 + |A| f (�)

d

)

× sin(2�) exp

(
−|A| f (�)

d

)
. (29)

This spontaneous torque on the dipole is an exclusive
effect due to the Lorentz violating background. If dμ = 0,
the torque vanishes, as it should, as well as for the specific
configurations � = 0, π/2, π . Finally, we note that if d = 0,
this effect is also absent.

4 A steady current line and a point-like charge

In this section we study the interaction energy between a
steady line current and a point-like stationary charge. This
interaction does not occur in Maxwell electrodynamics, but
it may emerge in theories with Lorentz violation [46], as well
as in LI theories with higher order derivatives [50].
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Let us consider a steady line current flowing parallel to
the z-axis, along the straight line placed at A = (A1, A2, 0).
The electric charge is placed at the position s. The external
source for this system is given by

J I I
μ (x) = Iη3

μδ2 (x⊥ − A) + qη0
μδ3(x − s), (30)

where we defined the vector position perpendicular to the
straight line current x⊥ = (x1, x2, 0). The parameters I and
q stand for, respectively, the current intensity and the electric
charge.

Substituting (30) into (5) and discarding self-interaction
terms, we have

E I I = q I

T

∫
d4y

∫
d4x D30(x, y)

× δ2 (x⊥ − A) δ3 (y − s) , (31)

where the integration limits for y0 are as in the previous
section. Substituting the explicit form for the propagator (3)
and evaluating the integrals d2x⊥, d3y, dx3, dp3, dx0, dp0

and dy0, we obtain

E I I = −q Id3d0

d2

∫
d2p⊥
(2π)2

exp(ip⊥ · a⊥)
(
p2⊥ + (d⊥·p⊥)2

d2

)
+ 1

d2

, (32)

where again
∫ T/2
−T/2 dy0 = T , and defined the perpendicular

momentum p⊥ = (p1, p2, 0) and the distance between the
charge and the line current a⊥ = (A1 − s1, A2 − s2, 0).

Proceeding as in before, the interaction energy in this case
can be written as

E I I = − q Id3d0

d
√

(d0)2 − (d3)2

∫
d2q⊥
(2π)2

exp(iq⊥ · r⊥)

q2⊥ + 1
d2

, (33)

where we defined

r⊥ = a⊥ +
[

d
√

(d0)2 − (d3)2
− 1

]
d⊥ · a⊥
d2⊥

d⊥ . (34)

Due to the fact that d2 > 0, we can use that [48]

∫
d2q⊥
(2π)2

exp(iq⊥ · r⊥)

q2⊥ + ( 1
d

)2 = 1

2π
K0

( |r⊥|
d

)
, (35)

thus obtaining

E I I = − q I

2π

d3d0

d
√

(d0)2 − (d3)2
K0

( |r⊥|
d

)
, (36)

where K0 is a modified Bessel function of the second
kind [56], and

|r⊥| =
√

a2⊥ − (d⊥ · a⊥)2

(d0)2 − (d3)2 . (37)

Defining Î as the unit vector along the straight line current
and noticing that d3 is the projection of the vector d along Î ,
one can write the energy (36) in the form

E I I = − I q

2π

(d · Î ) d0

d
√

(d0)2 − (d · Î )2
K0

( |r⊥|
d

)
. (38)

This interaction energy is an effect due solely to the
Lorentz violating background, having no counterpart in
Maxwell theory. Clearly, if the background four-vector dμ

is zero, there is no interaction energy. The energy (38) is pro-
portional to the electric charge q as well as to the projection
of the Lorentz-symmetry breaking vector d along the cur-
rent line. If the current line flows perpendicular to d, there
is no interaction; the same happens if d = 0. In the limit
of a light-like background vector, d → 0, the energy (38)
vanishes.

The force on the point charge can be obtained from
Eq. (38) as follows,

FI I = −∇a⊥E
I I

= − q I

2π |b⊥|
(d · Î ) d0

d2
√

(d0)2 − (d · Î )2
K1

( |r⊥|
d

)

×
[
a⊥ − (d⊥ · a⊥)

(d0)2 − (d · Î )2
d⊥

]
. (39)

From Eq. (38), one can also obtain a torque on the line
current, due to the interaction with the point charge. Denoting
by φ the angle between d⊥ and a⊥, we have

τ I I = −∂E I I

∂φ

= − q I

4πg(φ)

d0 d2⊥ (d · Î )
d2

[
(d0)2 − (d · Î )2

]3/2

× K1

(
g(φ)

d

)
sin 2φ , (40)

where we defined the function

g(φ) =
√

a2⊥ − d2⊥a2⊥ cos2 φ

(d0)2 − (d · Î )2
. (41)

If φ = 0, π/2, π , dμ = 0 or d = 0, the torque in Eq. (40)
vanishes.
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5 Dirac strings

In this section we study the interaction between electromag-
netic sources, including Dirac strings. They might be seen as
zero width solenoids that connect magnetic monopoles, and
their existence is compatible with the standard Maxwell’s
electrodynamics, where they lead to the Dirac quantiza-
tion rule for the electric charge. In Maxwell electrodynam-
ics, a Dirac string does not produce any obvious physical
effects, because it does not produce electromagnetic field in
its exterior region, just a (divergent) magnetic field along
the string. It is still relevant to investigate whether a Dirac
string can produce observable effects in an extended elec-
trodynamic theory. We will show this is indeed the case,
since we will show that non trivial interactions between
Dirac strings themselves and other electromagnetic sources
will appear, due to the presence of Lorentz symmetry break-
ing.

We start by considering a system composed by a point-
like charge placed at position a and a Dirac string, both of
them stationary. This system is described by the source

J I I I
μ (x) = J(D)μ (x) + qη0

μδ3(x − a), (42)

where Jμ

(D) (x) stands for the source corresponding to the
Dirac string. Choosing a coordinate system where the Dirac
string lies along the z-axis with internal magnetic flux �,
Jμ

(D) (x) is given explicitly by [46,57,58]

Jμ

(D)(x) = i�(2π)2
∫

d4 p

(2π)4 δ(p0)δ(p3)ε
0μ
ν3 pνe−i px ,

(43)

where εαβμν is the Levi–Civita tensor with ε0123 = 1. If
� > 0 we have the internal magnetic pointing at the positive
direction of ẑ, whereas for � < 0, the internal magnetic field
points in the opposite direction. In Maxwell electrodynamics,
the source (43) produces the vector potential

Aμ(x) = �

2π

(
0,− x2

(x1)2 + (x2)2 ,
x1

(x1)2 + (x2)2 , 0

)
,

(44)

which is, in fact, the vector potential related to a Dirac string,
with internal magnetic flux �, lying along the z axis.

From now on, the sub-index ⊥ means the component of a
given vector perpendicular to the Dirac string. By following
the same steps presented in the previous sections, we obtain
for the interaction energy between the Dirac string and the
point-like charge the expression

E I I I = −i
q�d0

d2

∫
d2p⊥
(2π)2

[
ẑ · (p⊥ × d⊥)

]

(
p2⊥ + (d⊥·p⊥)2

d2

)
+ ( 1

d

)2

× exp (ip⊥ · a⊥) . (45)

This integral can be manipulated similarly to Eq. (33).
Using (34), we arrive at

E I I I = − q�d0

d
√

(d0)2 − (d3)2

[
ẑ · (∇r⊥ × d⊥

)]

×
∫

d2q⊥
(2π)2

exp (iq⊥ · r⊥)

q2⊥ + ( 1
d

)2 , (46)

where ∇r⊥ =
(

∂
∂r1 , ∂

∂r2 , 0
)

. After some manipulations, and

identifying ẑ = B̂int as the unit vector pointing along the
internal magnetic field, we obtain

E I I I = q�

2π |r⊥|
d0

d2
√

(d0)2 − (d · B̂int )2
K1

( |r⊥|
d

)

×
[
B̂int · (a⊥ × d⊥)

]
. (47)

This interaction energy can be seen to lead to a force
between the Dirac string and the charge, as well as to a torque
on the Dirac string.

The next example is given by two parallel Dirac strings
placed a distance a⊥ apart. We take a coordinate system
where the first string lies along the z axis, with internal mag-
netic flux �1, and the second string lies along the line that
crosses the xy place at a⊥ = (a1, a2, 0), with internal mag-
netic flux �2. The corresponding source is given by

J IV
μ (x) = Jμ(D,1) (x) + Jμ(D,2) (x) , (48)

where Jμ

(D,1) (x) is given by the right hand side of Eq. (43),
with � replaced by �1, and

Jμ

(D,2) (x) = i�2

∫
d4 p

(2π)2 δ(p0)δ(p3)ε
0μ
ν3 pνe−i px e−ip⊥·a⊥ .

(49)

Proceeding as in the previous cases, and identifying the
length of the Dirac string as L = ∫

dx3, we can show that
the interaction energy between the two Dirac strings is given
by

E IV = �1�2L

[
−

∫
d2p⊥
(2π)2 e

ip⊥·a⊥ + 1

d
√

(d0)2−(d · B̂int )2

×
∫

d2q⊥
(2π)2

[
(d⊥ · q⊥)2 − q2⊥d2⊥

]

q2⊥ + ( 1
d

)2 eiq⊥·r⊥
]

. (50)
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Provided that a⊥ is non-zero, the first term inside the
brackets in this result vanishes. The remaining integral can
be calculated with the procedure outlined in the previous sec-
tions. The interaction energy between the two parallel Dirac
strings per unit length E I V ends up given by,

E I V = E IV

L
= �1�2

4π

1

d3
√

(d0)2 − (d · B̂int )2

×
{
d2⊥K0

( |r⊥|
d

)
+ 1

r2⊥
K2

( |r⊥|
d

) [
d2⊥a2⊥

−
(

2 − d2⊥
(d0)2 − (d · B̂int )2

)
(d⊥ · a⊥)2

]}
. (51)

The last example we consider is given by a Dirac string
alongside a steady line current, both parallel to each other.
The corresponding external source is

J Vμ (x) = Iη3
μδ2 (x⊥ − a⊥) + Jμ

(D) (x) , (52)

where Jμ

(D) (x) is given by (43). Proceeding as before, we
obtain the result

EV = EV

L
= I�

2π |r⊥|
d · B̂int

d2
√

(d0)2 − (d · B̂int )2

× K1

( |r⊥|
d

) [
B̂int · (a⊥ × d⊥)

]
, (53)

for the energy line density.
The results of this section are all exclusive effects of the

LV, having no counterpart in Maxwell theory, in which the
interaction energy vanishes in all cases considered here. In
the limit dμ → 0, all these effects disappears, as they should.
The same happens in the limit of a light-like background
vector, d → 0.

6 Conclusions and perspectives

In this paper we investigated the interaction between sources
for the electromagnetic field in the presence of the Lorentz
violating higher derivative interaction dλdα∂μFνλ∂

νFμα .
This interaction is induced by a specific setting of nonmini-
mal LV which was shown to lead to low energy effects rel-
evant for the physics of light pseudoscalars interacting with
photons [42,45]. We obtained results with no resource to per-
turbation theory in the background vector for the specific
case where dμdμ = d2 > 0 (time-like interval), which pro-
vided us with different physical effects with no counterpart
in Maxwell theory. The case of a light-like background vec-
tor, d → 0, can be obtained from our results. In this situa-
tion, the interaction between two point-like charges becomes

the Coulombian one, and all other nontrivial interactions
obtained in this paper vanish. On the other hand, a space-like
background vector was not considered here. In this situation
the calculations are much more difficult and some prelimi-
nary results suggest that it could lead to inconsistencies.

We have shown the emergence of an spontaneous torque
on a classical electromagnetic dipole, as well as a nontrivial
interaction between a steady straight line current and a point-
like charge. We also investigated some phenomena due to the
presence of Dirac strings. We showed that a Dirac string have
a nontrivial interaction with a point charge, with a straight line
steady current, as well as with another Dirac string. All these
phenomena are effects due to the Lorentz-violation back-
ground. The nontrivial LV effects uncovered in this paper
represent another instance where nominimal LV terms may
induce low energy phenomenology, and might open up a win-
dow to look for experimental limits on these LV coefficients.

As a final remark, we point out that this paper all field
sources are spinless. An interesting extension of this work
would be the investigation of spin effects in the interactions
between field sources.
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