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Abstract Recently, Ali and Khalil (Nucl Phys B, 909, 173—
185, 2016), based on Bohmian quantum mechanics, derived
a quantum corrected version of the Schwarzschild metric. In
this paper, we construct a quantum corrected Schwarzschild
thin-shell wormhole (QSTSW) and investigate the stability
of this wormhole. First we compute the surface stress at the
wormhole throat by applying the Darmois—Israel formalism
to the modified Schwarzschild metric and show that exotic
matter is required at the throat to keep the wormhole stable.
We then study the stability analysis of the wormhole by con-
sidering phantom-energy for the exotic matter, generalized
Chaplygin gas (GCG), and the linearized stability analysis.
It is argued that quantum corrections can affect the stability
domain of the wormhole.

1 Introduction

Morris and Thorne [1,2] showed that wormholes are solu-
tions of Einstein field equations that connect two spacetime
regions of the Universe by a throat. Although their existence
remains only of speculative nature, from a theoretical point
of view, the models supporting their existence continues to
be of great interest. In particular, there are known two main
difficulties that arise during their studies. First, one needs to
invoke the presence of the so-called exotic matter, concen-
trated at the throat, which is shown to violate the weak energy
condition (WEC), the null energy condition (NEC), and the
strong energy condition (SEC). Second, we have the prob-
lem of the stability of the wormhole for such configurations
to exists. On the other hand, Visser introduced the concept
of a thin-shell wormhole (TSW) [3-5], using Israel’s junc-
tion conditions [6]. The basic idea behind Visser’s method
is that, by cutting and pasting two spacetime manifolds, one
can construct a TSW which also minimizes the amount of the
exotic matter at the wormhole throat. Furthermore, Poisson
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and Visser [7] investigated the stability of the STSW under
linearized radial perturbations around a static solution. There
are several models addressing the stability problem, such as:
the phantom-energy model, the generalized Chaylang gas,
linearized stability, and many others.

Different TSW solutions have been proposed, including,
charged TSW [8,9], TSW in heterotic string theory [10],
TSW from a noncommutative BTZ black hole [11], TSW
in Einstein—-Maxwell-Gauss—Bonnet gravity [12], rotating
TSW [13,14], TSW from scalar hair black hole [15], TSW
supported by normal matter [16,17], cylindrical TSW [18—
24], and TSW with a cosmological constant [25,26], and
wormholes in the framework of mimetic gravity; see [27]
and the references therein. Recently, Das [28], showed that
by replacing the classical trajectories (geodesics) with the
so-called quantal or Bohmian trajectories gives rise to the
quantum version of the Raychaudhuri equation (QRE). In
particular, they also studied the QRE in the context of the
Friedmann—Robertson—Walker (FRW) Universe, and argued
that quantum corrections can prevents the formation of the
big bang singularity [29]. The basic idea is to introduce a
quantum velocity field u,, by writing the wave function of a
quantum fluid as [28-30]

¥ (x%) = Re' S, (1)

where 1 (x%) is a normalizable wave function, Z(x%) and
S(x%) are some real continuous functions associated with the
four velocity field u, = % 0¢ S, in whicha =0, 1,2, 3. On
the other hand, much less effort has been devoted to studies
of the quantum effects in the context of the TSW. For exam-
ple, in Refs. [31,32] the possibility of primordial wormholes
induced from GUTs and in the large N approximation at the
early Universe was investigated. In Ref. [33], the Hawking
temperature from the traversable Lorentzian wormholes has
been investigated. In Ref. [34], the thermodynamics of rotat-
ing thin shells in the BTZ spacetime has been studied. Moti-
vated by what has been said, we aim to construct a QSTSW
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and investigate the effects of these quantum corrections on
the stability of the wormhole.

This paper is organized as follows. In Sect. 2, we start from
the quantum corrected Schwarzschild metric and construct a
QSTSW by computing the surface stress using the Darmois—
Israel formalism. In Sect. 3, we study the effects of these
corrections on the stability of the wormhole by considering,
first, the phantom-energy model for the exotic matter, then the
generalized Chaplygin gas (GCG), and finally the linearized
stability around the static solution. In Sect. 4, we comment
on our results.

2 Quantum corrected Schwarzschild thin-shell
wormbhole

Recently, Ali and Khalil [28,30], based on Bohmian quantum
mechanics, found a quantum corrected Schwarzschild metric
given by

ds? = — f(r)de* + 71 (r)dr? +r2d0* + r* sin® 0d¢?, (2)

where

2M hn) ' 3)

f(")=<1—7+r—2

Note that n is a dimensionless constant; one can imme-
diately see the analogy with the charged black hole metric
simply by replacing Q% — #in. It is interesting to note that,
in contrast to the ordinary Schwarzschild solution, these cor-
rections leads to a non-zero components of the stress-energy
tensor 7}, . Moreover, according to [30], this may be a result
of dark energy and dark matter. The outer horizon radius is
calculated as

rn=M %/ M? —nh. 4

Furthermore, the corresponding Hawking temperature is
shown to be

_ M? — hip

= 5.
2 (M + M2 - nh)

Now we can use a cut and paste technique to construct a

QSTSW using the metric (2). Therefore, let us consider now
two copies of the above spacetime,

Ty ©)

ME = {r(i) >a, a> rh}, 6)

and paste them at the boundary hypersurface given by £ =
{r® =a,a > ry}. This construction creates a geodesi-

@ Springer

cally complete manifold M = M*|JM~. Next, by fol-
lowing the Darmois—Israel formalism, we write the original
coordinates on M, as x* = (¢, r, 6, ¢), and the coordinates
on the induced metric £, as &' = (t, 6, ¢). Furthermore the
parametric equation for X is given by

X:F(r,t)=r —a(r)=0. (7)

If we write the throat radius a, in terms of the proper time
7 on the shell, a = a(r), and then use the last equation it is
not difficult to show that the induced metric on X takes the
form

ds? = —dr? + 12 (d92 +sin%6 d¢2) . 8)
On the other hand the Israel junction condition on X reads
i 1 i i

S,:—g([Kj]—(st). )

Note that, in the last equation, S j = diag(—o, pg, pg) is
the energy momentum tensor on the thin shell, K and [K;]
are defined as K = trace [K’;] and [Kij] = Kij+ - K;;~,
respectively. Moreover the extrinsic curvature K' j is defined
by

2,
) _ (3 d°x
Kij =-n,; <—

Jpe 2 (10)
dgigEs P sl 9gl )y

In the last equation, n ,L(i) are the unit vectors normal to
M given as follows:
-2 5
— (11)
=

(F) _
T _:I:(g dxH

such thatn,n* = 1. Using the above relations for the normal
unit vectors to M7 it is not difficult to show that

)
n/(f) — <:F6'1, iLf(“),o, 0) )
b

op OF OF

0x% 0x%

12
f(a) (12

On the other hand, if we use Eqs. (10) and (12), for the
extrinsic curvature components we find

1 2M  h
M _ nn

KTE — 4 2ot
T

\/1—27M+’Z—Z+a2

Using the above results, one can easily check that the sur-
face density and the surface pressure are given by the follow-
ing relations:

(14)
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1 2M  hn
o =—— 1——+—2+a2, (15)
2ra a a
1 1-Y 442 4aa
= — 4 . (16)

From the last two equations we can now write the static
configuration of radius a, by setting @ = 0 and ¢ = 0, and
we get

1 XMk
-=+4

o) = — , (17
2mag ap ag
1 1=
po = o . (18)
dmag 1 — M + i}
ao aé

From Eq. (17) one can see that the surface density is always
negative, i.e. ogp < 0; as a consequence of this, the WEC
is violated. Furthermore, one can easily check that also the
NEC is violated, i.e. og + po < 0. Now, one can calculate the
amount of exotic matter needed to construct the wormhole
by solving the following integral:

2, = / V=g (o + p,;) &x. (19)

For a thin-shell wormhole p, = 0 and p = o6(r — a),
where § (r — a) is the Dirac delta function. Solving the above
integral and inserting the value of surface energy density in
a static configuration we find

2 pw oo
2 =/ / / o/—g8(r — a)drd dé. (20)
0 0 —00

Since the shell does not exert radial pressure and the
energy density is located on a thin-shell surface, it follows
that

oM
Q0 = —2ap |1 = = + 2L, 21)

Let us now analyze the attractive and repulsive nature of
the wormhole. We start from the observer’s four-acceleration,
given by a* = u"V,u*, where the four velocity reads u* =
(1/4/F(r), 0,0, 0). It is not difficult to show that we are left
only with the contribution of the radial component

dt\> M mn
arzl'*trl <E) :r_2_r_3 (22)

As aconsequence of the last equation, a test particle obeys
the equation of motion

d2r dr \?
(=) =" (23)

dr? "\ dr

20 — =01

02 04 06 08 10
a

Fig. 1 Plots for the acceleration of the QSTSW/STSW corresponding
ton=m = 1land i = 0.1, i = 0, respectively

Note that this equation gives the geodesic equation if a” =
0. Also, we observe that the wormhole is attractive whena” >
0 and repulsive when a a” < 0. More useful information as
regards the effects of quantum corrections on the acceleration
of the wormhole we show graphically in Fig. 1.

3 Stability analysis
3.1 Phantom-like equation of state

We will now analyze the stability of the shell by consider-
ing the phantom-like equation of state given as p = wa,
where w < 0 [35]. From the conservation equation, one can
check that the surface pressure and energy density obey the
following relation:

. do 2a
v;SsY =E+7(G+p)=0’ 24)

now we make use of equation of state p = wo, yielding

do 2
€ % Utw =0 25)
da a

Solving the last equation for o, we find

aop )2(1+w)

o@=o@) () 26)

in which we have used oy = o (ag). Equating this result with
Eq. (15) leads to the equation of motion

A+ V) =0, (27)
where the potential reads

V(a) = f(a) —4n’a’c>. (28)
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On the other hand if we substitute Eq. (26) into Eq. (28)
we get

oM h 4(1+0)
Vo) = 1— "= + 2] _4x03a’ (“—0) (9
a a a

Since we aim to perturb the throat of the thin-shell worm-
hole radially around the equilibrium radius ag, we can use a
Taylor series by expanding the potential around a = ag, and
we get

1
V(a) = V(ag) + V'(ao)(a — ap) + 5v”(ao)(a — ap)?
+0(a — ag)’. (30)

One can now easily check that V (ag) = 0. Furthermore,
we also require that V' (ag) = 0; therefore, solving for w we
find

ap (ap — M)

= — . 31
@ 2 (a% —2aoM + r]h) G

Now we can go back and substitute the result for w into
the Eq. (30), which for a static configuration gives

V' (a0) = _3 (a%M — 2aonh + Mnh) (32)
0= a’ (a2 —2aoM +nh)
0 0 0 n )

The QSTSW solution is stable if and only if V" (ag) > 0,
therefore, one can show that the following inequality holds:

Vhn __ a/M (33)
M~ a1

To meet this condition, 7, needs to exceed M, we can
therefore conclude that the wormhole is unstable. Note that
we found analogous results to the case of a charged thin-shell
wormhole by replacing Q> — %n [35]. This result can be
seen more clearly in Fig. 2.

3.2 Stability by generalized Chaplygin gas
Another interesting model dealing with the stability of the
TSW is the generalized Chaplygin gas. According to this

model, the exotic matter at the throat can be modeled by the
following equation of state [12,36]:

- ()

where 0 < y < 1, o is the surface energy density, and p is
the surface pressure. If we substitute the last equation into
Eq. (24) and solve for o, we find the following result:

1
ao\24+y)  po (7ao\2(+) T+
o(a) = 09 [(;) +o ((;) = 1)] . (35)
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Fig. 2 Stability regions of QSTSW corresponding to n = m = 1 and

h = 0.5. The dashed vertical line corresponds to rj,, the regions at the
left of the dashed vertical line have no physical meaning (ag < rj)

Equating this result with Eq. (15), we have the following
equation of motion:

A’ + V@) =0, (36)

in which

V(a) = f(a) — 4n*a*o]
2

|: ao\2U+y)  po ap\2(+y) T+y
AT
a oo \\a

(37)

At the static configuration, i.e. a = ag, from the last equa-
tion, V (ap) and V'(ag) are shown to vanish, i.e. V(ag) =
V’(ap) = 0. We can now use the result of the Taylor expan-
sion of V (a) about a = ag to find

2 [ao(1 + y)(BM? + ad) + 2apynh — MEZ|

V'(ag) = —
ag (a% —2Map + nh)

(3%)
where
E =al3+4y) + (1 +2y)nh.

We know that the static configuration of the TSW is in
stable equilibrium if V" (ag) > 0. Solving the last equation

for y we find

3Ma§ —3M3ag — aS + Mnh
< .
(M — ag) (3Mag — a3 — 2nh)

y (39)

From the horizon radius ry, it follows that the quantum
effects, nfi, cannot exceed the black hole mass M, i.e. M 2>
nh. Therefore, we will only consider the stability domain of
the wormhole in the following interval: 0 < /in/M < 1.
From Eq. (39) if follows that there exists some part of the
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parameter space where the throat location is stable. However,
one can convince oneself that, if we increase the quantum
effects by using different values of 72, the stability domain also
increases. For more useful information we show the stability
region graphically in Fig. 3.

3.3 Linearized stability analysis

Finally, here we will try to analyze the stability of quantum
corrected TSW by considering the linearized stability analy-
sis. As we have seen, performing linear perturbations around
a = agp gives

1
V(@) = V(o) + V'(ao) (@ — ap) + 5 V" (ao) (@ — a0)’
+0(a — ap). (40)
Simply by rearranging (17), once again we get the equa-
tion of motion,
A+ V) =0, 41)
with the potential

V(a) = f(a) — 4n’a’c>. (42)

On the other hand we can rewrite Eq. (17) as follows:
, 2
o =—;(0+p)=0, (43)

where the prime means d/da. Let us now use this result
together with Eq. (42) and find that the first derivative of
the potential is given by

. 2M 2my
Va=-"3-27
a a

+87%ao (0 +2p). (44)

We can follow the work in [7], in which the equation of
state of the matter which supports the TSW was chosen to
obey p = p(o). Therefore, we can define a parameter 8 by
the relation

dp

2(5) =
po) =1

(45)

which for ordinary matter is interpreted as the velocity of
sound. Now if we set a = ag, due to the linearization we
have V (ag) = V'(ap) = 0; therefore, we are left with the
following result:

2[ag(1 +283) — OaoM + 4B3n*h* + 33X ]
ag (a(z) — 2a0M + nh)

V" (ag)=—

3

(46)

Fig. 3 Stability regions of QSTSW in terms of y and radius of the
throat ag for n = m = 1 and different values of 7. The stable regions
are denoted by S and are situated at the right of the dashed vertical lines
which corresponds to r,
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Fig. 4 Stability regions of QSTSW in terms of ,Bé and radius of the
throat ag, for n = m = 1, and different values of 7. The stable regions
are denoted by S and are situated at the right of the dashed vertical
lines, which corresponds to ry,

where
© =ad (3+1083) + (1+1483) un

@ Springer

and
T = M2 (1 + 4;33) + 2821,

Note that we have used /33 = ,32(00) and should satisfy
0 < ,33 < 1. The stability requirement for the wormhole
solution is written as V" (ap) > 0. Solving for ,Bg we find

3a8M - 3(18M2 +agMnh — ag'
< .
2ag — 10a3M + 12a3M? + 6a3nh — 14aoMnh + 4n*h*h
47

B

This means there exists some part of the parameter space
where the throat location is stable. For more useful informa-
tion we show the stability region graphically in Fig. 4. As
we can see, quantum corrections increase the possibility of
obtaining a stable thin-shell wormhole in the same way as a
charge. We know in the case of a charged black hole the new
energy source corresponds to the contribution of the electro-
magnetic field encoded in the stress-energy tensor. In a simi-
lar way here, it may be possible for these quantum effects to
be related with the presence of a new form of energy encoded
in the stress-energy tensor. More specifically, by solving the
Einstein field equations G, = 87n7),, we can derive the
non-zero values of the stress-energy tensor 7, (see, e.g.,
Eq. (26) in Ref. [30]). The origin of this energy is unclear;
however, according to [30] this energy may be related to dark
matter and dark energy. If this is the case, then our results
suggest that wormholes are supported by the presence of dark
matter and dark energy. Finally, the results found in this paper
are consistent with the results found in Refs. [31,32] where it
was argued that quantum effects increases the possibility of
obtaining stable primordial wormholes at the early Universe.

4 Conclusion

In this work, we have constructed a QCTSW by using Visser’s
method and shown that exotic matter is required at the throat
to keep the wormhole stable. The stability analyses firstis car-
ried out by using the phantom-like equation of state p = wo,
and shown the TSW to be unstable since it is required that
h exceed M. However, using the methods of the generalized
Chaplygin gas and a linearized stability analysis, we show
that the wormhole can be stable by choosing suitable val-
ues of parameters. More specifically, by choosing different
values of 7 in the following interval: 0 < /An/M < 1itis
shown that quantum corrections increase the stability domain
of obtaining stable wormhole solutions. Note that the role of
quantum corrections on the stability of the wormhole is sim-
ilar to the role played by a charge on the wormholes stability
[8]. In the end we speculate that, if the origin of these quan-
tum effects is related to the presence of dark matter and dark
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energy, as suggested by [30], the bottom line of this reasoning
is that dark matter and dark energy may support the stability
of the wormhole.
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