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Abstract We discuss the partition function of a single M5-
brane on a circle with transverse orbifold of ADE type and
show that the modes captured by the partition function are
those of the tensor multiplet and the three form field. We show
that the bound states of M-strings corresponding to pair of
simple roots appear, for all ADE, only when the momentum
on the circle is turned on.
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1 Introduction

In this paper we study the partition function of an M5-brane
on a circle with transverse space S1 × C

2/� in the limit
the circle size becomes large. This brane configuration has a
dual Calabi–Yau geometry which is toric for the case when
� = Zk i.e., A type orbifold [1,2]. For the A type orbifold
the partition function can be determined using the refined
topological vertex. Interestingly in the toric case � = Zk this
configuration is dual to the configuration in which we can get
rid of the transverse orbifold at the expense of having k M5-
branes wrapped on the circle. This duality can be achieved
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by going to string theory and using T-duality which maps A
type orbifold to NS5-branes. As was discussed in [3,4] this
can also be understood in terms of T-duality of little string
theory.

In the case when the transverse space was just R5 it was
shown in [5] that refined topological string partition function
of a certain toric elliptic Calabi–Yau threefold captures the
field content completely which was just the circle reduction
of the (2, 0) tensor multiplet. We discuss in detail the case
when the space transverse to the M5-brane is S1×C

2/�ADE ,
where �ADE is the ADE discrete subgroup of SU (2). We
show that in the case �ADE = Zk there is corresponding
toric elliptically fibered CY3fold whose refined topological
string partition function gives the modes of the (2, 0) tensor
multiplet as well as the modes coming of the M-theory three
form field reduced on the circle and the orbifold. We also
show that for all ADE orbifolds M-strings do not form bound
states unless the momentum is turned on the circle on which
the M5-brane is wrapped.

This paper is organized as follows. In Sect. 2 we dis-
cuss the Calabi–Yau geometries dual to brane configuration
shown in Fig. 1 and give the corresponding partition function
for the A type orbifold. In this section we also give the dual
form of the partition function coming from its realization as
χy genus of product of Hilbert scheme of points on C

2. In
Sect. 3 we discuss the mode expansion of the refined parti-
tion functions and show that they capture the tensor multiplet
modes as well as those coming from the three form field. In
Sect. 4 we generalize the A type partition function to D and
E type and discuss the appearance of bound states when
momentum is turned on. In Sect. 4 we discuss our conclu-
sions and some work in progress.

2 M5-brane configuration and its partition function

In this section we will discuss the calculation of the parti-
tion function of the a single M5-brane with transverse space
S1 × C

2/Zk . Going down to type IIB and using T-duality
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(a)

M5-brane

× S1 × C2/Zk

(b)

kM5-branes

× S1 × C2

Fig. 1 Dual brane configurations

Fig. 2 a k M5-branes on a circle with transverse space S1 ×C
2/�. b

The dual Calabi–Yau geometry after resolving the singularities of the
transverse orbifold

this brane/geometry configuration can be mapped to an inter-
secting system of a single D5-brane and k NS5-branes. The
SL(2,Z) symmetry of type IIB can then map 1D5 + k NS-5
to 1 NS-5+k D5, which can then be lifted back to M-theory to
get k M5-branes with transverse space S1 ×C

2 establishing
the duality of Fig. 1. If we resolve the D5-brane/NS5-brane
intersections we obtain a brane web as shown in Fig. 2.

As is well known the (p, q) 5-brane webs are dual to
Calabi–Yau threefolds [6] and in this case there is a double
elliptically fibered Calabi–Yau threefolds dual to the above
brane configuration [3,4]. This threefold is actually aZk orb-
ifold of the threefold corresponding to k = 1. The k = 1
threefold is a double elliptic fibration over the complex plane
with a single I0 fiber of both fibrations. In the limit when we
take the circle on which the M5-brane is wrapped to infin-
ity this threefold for the Zk case is birationally equivalent
to ̂Ak−1 × f C where ̂Ak−1 is affine Ak−1 space blown up
at k points and it is fibered over C to obtain the Calabi–Yau
threefold.

The affine Ak−1 space has k P
1’s corresponding to the

simple roots. We denote these curve classes by Ca with
a = 1, 2, . . . , k. The blow-up introduces k new curve classes
which we denote Ma with a = 1, 2, . . . , k. The class of the
elliptic curve E is given by

E = C1 + C2 + · · · + Ck . (1)

The complexified Kähler parameters associated with these
curves are given by the Kähler form ω:

ta =
∫

Ca

ω, ρ =
∫

E
ω, m =

∫

Ma

ω, a = 1, 2, . . . , k.

Because of Eq. (1) ρ is given by

ρ = t1 + t2 + · · · + tk . (2)

The topological string partition function can be calculated
using the refined topological vertex [7] and is given by [8]:

Zk :=
∑

ν

k−1
∏

a=0

[

(−Qa)
|ν(a)| Gν(a)ν(a+1)

]

, (3)

where

Gν(a)ν(a+1)
=

∑

μ

(−Qm)|μ| Cλt
(a)

μ∅(t, q)Cλ(a+1)μ
t∅(q, t)

and

Cλμ∅(t, q) =
(q

t

)
|λ|+||μ||2−|μ|

2
t

κ(μ)
2 ˜Zν(t, q)

×
∑

η

(q

t

)
|η|
2
sλt/η(t

−ρ) sμ/η(q
−ρ) (4)

is the refined topological vertex (see Appendix A for notation
and conventions). The length of the slanted lines in Fig. 2 are
all equal to m and we have defined Qm = e2π im , similarly
the length of the horizontal lines is Ta and we have defined
Qa = e2π iTa such that ta = log(QaQm)/2π i is the distance
between the two vertical lines. Using the identity

∑

λ η

Q|λ|
ρ sλt/η(x)sλ/η(y) =

∞
∏

k=1

(1 − Qk
ρ)−1

∏

i, j

(1 − Qk
ρxi y j )

we can calculate the sum in Eq. (3) to obtain

Zk (ρ,m, t, ε1,2) = Zk
1

(
∞
∏

n=1

(1 − Qn
ρ)

)k−1

×
∏

1≤a<b≤k

G2(Qab; ρ, ε1, ε2)G2(QρQ
−1
ab ; τ, ε1, ε2)

G2(QabQm
√
t q; ρ, ε1, ε2)G2(Qab Q−1

m
√
t q; ρ, ε1, ε2)

,

Z1(ρ,m, ε1,2) =
∞
∏

i, j,k=1

×
(

1 − Qk−1
ρ Qmq

i− 1
2 t j−

1
2
)(

1 − Qk
ρ Q−1

m qi−
1
2 t j−

1
2
)

(

1 − Qk
ρ qi t j

)(

1 − Qk
ρ qi−1t j−1

) ,

G2(x; ρ, ε1, ε2) =
∞
∏

k,i, j=1

× (1 − Qk−1
ρ qi−1t− j+1x)(1 − Qk

ρq
i t− j x−1), (5)

where Qab = exp
(

2π i(tb − ta)
)

.

2.1 Partition function and Hilbert scheme of points

The above partition function that we obtained in Eq. (5)
related to the index of Dirac operator couple to bifundamen-
tal matter and can be obtained using a slight generalization
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of the χy genus. Recall that the χy genus of a manifold M is
given by

χy(M) =
∫

M

∏

i

xi (1 − ye−xi )

1 − e−xi
, (6)

where xi are roots of the Chern polynomial of the tangent
bundle of M . It can be generalized using a vector bundle V
of rank equal to the rank of the tangent bundle to get

χy(M, V ) =
∫

M

∏

i

xi (1 − ye−wi )

1 − e−xi
, (7)

where wi are the roots of the Chern polynomial of V . Using
χy(M, V ) we can write the partition function in Eq. (5) as

Zk =
∑

m1,m2,...,mk

Qm1
1 . . . Qmk

k χQm (Hm1,...,mk , V ), (8)

where Hm1,...,mk is the product of the Hilbert scheme of points
on C

2,

Hm1,...,mk = Hilbm1 [C2] × Hilbm2 [C2] × · · · × Hilbmk [C2],
and V is a vector bundle on Hm1,...,mk whose fiber at a point
can be described as follows. Recall that the Hilbm[C2] is
the resolution of mth symmetric product of C2 and points
in it can be identified with codimension m ideals in the
ring C[x, y] [9]. Thus a point in Hm1,...,mk is a collec-
tion of ideals (I1, I2, . . . , Ik) such that Ia ⊂ C[x, y] and
dim(C[x, y]/Ia) = ma . The fiber of the vector bundle V
over the point (I1, I2, . . . , Ik) is given by

Ext1(I1, I2) ⊕ Ext1(I2, I3) ⊕ · · · ⊕ Ext1(Ik, I1). (9)

For the ADE case it is natural to expect that the partition
function is still given by an expression of the kind of Eq. (8)
with manifold

M(r1,m1) × M(r2,m2) × · · · × M(rk,mk), (10)

whereM(r,m) is the moduli space ofU (r) instantons onC2

with charge m and ra are the Kac labels of the ADE Dynkin
diagram. The description of the bundle in this case is slightly
more involved and will be discussed in [10].

2.2 Modes and supermultiplets

From the partition function of Eq. (5) we can determine
the contribution of various supermultiplets in five dimen-
sions. Massless particles in five dimensions have little group
Spin(3) = SU (2) and the massive particles have little group
Spin(4) = SU (2)L × SU (2)R . Fields in the massive mul-
tiplet (which is actually a (2, 0) multiplet of the N = 2
supersymmetry in five dimensions) are in the following rep-
resentation [11]:

(1, 0) ⊕ 4

(

1

2
, 0

)

⊕ 5 (0, 0) . (11)

The five dimensional vector multiplet containing the mass-
less vector field is in the following representation of Spin(3)

[11]:

(1) ⊕ 4

(

1

2

)

⊕ 5 (0) . (12)

2.2.1 Single M5-brane

The case of a single M5-brane (i.e., k = 1) was discussed
in [5,12]. We discuss it briefly to make comparison later to
k > 1 case. From the plethystic logarithm of the Z1 in Eq.
(5) we get

F1 = Plog(Z1),

F1 + F1 = Qm + Q−1
m −

√

q

t
−

√

t

q
︸ ︷︷ ︸

massless

+

×
∞
∑

k∈Z,k 	=0

Qk
τ

[

(Qm + Q−1
m ) − (

√
q t + 1√

q t
)
]

︸ ︷︷ ︸

massive

. (13)

In the above equation we have indicated the massless and the
KK massive modes. From Eq. (13) it follows that massless
and the massive multiplets are in the following representation
of the SU (2)L × SU (2)R :

massless:

(

0,
1

2

)

⊕ 2 (0, 0) ,

massive:

(

1

2
, 0

)

⊕ 2 (0, 0) . (14)

As discussed in [12] the contribution of the universal half
hypermultiplet is needed to get the full Spin(4) content [13].
The half hypermultiplet is ( 1

2 , 0)⊕2(0, 0) and tensoring with
it and reducing to the diagonal for the massless gives [5,12]

massless: (1) ⊕ 4

(

1

2

)

⊕ 5 (0) ,

massive: (1, 0) ⊕ 4

(

1

2
, 0

)

⊕ 5 (0, 0) .

The above is the six dimensional tensor multiplet reduced on
the circle [11].

2.2.2 M5-brane with transverse orbifold and modes

For the case of M5-brane with transverse orbifold we use Zk

given in Eq. (5). To determine the spin content of the various
modes we consider Fk + Fk where Fk is defined by

Zk = exp

(

−
∞
∑

n=1

Fk(nρ, nm, nε1, nε2)

n(q
n
2 − q− n

2 )(t
n
2 − t− n

2 )

)

.
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Using the identity

G2(x; ρ, ε1,−ε2) = PE

(

− x + x−1Qρ q t

(1 − Qρ)(1 − q)(1 − t)

)

,

where PE denotes the plethystic exponential, we get

Fk + Fk = k

(

Qm + Q−1
m −

√

t

q
−

√

q

t

)

+
∑

n∈Z,n 	=0

Qn
ρ

[

k
(

Qm + Q−1
m

)

−√
t q − 1√

t q
− (k − 1)

(

√

t

q
+

√

q

t

)

]

+
∑

1≤a<b≤k

∑

n∈Z
Qn

ρ(Qab + Q−1
ab )

×
(

Qm + Q−1
m − √

t q − 1√
t q

)

. (15)

From the above we see that the massless and the massive
multiplets are in the following representations of SU (2)L ×
SU (2)R :

massless:

[

2(0, 0) ⊕
(

0,
1

2

)

]

⊕ (k − 1)

[

2(0, 0) ⊕
(

0,
1

2

)

]

,

massive:

[

2(0, 0) ⊕
(1

2
, 0

)

]

⊕ (k − 1)

[

2(0, 0) ⊕
(

0,
1

2

)

]

⊕ k(k − 1)

2

[

2(0, 0) ⊕
(1

2
, 0

)

]

.

As discussed for the k = 1 case we are still missing the
contribution of the universal half hypermultiplet associated
with the position of the particle in R

4. Tensoring with the
half hypermultiplet 2(0, 0) ⊕ ( 1

2 , 0) gives

massless:

[

(1) ⊕ 4(
1

2
) + 5(0)

︸ ︷︷ ︸

tensor multiplet

]

⊕ (k − 1)

[

(1) ⊕ 4(
1

2
) + 5(0)

︸ ︷︷ ︸

massless vector multiplet

]

,

massive:

[

(1, 0) ⊕ 4(
1

2
, 0) ⊕ 5(0, 0)

︸ ︷︷ ︸

tensor multiplet

]

⊕(k − 1)

[

(
1

2
,

1

2
) ⊕ 2(0,

1

2
) ⊕ 2(

1

2
, 0) ⊕ 4(0, 0)

︸ ︷︷ ︸

massive vector multiplet

]

⊕ k(k − 1)

2

[

(1, 0) ⊕ 4(
1

2
, 0) ⊕ 5(0, 0)

]

︸ ︷︷ ︸

BPS State for each positive root

. (16)

Thus we see that the supermultiplets correspond to reduc-
tion of one 6D tensor multiplet on a circle together with
(k − 1) vector multiplets coming from the three form field
which we can write as

C (3) =
k−1
∑

a=1

Aa ∧ ωa, (17)

where Aa is the gauge field of the vector multiplet and ωa

are the Kähler form for the curves corresponding to simple
positive roots in the resolved orbifold.

3 ADE orbifolds and bound states of M-strings

In the previous sections we discussed the partition function
of an M5-brane with transverse AN geometry. This partition
function can be obtained in many different ways using the
duality of this brane configuration with Calabi–Yau geom-
etry, 2D gauge theories or 2D sigma models. For the case
when the transverse orbifold is of D or E type the topolog-
ical vertex cannot be used since the corresponding Calabi–
Yau threefold is not toric. However, by using the fact that
holomorphic curves in the geometry are in one to one cor-
respondence with positive roots of the ADE groups we can
generalize the partition function to all ADE cases to obtain

ZG = Zr+1
1

(
∞
∏

n=1

(1 − Qn
ρ)

)r ∏

α∈�+

× G2(QαQm
√
t q; ρ, ε1, −ε2)G2(Qα Q−1

m
√
t q; ρ, ε1, −ε2)

G2(Qα t; ρ, ε1, −ε2)G2(Qα q; ρ, ε1, −ε2)

where r is the rank of the group G and �+ is the set of posi-
tive real roots corresponding affine ADE group. The param-
eters Qα and Qρ are related to the Kähler parameters of the
resolved orbifold,

Qα = e− ∫

Cα
ω
, Qρ = e

− ∫

Cδ
ω
,

whereCα is the holomorphic curve corresponding to the pos-
itive real root α and Cδ is the holomorphic curve correspond-
ing to the imaginary root δ of the affine ADE group. In the
above equation ω is the complexified Kähler form of the
resolved orbifold. Since the function G2 itself is a product
we see that ZG is an infinite product over positive roots of
the affine G. Due to modular transformation properties of
the function G2 the partition function ZG satisfies a non-
perturbative modular transformation [5,14],

ZG

(

− 1

ρ
,
ε1

ρ
,
ε2

ρ

)

= ZG(ρ, ε1, ε2)

ZG(
ρ
ε1

,− 1
ε1

, ε2
ε1

) ZG(
ρ
ε2

, ε1
ε2

,− 1
ε2

)
.

From the partition function in Eq. (18) we can calculate the
bound states by taking the plethystic logarithm,

FG = Plog ZG

= (r + 1) F1 + r
Qρ(

√
t q + 1√

t q −
√

t
q −

√

q
t )

1 − Qρ

+
∑

α∈�+

(Qα + Q−1
α Qρ)(Qm + Q−1

m − √
t q − 1√

q t )

(1 − Qρ)
.

(18)
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Thus we see that there is a single state corresponding to each
positive root and there are no bound states corresponding to
sum of positive roots. Actually bound states appear when
we turn on the momentum along the compact direction. To
see this recall that a dual description of this brane system is
given by N = 1∗ 5D affine ADE gauge theory. The parti-
tion function in Eq. (18) is the perturbative part of partition
function of this gauge theory. Including the instanton part
requires turning on momentum along the compact direction,
i.e., going away from the τ �→ i∞ limit, since τ is the gauge
coupling on the gauge theory side and equal to 1/R where R
is the radius of the compact direction on which the M5-brane
is wrapped. Thus if we consider instanton contribution the
partition function of the gauge theory becomes

̂ZG = ZG

(

1 + Qτ I1 + · · ·
)

, (19)

where I1 is the one instanton contribution. The one instanton
moduli space can be factored,

One instanton moduli space = C
2 × M1, (20)

where the factor C
2 gives the position of the instanton in

C
2 and M1 includes the orientation of the instanton within

the gauge group. The Hilbert series of M1 is well known
and given by the character of the adjoint representation of
the ADE group χG,adj(Qi ) [15] and the contribution from
the C2 factor is given by (q1/2 − q−1/2)−1(t1/2 − t−1/2)−1.
Thus the partition function becomes

̂ZG = ZG

(

1 + Qτ

χG,adj(Qi )

(q
1
2 − q− 1

2 )(t
1
2 − t− 1

2 )
+ · · ·

)

.

Taking the plethystic logarithm to get the contribution of the
bound states we get

̂FG = PloĝZG

= FG + Qτ

χG,adj(Qi )

(q
1
2 − q− 1

2 )(t
1
2 − t− 1

2 )
+ · · · . (21)

Since the factor χG,adj(Qi ) contains products of factors Qi

corresponding to different simple roots therefore we see that
we now have bound states corresponding to sum of positive
roots. These bound states disappear in the limit Qτ �→ 0 and
hence these states corresponding to simple roots form bound
states only with the help of momentum on the compact circle.

4 Conclusions

In this short paper we discussed the partition function of an
M5-brane with transverse orbifold. We saw that the partition
function calculated using the topological vertex captures the
modes of the tensor multiplet corresponding to the M5-brane
as well as the modes of the 3-form field on the transverse
orbifold. We generalized the partition function to the case

of ADE orbifold and argued that bound states of M-strings
corresponding to pair of simple roots appear when the M-
5brane is wrapped on a circle and momentum is turned on
the circle.

It will be useful to study the dual partition function coming
from the worldvolume of the M2-branes for arbitrary ADE
orbifold. In the case of A type orbifold the M2-brane theory
in the infrared gives a (0, 2) sigma model whose target space
is the product of Hilbert scheme of points on C

2. For arbi-
trary ADE it is expected that the target space is a product of
instanton moduli space with ranks equal to the Dynkin label
of the corresponding ADE diagram [10].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A

We give some useful formulas in this appendix which have
been used in paper. In the text Greek letters λ,μ, ν have
been used to denote partitions of natural numbers and the
notation (i, j) ∈ λ represents coordinates of a box in the
Young diagram of the partition λ. The index i labels the
parts of the partition and goes from 1 to �(λ), where �(λ)

is the number of parts of the partition. If we fix i the index
j takes values in the set {1, 2, . . . , λi } where λi is the i th
part of the partition. λt denotes the transpose of the partition
which is obtained by reflection of the Young diagram of λ in
the diagonal.

The refined topological vertex is defined as [7,16]:

Cλμν(t, q) =
(q

t

)
||μ||2

2
t

κ(μ)
2 q

||ν||2
2 ˜Zν(t, q)

×
∑

η

(q

t

)
|η|+|λ|−|μ|

2
sλt/η(t

−ρq−ν) sμ/η(t
−νt q−ρ), (22)

where

|μ| =
�(μ)
∑

i=1

μi , ||μ||2 =
�(μ)
∑

i=1

μ2
i ,

κ(μ) = ||μ||2 − ||μt ||2, (23)

and ˜Zν(t, q) is defined as

˜Zν(t, q) =
∏

(i, j)∈ν

(

1 − qνi− j tν
t
j−i

)−1
. (24)
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The functions sλ/η(x) are the skew-Schur functions defined
as

sλ/η(x) =
∑

μ

Nλ
ημsμ(x),

where sλ(x) is the Schur function in the variables x =
{x1, x2, . . .} and Nλ

ημ are the Littlewood–Richardson coef-
ficients.

The refined vertex is a function of two parameters q and
t . For q = t it reduces to the usual topological vertex [17]
with gs = lnq being the topological string coupling constant.
The parameters q and t are related to the Omega background
parameters (ε1, ε2) [18] as follows:

(q, t) = (eiε1 , e−iε2),

so that the unrefined case corresponds to ε1 + ε2 = 0.
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