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Abstract The E1 transitions of ψ(3686) and ψ(3770) →
γχcJ are investigated in a non-relativistic effective field the-
ory (NREFT) where the open charm effects are included sys-
tematically as the leading corrections. It also allows a self-
consistent inclusion of the S–D mixing in the same frame-
work. We are able to show that the open charm contributions
are essential for understanding the rather unexpected discrep-
ancies between the non-relativistic leading order calculations
and the experimental data for these two low-lying states.

1 Introduction

Around the turn of the century the experimental possibilities
of the B-factories together with one of their most recognized
discoveries, the mysterious X (3872) [1], led to a revival of
charmonium spectroscopy. A vast number of states which
cannot be accommodated by the potential quark model were
observed in experiment and served as good candidates for
QCD exotics such as the charged charmonia Zc(3900) and
Zc(4020/4025) at BESIII [2–5] and Zc(4430) at Belle [6]
and LHCb [7]. While their nature has not been unambigu-
ously determined, it appears obvious that the proximity of
open charm thresholds, i.e. D∗ D̄ + c.c. for X (3872) and
Zc(3900), D∗ D̄∗ for Zc(4020/4025), must be closely related
to their formation. Given that these may be the outstand-
ing examples for the importance for open thresholds, there
should be other cases that the open thresholds play a crucial
role in understanding some of the open questions even for
low-lying states. As studied in Ref. [8], the non-DD̄ decay
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of ψ(3770) can be strongly affected by the intermediated D-
meson loops via the rescattering process. This turns out to be
a natural explanation for this decay and has implications on
various processes that can be tested explicitly in experiment.
In Refs. [9,10] the open threshold effects on the spectrum
were partially considered.

In the charmonium region, electromagnetic (EM) transi-
tions serve as a crucial probe of hadron structures and help to
establish the constituent degrees of freedom within hadrons.
Within the EM transitions between charmonium states, E1
transitions have been better measured in experiment due to
their relatively enhanced couplings with respect to the mag-
netic transitions because the latter are relatively suppressed
by a factor of pQ/MQ with pQ and MQ denoting the momen-
tum and mass of the heavy quark, respectively. In the frame-
work of non-relativistic quark model many theoretical stud-
ies of the heavy quarkonium EM transitions have been car-
ried out. For instance, the Cornell potential model [9] has
been a great success in the description of the charmonium
spectrum with a spin-independent color Coulomb plus linear
scalar potential. While this is an indication of the approxi-
mate heavy quark spin symmetry (HQSS) within the char-
monium system, one can also observe deviations due to the
HQSS breaking. One source for the HQSS breaking is the
spin-dependent interaction which will introduce relativistic
corrections to the quark potentials [11,12]. A detailed review
of different approaches for the charmonium EM transitions
can be found in Ref. [13] and references therein.

In this work, we study the open charm effects on the
E1 transition of ψ(3686) and ψ(3770) (denoted by ψ ′ and
ψ ′′, respectively, in the following for simplicity) to γχcJ

in a non-relativistic effective field theory (NREFT). These
effects from the intermediate meson loops will introduce the
main corrections to the leading NREFT results in the same
framework as a natural dynamic mechanism for breaking
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the HQSS. Such corrections, contributing at the order of v2

in the transition amplitude with v denoting the typical non-
relativistic velocity of the intermediate charmed mesons, can
be regarded as relativistic corrections to the charm quark
potential [9].

Since ψ ′ and ψ ′′ both are close to the mass threshold of
DD̄, it is natural to expect that the large couplings of these two
states to the DD̄ channel will allow us to recognize the open
charm effects and investigate their impact on the decay modes
of these two states. Also, the small momentum carried by the
intermediate charmed mesons allows for the application of
the NREFT to the heavy meson loops. It should be noted
that since the couplings for ψ ′ and ψ ′′ to the open charm
channels are via P-wave, the self-energy corrections from the
charmed meson loops are expected to be small and they can be
absorbed into the physical masses adopted in the calculation.
However, the threshold effects may still have a significant
impact on their decays [8]. This may appear in exclusive
decays and the E1 transitions of ψ ′, ψ ′′ → γχcJ are ideal
for probing this mechanism.

In this work we will describe the radiative E1 transitions
of ψ ′ and ψ ′′ by a leading contact interaction that obeys
the HQSS. This term will mimic the leading order results
from the non-relativistic quark model calculations. Then,
three subleading contributions will be introduced by the open
charm effects. First, due to the proximity to each other and to
the DD̄ threshold these two vector states can arise from mix-
ing of the quark model states ψ(2S) and ψ(1D) via charmed
meson loops. Second, the photon can arise from the couplings
of ψ ′ or ψ ′′ to DD̄ when gauging the derivative term in the
couplings where DD̄ couple to χcJ . Thirdly, the transitions
can be mediated by intermediate triangle D-meson loops
where the photon will be radiated by intermediate D-mesons.
All four contributions can be included self-consistently in the
NREFT.

In the following we first present the NREFT framework
in Sect. 2. The results are discussed in Sect. 3 and a brief
summary is given in the last section.

2 Framework

The E1 transitions of ψ ′ and ψ ′′ to the leading meson loop
corrections can be illustrated by Fig. 1. The tree-level dia-
gram of Fig. 1a represents the leading E1 transition amplitude
that can be compared with the potential quark model calcu-
lations. The open charm effects can contribute as corrections
to the leading tree-level amplitude via either the state mix-
ing (Fig. 1b), the term from gauging the couplings of ψ ′ or
ψ ′′ to DD̄ (Fig. 1c) or the intermediate triangle meson loop
transitions (Fig. 1d).

In this section we will introduce the interaction
Lagrangians necessary to describe the leading and next-to-

leading order processes for the E1 transitions of ψ ′ and ψ ′′.
We begin with the initial S- and D-wave charmonia which
are given by [14]

J = �ψS · �σ ,

J i j = 1

2

√
3

5

(
σ iψ

j
D + σ jψ i

D

)
− 1√

15
δi j �σ · �ψD, (1)

where ψS and ψD annihilate ψ ′ and ψ ′′, respectively. Note
that for simplicity we have omitted the spin partners ηc and
ηc2, which are irrelevant to this work. The same holds for the
hc in the case of the P-wave charmonia which are collected
in the following multiplet [15]:

χ i = σ j
(

−χ
i j
c2 − 1√

2
εi jkχk

c1 + 1√
3
δi jχc0

)
. (2)

As mentioned before the leading contributions to the E1 tran-
sitions are given by the contact interactions

LSPγ = gSPγ

〈
χ†i J

〉
Ei + h.c.,

LDPγ = gDPγ

〈
χ†i J i j

〉
E j + h.c., (3)

where we leave the couplings gSPγ and gDPγ to be determined
from experiment.

To study the subleading contributions via charmed meson
loops we need to introduce heavy meson multiplet consisting
of pseudoscalar Pa and vector Va mesons. The corresponding
fields for the charmed (Ha) and anti-charmed meson (H̄a) are
written as follows, respectively:

Ha = �Va · �σ + Pa, H̄a = − �̄V a · �σ + P̄a, (4)

where a is the SU(3) flavor index and Pa(Va) ≡ (D(∗)0,

D(∗)+, D(∗)+
s ). These fields and their interactions have been

studied in detail in Refs. [14–16].
We start with the S-wave charmonium ψ ′. The coupling

to a pair of charmed mesons is in a relative P-wave and given
by

LHHψ ′ = i
g2

2

〈
H̄†
a σ i←→∂ i H†

a J
〉
+ h.c., (5)

where A
←→
∂ B ≡ A(�∂B)− (�∂A)B. The coupling constant g2

cannot be determined directly in experiment so we adopt it
from Ref. [17]. There, it was determined by a fit of the line
shape of e+e− → DD̄ at the mass of ψ ′′. It was shown that
the interference from the ψ ′ accounted for the anomalous
line shape and provided a reliable constraint on the coupling
constant g2. Note that because of the non-relativistic nor-
malization in the NREFT our coupling differs by a factor
mD

√
mψ ′ and reads g2 = (−1.90 ± 1.09) GeV−3/2.

The coupling for the first D-wave charmonium ψ ′′ to DD̄
is given by

LHHψ ′′ = i
g3

2

〈
H̄†
a σ i←→∂ j H†

a J
i j

〉
+ h.c., (6)
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where the coupling constant can easily be extracted from
experiment. Using the value quoted in PDG [18],

Exp(ψ

′′ → DD̄) = (25.3 ± 2.9) MeV, we can determine
g3 = (2.80 ± 0.15) GeV−3/2. It should be noted that the
couplings g2 and g3 are extracted from experimental data.
Thus, they have already been the “dressed” couplings. Since
the vertices involve P-wave interactions and the loop correc-
tions are perturbative in comparison with the tree amplitudes,
the vertex renormalization is expected to be insignificant. For
the one loop contributions to the amplitudes it is acceptable
to adopt those extracted values for g2 and g3 as the lead-
ing approximation. This will also reduce the number of free
parameters in the formulation.

Finally, we need to consider the coupling of the χcJ mul-
tiplet to a pair of charmed mesons:

LHHχ = i
g1

2

〈
χ†i Haσ

i H̄a

〉
+ h.c., (7)

where the parameter g1 will be determined by the numerical
fit. The QCD sum rule analysis has given a prediction in
Ref. [19], which is g1 = −4.18 GeV−1/2.

In order to calculate the diagrams depicted in Fig. 1d, we
still need to describe the photon coupling to the charmed
meson pair. The corresponding electronic and magnetic
Lagrangian for the photon coupling to the S-wave charmed
mesons reads [20]

L(e)
HHγ = ie

2mH

〈
H†
a
←→
∂ i Hb(QH)ab

〉
Ai + h.c., (8)

L(m)
HHγ = eβ

2

〈
H†
a Hb �σ · �BQab

〉

+ eQ′

2mQ

〈
H†
a �σ · �BHa

〉
+ h.c., (9)

where QH is the matrix containing the charge fractions of
the heavy mesons, Bi = εi jk∂ j Ak is the magnetic field and
e is the electric charge. The light and heavy quark charge
fractions are given by Q = diag (2/3,−1/3,−1/3) and
Q′ = 2/3, respectively. The parameter β can be related to
the light constituent quark mass via β = 1/mq . Further,
we adopt the values of the light and heavy quark masses
mq = 356 MeV and mQ = 1.5 GeV from Ref. [20] in the
calculation.

3 Results and discussion

Using the Lagrangians and couplings introduced in the pre-
vious section, we are now ready to calculate the partial decay
widths for the six channels ψ ′, ψ ′′ → γχcJ . The possible
processes are shown in Fig. 1. Each channel includes the tree-
level E1 transition, state mixing between ψ ′ and ψ ′′, electro-
magnetic (EM) contact term, and the meson loop transition
via the triangle loops, where the last two terms are given by
gauging the charged strong coupling via the EM minimal
substitution. The total transition amplitude can be expressed
as

M ≡ Mtree + [Mmixing + Mgauging + Mtriangle]eiδ , (10)

where the amplitudeMtree can be extracted directly from the
Lagrangian in Eq. (3) while Mmixing, Mgaugingand Mtriangle

will be given by the mixing, contact gauging term and triangle
loops, respectively. A relative phase factor exp(iδ) between
the tree and loop amplitudes seems to be necessary here. It
can be interpreted as hadronic effects arising from the fact
that the hadrons are not point-like fundamental particles and
it also indicates the breaking of the HQSS in the charmonium
system. Therefore, at least one phase angle can be introduced
between the tree and loop amplitudes as a free parameter.
In fact, if we require that these three loop transitions share
the same phase angle with respect to the tree amplitude, the
relative signs between the coupling constants will be fixed.

For the mixing amplitudes of Fig. 1b and the EM gauging
amplitudes of Fig. 1c the loop integral is divergent. For the
triangle amplitudes with electronic photon couplings to the
S-wave charmed mesons, the loop integral is also divergent
because of the two P-wave couplings of the ψ and photon.
Thus, we introduce an overall exponential form factor

f�(�l) = exp(−2�l 2/�2) , (11)

where �l denotes the three-momentum of the charmed meson
in the center-of-mass (c.m.) frame of the charmonium system.
This form factor arises from the typical two-body quark wave
function convolutions in meson radiative transitions and the
effective range of � about 1 GeV corresponds to the typical
size of hadrons. In the numerical calculations we take a range
of � = 0.8–1.2 GeV as a test of the sensitivity of the loop

ψ′′/ψ′ ψ′′/ψ′ ψ′′/ψ′ ψ′′/ψ′

γγ γ

γ

χcJ χcJ χcJ

(a) (b) (c) (d)

χcJψ′/ψ′′

Fig. 1 The E1 transitions via a leading tree-level diagram, b 2S–1D mixing, c EM gauging term and d intermediate meson loops
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Table 1 Fitted parameters in
schemes with SU(2) and SU(3)
flavor symmetry for the light
quark sector

� (GeV) χ2 gSPγ (GeV−1) gDPγ (GeV−1) g1 (GeV−1/2) δ (◦)

0.8 1.95 0.232±0.026 0.314±0.056 2.12±1.43 −119 ± 11

0.9 1.56 0.222±0.029 0.324±0.029 4.44±1.71 −114 ± 14

SU(2) 1.0 1.20 0.214±0.055 0.331±0.025 5.37±0.51 −109 ± 14

1.1 0.94 0.208±0.048 0.335±0.022 5.31±1.61 −106 ± 12

1.2 0.78 0.206±0.048 0.336±0.027 4.49±1.02 −105 ± 13

0.8 1.61 0.219±0.030 0.326±0.026 4.52±0.72 −114 ± 10

0.9 1.16 0.209±0.049 0.332±0.022 5.38±1.17 −106 ± 9

SU(3) 1.0 0.88 0.205±0.047 0.335±0.021 4.70±1.22 −104 ± 11

1.1 0.74 0.207±0.048 0.335±0.026 3.38±1.29 −104 ± 14

1.2 0.66 0.209±0.049 0.334±0.028 2.49±0.64 −104 ± 14

corrections to the cut-off energy. The detailed calculation of
the loop integrals can be found in Appendix A.

For the charmed meson loops we will consider the SU(2)
and SU(3) flavor symmetry for the light quark degrees of free-
dom independently to study the effects of including charmed-
strange mesons in the calculation. This means in the SU(2)
scheme the charmed mesons D0(∗) and D+(∗) and the charge
conjugations of them are allowed as the intermediate mesons
while for the SU(3) the charmed-strange meson D+(∗)

s and
their charge conjugations will be included. The amplitudes
for all channels are listed in detail in Appendix B.

The calculation leaves us with a total of four free param-
eters, namely, two coupling constants from the leading E1
transition defined in Eq. (3), the coupling of the χcJ multiplet
to a pair of charmed mesons g1, and the phase angle δ defined
in Eq. (10). These parameters will be determined by fitting
the experimental data for ψ ′ and ψ ′′ → γχcJ [18,21,22].

We found several reasonable fits with form factor param-
eter � within the region of 0.8–1.2 GeV for channels of
ψ ′′ → γχc0,1,2 and ψ ′ → γχc0,1. We cannot include the
channel of ψ ′ → γχc2 to obtain an improved fit. Since the
data are poor for this channel we expect that more precise
measurement of this channel will provide a test of our sce-
nario in the future. In this sense our results for this channel
can be regarded as a rough prediction. The results for the
best fits in these two approaches are listed in Table 1 with
the reduced χ2 varying in the range of 0.66–1.95 for dif-
ferent � values. We should note that the couplings for ψ ′
and ψ ′′ to DD̄, i.e. g2 and g3, have opposite signs which is
well established by the study of the cross section line shapes
of e+e− → DD̄ [17,25]. If we further require that these
two transitions share the same phase angle δ the best fitting
turns out to favor all positive sign for the tree-level couplings
and the χcJ multiplet to DD̄ coupling g1. Actually, these
three fitted couplings could also be all negative to meet the
result of g1 in Ref. [19]. It will only add an overall negative
sign to all amplitudes. In both SU(2) and SU(3) schemes it
shows destructive interferences between the loop and tree

amplitudes in ψ ′′ → γχc0/1/2 channels and constructive
interferences in ψ ′ → γχc0/1/2, which will be discussed
later.

In the best fits the parameter g1 is found to be varying in
the range of 2.12–5.38 GeV−1/2, which is compatible with
that determined in Ref. [19]. Notice that this quantity still
has large uncertainties as pointed out in Ref. [19]. We still
regard the fitted values as reasonable. All the fitted parame-
ters are listed in Table 1 for the SU(2) and SU(3) schemes,
respectively.

The best fitted partial widths in the SU(2) and SU(3)
schemes are listed in Table 2. The results are compared to
three particular model calculations, i.e. the Cornell model [9],
the non-relativistic quark model (NR), and the relativized
quark model [11], as well as to experimental data from
PDG [18] and recent measurement by BESIII [21,22]. It
shows that the non-relativistic quark model gives rather
large partial widths for the E1 transitions ψ ′′ → γχcJ ,
nearly twice the experimental values. The Cornell model also
over-shoots the data quite significantly while only the rela-
tivized Godfrey–Isgur model appears to have some agree-
ment with the data. Our model can fit well these five chan-
nels, i.e. ψ ′′ → γχc0,1,2 and ψ ′ → γχc0,1, in both SU(2)
and SU(3) schemes which hints an insignificant role played
by the charmed-strange meson loops. For the channel of
ψ ′ → γχc2, as mentioned before, we take our result as a
prediction for future measurement which will be more pre-
cise.

To better understand our results we compare the exclu-
sive contributions from those different transition processes
in Fig. 1 with � = 1.0 GeV. Thus, we list the partial widths
from those exclusive processes in Table 3 for both SU(2) and
SU(3) schemes, respectively, and once again the results for
the full calculations are shown as a comparison. For both
schemes the tree-level transitions are dominant as expected
and in channels of ψ ′′ → γχcJ they can be compared with
the non-relativistic quark model calculations since the loops
give destructive inferences. In channels of ψ ′ → γχcJ
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they are smaller compared with the non-relativistic quark
model calculations since the loops give constructive infer-
ences while the quark model calculations already give larger
results than the experimental data. In the NREFT scenario the
effective coupling determined at tree level can be regarded
equivalent to the combined coupling strength from the wave
function overlap and spin-flavor factors in the non-relativistic
quark model. But it should be noted that in our NREFT for-
mulation the mixing and triangle loop processes serve as
important corrections to the leading non-relativistic results
which is different from the relativistic corrections introduced
in the relativized quark model [11]. In the latter the relativistic
corrections are considered by the Lorentz boost factor for the
constituent quarks. Here, the corrections arise from the inter-
mediate charmed meson degrees of freedom which suggests
that virtual states involving creations of light quark pairs from
vacuum are essential. Especially, such a mechanism becomes
important when the threshold of the intermediate mesons is
close to the mass of the coupled state.

From Table 3 one can see that the triangle loop and the
EM gauging process have larger corrections than the mix-
ing process. This is a further indication for the necessity of
including the meson loop transitions as leading corrections
to the E1 transitions. The correction from the mixing terms
can be regarded as kind of wave function corrections if we
compare it with the quark model approach. But the triangle
loop and the EM gauging term represent a different mech-
anism compared to the quark model picture and mimic the
unquenched effects that have not been included in the con-
stituent quark model. An interesting consequence is that the
static properties of both ψ ′ and ψ ′′ will not be affected sig-
nificantly by the meson loops, for instance, their masses and
total widths, etc. However, their decay modes can recognize
the effects arising from the loop transitions. This explains the
success of the non-relativistic quark model in the description
of the charmonium spectrum near the DD̄ threshold. But sig-
nificant discrepancies between the theoretical calculations
and experimental data were found even for the E1 transition
calculations.

We should mention that our calculations give better results
than non-relativistic quark models in most channels except
for ψ ′ → γχc2. Note that the PDG averaged value for ψ ′ →
γχc2 is based on several measurements [18] among which
significant discrepancies can be seen. This may explain that
it is hard to accommodate the ψ ′ → γχc2 channel in the
numerical fitting. We anticipate that more precise measure-
ment of ψ ′ → γχcJ will be able to provide more stringent
constraints on our model parameters and also examine our
scenario in the future.

In Table 3 the SU(3) scheme is presented with (left col-
umn) and without (right column) contributions from the
charmed-strange meson loops with the parameters fixed in
the fitting. Although the charmed-strange meson loop can
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Table 3 Individual contributions from different diagrams with � =
1.0 GeV. All values are in units of keV. For the SU(3) scheme the mix-
ing and meson loop contributions are presented with (left column) and

without (right column) contributions from the charmed-strange meson
loops after the parameters are fitted

Process SU(2) SU(3)

Tree Mixing Triangle Gauging Full Tree Mixing Triangle Gauging Full

ψ ′′ → χc0γ 232 1.16 2.79 4.87 197 238 1.19 1.06 3.47 2.12 6.18 3.70 195 210

ψ ′′ → χc1γ 73.2 1.46 0.73 0.62 65.6 75.1 1.50 1.34 0.89 0.55 1.11 0.47 67.2 71.7

ψ ′′ → χc2γ 2.8 1.42 0.024 0.013 2.9 2.9 1.46 1.30 0.028 0.018 0.027 0.010 2.6 2.7

ψ ′ → χc0γ 25.4 0.17 0.34 0.31 30.1 23.4 0.23 0.18 0.35 0.18 0.53 0.24 29.9 27.4

ψ ′ → χc1γ 22.1 0.037 0.22 0.26 28.2 20.3 0.050 0.038 0.40 0.17 0.52 0.20 28.4 25.1

ψ ′ → χc2γ 15.4 0.0010 0.12 0.16 19.1 14.2 0.0014 0.0011 0.24 0.090 0.33 0.12 19.3 17.1

ψ (ψ ) ψ (ψ )

p

l

m1

m2

p − l

Fig. 2 The mixing diagram for ψ ′′(ψ ′) → ψ ′(ψ ′′) via intermediate
D-meson loops

bring some changes to the parameters listed in Table 1, it is
consistent to be small due to the relatively larger mass of the
Ds D̄∗

s + c.c. threshold.
We can further investigate the mixing term and extract the

mixing angle between ψ ′ and ψ ′′. For the mixing process of
Fig. 2 we first define the mixing parameter |ξ | [23–25],

|ξi | ≡
∣∣∣∣Dψ ′ψ ′′

Di

∣∣∣∣ , (12)

where Dψ ′ψ ′′ is the mixing term via heavy meson loop and
Di (i = ψ ′, ψ ′′) is the denominator for the propagator of
ψ ′ or ψ ′′. Both of them depend on the initial energy

√
s. In

our calculation, it is convenient to extract |ξ | by just taking
the ratio of the amplitude of the mixing diagram Fig. 1b for
ψ ′′(ψ ′) and the amplitude of the tree diagram Fig. 1a for
ψ ′(ψ ′′):

|ξi | ≡
∣∣∣∣Dψ ′ψ ′′

Di

∣∣∣∣ =
∣∣∣∣∣∣
Amixing

ψ ′′(ψ ′)
Atree

ψ ′(ψ ′′)

∣∣∣∣∣∣ . (13)

So the mixing parameter |ξψ ′(s)| at
√
s = mψ ′′ = 3.773 GeV

can be related to the ψ(2S) − ψ(1D) state mixing angle via
|ξψ ′(s)| ≈ |sinθψ ′ | [26] in which we find θψ ′ ≈ 8.1◦ in
SU(2) scheme. This value is consistent with those extracted

in Refs. [25,26]. In the same way we find θψ ′′ ≈ 2.4◦ at√
s = mψ ′ = 3.686 GeV, which should be useful for further

studies of issues related to the “ρ–π puzzle” (see Ref. [27]
for a recent review of this topic).

4 Summary

We present a detailed study of the E1 transitions for ψ ′ and
ψ ′′ → γχcJ in the NREFT where the subleading corrections
arising from the charmed meson loops are consistently taken
into account in the same framework. We find that the inter-
mediate meson loops play an important role by introducing
destructive interferences that in most channels bring down
the leading contributions from the tree-level transitions. This
special mechanism actually accounts for unquenched effects
that have not been included in the constituent quark model.
We emphasize that the open charm contribution from the tri-
angle processes appears to be a general phenomenon that has
brought a lot of interesting insights into the understanding of
recent “XYZ” states. Meanwhile, as we have shown in this
work, it can also produce sizable effects on processes where
the dominant contribution is from the potential quark model.
We expect that further precise measurement of ψ ′′ → γχc2

at BESIII and Belle-II will help clarify the underlying dynam-
ics.
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Appendix A: Integrals

We calculated different kinds of loop integrals with the expo-
nential form factor in Eq. (11). Two kinds of two-point loop
integrals in the mixing and EM gauging terms are defined as

Im(m1,m2, M,�)

=
∫

d4l

(2π)4

�l2exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε] , (A1)

Ig(m1,m2, M,�)

=
∫

d4l

(2π)4

exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε] . (A2)

Three kinds of triangle loop integrals are defined as

I (0)(m1,m2,m3, M, M1, M2,�)

= i
∫

d4l

(2π)4

exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε][(l − q)2 − m2
3 + iε] ,

(A3)
qi I (1)(m1,m2,m3, M, M1, M2,�)

= i
∫

d4l

(2π)4

li exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε][(l − q)2 − m2
3 + iε] ,

(A4)
qi q j I (2)

0 (m1,m2,m3, M, M1, M2,�)

+δi j �q2 I (2)
1 (m1,m2,m3, M, M1, M2,�)

= i
∫

d4l

(2π)4

li l j exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε][(l − q)2 − m2
3 + iε] ,

(A5)

where P = (M,
−→
0 ) in the rest frame of the initial particle.

Since q is the 4-momentum of the photon in this work, we
can set the 3-momentum direction of it to be along z-axis.
Then q = (qz, 0, 0, qz) and

qz =
√[M2 − (M1 + M2)2][M2 − (M1 − M2)2]

2M
. (A6)

For Im and Ig it is straightforward:

Im =
∫

d4l

(2π)4

�l2exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε]

= i

4m1m2

∫
d3�l

(2π)3

�l2exp(−2�l2/�2)

P − m1 − m2 − �l2/2μ12

= i

4m1m2

4π

(2π)3

∫ ∞

0
dl

l4exp(−2l2/�2)

P − m1 − m2 − l2/2μ12

= −iexp(−2k2/�2)

8(m1 + m2)π2

{√
π

2
�e2k2/�2 �2 + 4k2

4

+π(−k2 − iε)3/2

[
1 − erf

(√−2k2 − iε

�

)]}
,

(A7)

Ig =
∫

d4l

(2π)4
exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε]

= i

4m1m2

4π

(2π)3

∫ ∞
0

dl
l2exp(−2l2/�2)

P − m1 − m2 − l2/2μ12

= i

4m1m2

{
− μ�

(2π)3/2 + μk

2π
e−2k2/�2

[
erfi

(√
2k

�

)
− i

]}
,

(A8)

where k = √
2μ(M − m1 − m2) and μi j is the reduced mass

of the intermediate particles which are labeled i and j . The
error function and the imaginary error function are defined
as

erf(z) = 2√
π

∫ z

0
e−t2 dt, (A9)

erfi(z) = 2√
π

∫ z

0
et

2
dt. (A10)

For the triangle integral, we transform them to be the integral
of the Feynman parameter x then do the numerical integral
of x . For example:

I (0) = i
∫

d4l

(2π)4

× exp(−2�l2/�2)

(l2 − m2
1 + iε)[(P − l)2 − m2

2 + iε][(l − q)2 − m2
3 + iε]

= μ12μ23

2m1m2m3

∫ 1

0
dx

∫
d3�l

(2π)3

exp(−2�l2/�2)

(�l2 + �)2

= −μ12μ23

16m1m2m3�2π2

∫ 1

0
dx

{
2�

√
2π + πe2�/�2

×
(

4
√

� + �2

√
�

)[
erf

(√
2�

�

)
− 1

]}
, (A11)

where � = x
(
c′ − ax

) + (1 − x) (c − iε). Here c′, a and c
are defined as in Ref. [15]. With the same method we have

I (1) = −μ12μ
2
23

16m1m2m2
3π

2�2

∫ 1

0
dxx

×
{

2�
√

2π + πe2�/�2
(

4
√

� + �2

√
�

)

×
[

erf

(√
2�

�

)
− 1

]}
, (A12)

I (2)
1 = μ12μ23

48m1m2m3q2
z π

2�2

∫ 1

0
dx

×
{

�
√

2π
(
2� + �2) + π

√
�e2�/�2 (

4� + 3�2)

×
[

erf

(√
2�

�

)
− 1

]}
. (A13)
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Table 4 Intermediate charmed meson loops contributing to each transition. The loops are denoted [m1,m2,m3] for m1 and m2 rescattering into
final γχcJ by exchanging m3. The charge conjugation terms are dropped for simplicity

Channels Electric Magnetic

ψ ′(ψ ′′) → γχc0 [D+, D−, D+], [D∗+, D∗−, D∗+] [D∗, D̄, D], [D̄, D∗, D̄∗]
ψ ′(ψ ′′) → γχc1 [D+, D∗−, D+], [D∗+, D−, D∗+] [D, D̄, D∗], [D∗, D̄∗, D], [D∗, D̄, D∗]
ψ ′(ψ ′′) → γχc1 [D∗+, D∗−, D∗+] [D̄, D∗, D̄∗], [D∗, D̄∗, D∗]

Appendix B: Decay amplitudes

Using the Lagrangians introduced in Sect. 2, the amplitudes
for all mixing diagrams can be expressed as

Amixing
ψ ′′→γχc0

= −8
√

5

9
g2g3gSPγ Eγ εiψ ′′ε∗

γ i

× Im(D(∗), D̄(∗))/(m2
ψ ′′ − m2

ψ ′ + imψ ′
ψ ′) + c.c.,

(B1)

Amixing
ψ ′′→γχc1

= 4

3

√
10

3
g2g3gSPγ Eγ εi jkε

i
ψ ′′ε∗ j

χc1
ε∗k
γ

× Im(D(∗), D̄(∗))/(m2
ψ ′′ − m2

ψ ′ + imψ ′
ψ ′) + c.c.,

(B2)

Amixing
ψ ′′→γχc2

= 8

3

√
5

3
g2g3gSPγ Eγ εiψ ′′ε∗ j

γ ε∗χc2i j

× Im(D(∗), D̄(∗))/(m2
ψ ′′ − m2

ψ ′ + imψ ′
ψ ′) + c.c.,

(B3)

Amixing
ψ ′→γχc0

= − 40

9
√

3
g2g3gDPγ Eγ εiψ ′ε∗

γ i

× Im(D(∗), D̄(∗))/(m2
ψ ′ − m2

ψ ′′ + imψ ′′
ψ ′′) + c.c.,

(B4)

Amixing
ψ ′→γχc1

= −10
√

2

9
g2g3gDPγ Eγ εi jkε

i
ψ ′ε∗ j

χc1
ε∗k
γ

× Im(D(∗), D̄(∗))/(m2
ψ ′ − m2

ψ ′′ + imψ ′′
ψ ′′) + c.c.,

(B5)

Amixing
ψ ′→γχc2

= 4

9
g2g3gDPγ Eγ εiψ ′ε∗ j

γ ε∗χc2i j

× Im(D(∗), D̄(∗))/(m2
ψ ′ − m2

ψ ′′ + imψ ′′
ψ ′′) + c.c.,

(B6)

where Im(D(∗), D̄(∗)) is the sum of integrals for all possi-
ble intermediate D-meson loops with appropriate incoming
and outgoing particle corresponding to the specific channel.
For example, Im(D(∗), D̄(∗)) = Im(mD(∗) ,mD̄(∗) ,mψ ′′ ,�)

in Eq. (B1). The gauging amplitudes are:

Agauging
ψ ′′→γχc0

=
√

5

3
ieg1g3ε

i
ψε∗

γ i

× [
3Ig(D

+, D−) + Ig(D
∗+, D∗−)

] + c.c., (B7)

Agauging
ψ ′′→γχc1

= 2

√
5

6
ieg1g3εi jkε

i
ψε∗ j

χ ε∗k
γ

× Ig(D
+, D∗−) + c.c., (B8)

Agauging
ψ ′′→γχc2

= − i√
15

eg1g3ε
i
ψε∗ j

γ ε∗
χ i j

× Ig(D
∗+, D∗−) + c.c., (B9)

Agauging
ψ ′→γχc0

= i√
3
eg1g2ε

i
ψε∗

γ i

× [
3Ig(D

+, D−) + Ig(D
∗+, D∗−)

] + c.c., (B10)

Agauging
ψ ′→γχc1

= −2
√

2ieg1g2εi jkε
i
ψε∗ j

χ ε∗k
γ

× Ig(D
+, D∗−) + c.c., (B11)

Agauging
ψ ′→γχc2

= −2ieg1g2ε
i
ψε∗ j

γ ε∗
χ i j

× Ig(D
∗+, D∗−) + c.c., (B12)

where e is the unit charge.
The amplitudes for all the triangle loop diagrams include

electric and magnetic ones due to the different photon cou-
pling. In Table 4 the contributing loops are denoted by the
rescattering and exchanging mesons for each decay channel.
We have

Atriangle
ψ ′′→γχc0

= ig1g3ε
i
ψε∗

γ i q
2
z

×
[√

5Fpv I
(1)(D∗, D̄, D) +

√
5

3
Fpv I

(1)(D̄, D∗, D̄∗)
]

+g3g1ε
i
ψε∗

γ i q
2
z

[4
√

5e

mD
I (2)
1 (D+, D−, D+)

+ 4
√

5e

3mD∗
I (2)
1 (D∗+, D∗−, D∗+)

]
+ c.c., (B13)

Atriangle
ψ ′′→γχc1

= −2

√
10

3
ig1g3ε

i
ψε∗ j

χ ε∗l
γ qiq

kε jkl Fpv I
(1)(D, D̄, D∗)

−
√

2

15
ig1g3ε

i
ψε∗ j

χ ε∗l
γ qk

(
4qiε jkl − q jεikl

)
Fpv I

(1)(D∗, D̄∗, D)

−
√

10

3
ig1g3ε

i
ψε∗ j

χ ε∗l
γ q jq

kεikl Fvv I
(1)(D∗, D̄, D∗)

+2

√
10

3
eg1g3εi jkε

i
ψε∗ j

χ ε∗k
γ q2

z

×
[
I (2)
1 (D+, D∗−, D+)/mD

+I (2)
1 (D∗+, D−, D∗+)/mD∗

]
+ c.c., (B14)

Atriangle
ψ ′′→γχc2

= −
√

5

3
ig1g3ε

i
ψε∗n

γ q jqmεi jkεlmn

×
(
ε∗kl + ε∗lk) Fpv I

(1)(D̄, D∗, D̄∗)
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− 1√
15

ig1g3

(
εψi q

j + ε
j
ψqi

) (
ε∗
γ j qk − ε∗

γ kq j

)

×
(
ε∗ik
χ + ε∗ki

χ

)
Fvv I

(1)(D∗, D̄∗, D∗)

− 4eg1g3√
15mD∗

(
δikδ jl + δilδ jk

)
εiψε∗ j

γ ε∗kl
χ q2

z I
(2)
1

× (D∗+, D∗−, D∗+) + c.c., (B15)

Atriangle
ψ ′→γχc0

= −ig1g2ε
i
ψε∗

γ i q
2
z

[
2
√

3Fpv I
(1)(D∗, D̄, D)

+ 2√
3
Fpv I

(1)(D̄, D∗, D̄∗)
]

+g1g2ε
i
ψε∗

γ i q
2
z

[
4
√

3e

mD
I (2)
1 (D+, D−, D+)

+ 4e√
3mD∗

I (2)
1 (D∗+, D∗−, D∗+)

]
+ c.c., (B16)

Atriangle
ψ ′→γχc1

= −2
√

2ig1g2ε
i
ψε∗ j

χ ε∗l
γ qiq

kε jkl

×
[
Fpv I

(1)(D, D̄, D∗) + Fpv I
(1)(D∗, D̄∗, D)

]

+2
√

2ig1g2ε
i
ψε∗ j

χ ε∗l
γ q jq

kεikl

×
[
Fpv I

(1)(D∗, D̄∗, D) + Fvv I
(1)(D∗, D̄, D∗)

]

−2
√

2eg1g2εi jkε
i
ψε∗ j

χ ε∗k
γ q2

z

[
I (2)
1 (D+, D∗−, D+)/mD

+I (2)
1 (D∗+, D−, D∗+)/mD∗

] + c.c., (B17)

Atriangle
ψ ′′→γχc2

= 2ig1g2ε
i
ψε∗n

γ q jqmεi jkεlmn

× (ε∗kl
χ + ε∗lk

χ )Fpv I
(1)(D̄, D∗, D̄∗)

−2ig1g2

(
εψi q

j + ε
j
ψqi

) (
ε∗
γ j qk − ε∗

γ kq j

)

×
(
ε∗ik
χ + ε∗ki

χ

)
Fvv I

(1)(D∗, D̄∗, D∗)

−8eg1g2

mD∗

(
δikδ jl + δilδ jk

)
εiψε∗ j

γ ε∗kl
χ q2

z I
(2)
1

× (D∗+, D∗−, D∗+) + c.c., (B18)

where Fpv and Fvv stand for the charge factors arising from
the photon and charmed meson coupling vertices for dif-
ferent channels, i.e. Fpv(n) = 2eβ/3 + 2e/(3mQ) for neu-
tral pseudoscalar and vector charmed mesons, Fpv(c) =
−eβ/3 + 2e/(3mQ) for charged pseudoscalar and vector
charmed mesons, Fvv(n) = 2eβ/3 − 2e/(3mQ) for neutral
vector charmed mesons and Fvv(c) = −eβ/3 − 2e/(3mQ)

for charged vector charmed mesons.
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