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Abstract The fraction of heavy vector mesons produced in
a heavy ion collision, as compared to a proton–proton colli-
sion, serves as an important indication of the formation of a
thermal medium, the quark–gluon plasma. This sort of anal-
ysis strongly depends on understanding the thermal effects of
a medium like the plasma on the states of heavy mesons. In
particular, it is crucial to know the temperature ranges where
they undergo a thermal dissociation, or melting. AdS/QCD
models are know to provide an important tool for the calcula-
tion of hadronic masses, but in general are not consistent with
the observation that decay constants of heavy vector mesons
decrease with excitation level. It has recently been shown that
this problem can be overcome using a soft wall background
and introducing an extra energy parameter, through the cal-
culation of correlation functions at a finite position of anti-de
Sitter space. This approach leads to the evaluation of masses
and decay constants of S wave quarkonium states with just
one flavor dependent and one flavor independent parameter.
Here we extend this more realistic model to finite tempera-
tures and analyze the thermal behavior of the states 1S, 2S
and 3S of bottomonium and charmonium. The corresponding
spectral function exhibits a consistent picture for the melting
of the states where, for each flavor, the higher excitations
melt at lower temperatures. We estimate for these six states
the energy ranges in which the heavy vector mesons undergo
a transition from a well-defined peak in the spectral function
to complete melting in the thermal medium. A very clear
distinction between the heavy flavors emerges, with the bot-
tomonium state ϒ(1S) surviving a deconfinement transition
at temperatures much larger than the critical deconfinement
temperature of the medium.
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1 Introduction

The suggestion [1] (see [2] for a review) that J/ψ suppres-
sion in heavy ion collisions could be a signature for the for-
mation of a quark–gluon plasma gave rise to a continuous
interest in the thermal behavior of charmonium states. In
particular, it is of great interest to know what are the temper-
ature ranges at which the heavy vector mesons states melt. By
melting one means the thermal dissociation in the medium
that corresponds to the disappearance of the particle peak in
the spectral function.

AdS/QCD models are very useful tools for studying spec-
tral properties of hadronic states. Such models, inspired by
the AdS/CFT correspondence [3–6], assume the existence of
an approximate duality between a field theory living in an
anti-de Sitter background deformed by the introduction of a
dimensionful parameter and a gauge theory where the param-
eter plays the role of an energy scale. One of the earliest for-
mulations, the hard wall AdS/QCD model, appeared in Refs.
[7–9] and consists in placing a hard geometrical cutoff in
anti-de Sitter (AdS) space. In particular, the hard wall model
was used in [8,9] as a tool for calculating masses of glueballs.
Another AdS/QCD model, the soft wall, where the square of
the mass grow linearly with the radial excitation number was
introduced in Ref. [10]. In this case, the background involves
AdS space and a scalar field that acts effectively as a smooth
infrared cutoff. A recent review of AdS/QCD with a wide-
ranging list of references can be found in [11].

AdS/QCD models provide also a tool for calculating
another important property of hadrons: the decay constant.
The decay of mesons is represented as a transition from the
initial state to the hadronic vacuum. For a meson at radial
excitation level n with mass mn the decay constant fn is
defined by 〈0|Jμ(0)|n〉 = εμ fnmn , where Jμ is the gauge
current and εμ the polarization. Expressing the two point
correlator of gauge currents as a sum over transition matrix
elements, one finds a holographic expression for decay con-
stants [10,12].
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A problem of the original formulations of the hard wall and
soft wall models is that the experimental results available for
charmonium and bottomonium vector states show that higher
excited radial states have smaller decay constants. In other
words, fn decrease with n. In contrast, the results obtained
for decay constants of vector mesons in the soft wall are
degenerate: all the decay constants of the radial excitations of
a vector meson are equal. For the hard wall model the decay
constants of radial excitations increase with the excitation
level. A fit of the decay constants of charmonium states in the
soft wall case appeared in Ref. [13], introducing three extra
parameters in the model. In Ref. [13] four experimental data,
the masses and decay constants of J/ψ and ψ ′, are used to
fix the parameters introduced in the model. Then a very nice
description of the thermal behavior of the charmonium, with
a clear picture of the melting of the 1S state was obtained.

An alternative version of the soft wall model, consistent
with the observed behavior of decay constants, was recently
proposed in Ref. [14]. In contrast to the original formulation,
in this new framework the decay constants are obtained from
two point correlators of gauge theory operators calculated at
a finite value z = z0 of the radial coordinate of AdS space.
This way an extra energy parameter 1/z0, associated with
an ultraviolet (UV) energy scale is introduced in the model.
The masses and decay constants of charmonium and bot-
tomonium S wave states are calculated in Ref. [14] using the
quantity 1/z0 as a flavor independent parameter and taking
the usual infrared (IR) soft wall parameter k to depend on the
flavor, since it is associated with the quark mass. A total of
eight masses and eight decay constants are determined using
three parameters. The rms error is of 30%, which is reason-
able, given the simplicity of the model and the fact that two
different properties of two different flavors are adjusted with
just three parameters.

The purpose of the present article is to extend the model
of Ref. [14] to finite temperature in order to investigate the
thermal spectra of S wave states of charmonium and bot-
tomonium. We will show that the spectral functions present
the expected behavior: at low temperatures, sharp peaks for
the lower level excitations, and, as the temperature increases,
the peaks spread and decrease in height. The evolution of the
spectral function with increasing temperature shows clearly
the process of transition from well-defined peaks to the dis-
appearance of the states in the medium, for the states 1S,
2S, and 3S. The melting occurs at lower temperatures for the
higher excitations.

It is worth mentioning that in Refs. [13,15–23], heavy vec-
tor mesons have been discussed in the context of AdS/QCD
models. However, the holographic picture for the melting of
1S, 2S, and 3S states of bottomonium and charmonium that
we will show here was not presented before in the literature.

The article is organized as follows: in Sect. 2 we briefly
review the model for heavy vector mesons at zero tempera-

ture presented recently in Ref. [14]. Then in Sect. 3 we build
up a finite temperature version for this model and show how
to calculate the corresponding thermal spectral function. In
Sect. 4 we show the results obtained by numerically solving
the equations of motion. We analyze the melting of the states
of charmonium and bottomonium as the temperature increase
and estimate the temperature ranges where the thermal disso-
ciation occurs. We leave for Sect. 5 some final comments and
remarks and present in the appendix more details of the melt-
ing of charmonium states. Appendix A shows more details of
the temperature dependence of the thermal spectral functions
and Appendix B presents an analysis of the high frequency
behavior.

2 Heavy vector mesons in the vacuum

The holographic model proposed in Ref. [14] contains two
dimensionful parameters. One comes from a soft wall back-
ground and the other from a position in AdS space where the
gauge theory correlators are calculated. The model leads to
decay constants for heavy vector mesons decreasing with the
radial excitation level, in agreement with the results obtained
from experimental data.

One considers a vector field Vm = (Vμ, Vz) (μ =
0, 1, 2, 3) playing the role of the supergravity dual of the
gauge theory current Jμ = q̄γ μq. The field lives in a five
dimensional soft wall background governed by the action

I =
∫

d4xdz
√−ge−�(z)

{
− 1

4g2
5

FmnF
mn

}
, (1)

where Fmn = ∂mVn − ∂nVm and � = k2z2 is the soft wall
background, with the parameter k playing the role of an IR,
or mass, energy scale. The space is a Poincaré AdS chart:

ds2 = R2

z2 (−dt2 + dz2 + d�x · d�x). (2)

The second input parameter of the model, which is not
present in the usual formulation of the soft wall model, is
introduced by calculating the correlators at a finite position
z = z0 instead of taking the boundary to be at z = 0. The
parameter 1/z0 is interpreted as an UV energy scale. A simi-
lar approach appeared in Ref. [24] but for light vector mesons.

One considers the action of Eq. (1) to be defined in the
region z0 ≤ z < ∞; then the on shell action takes the form

Ion shell = − 1

2g̃2
5

∫
d4x

[
e−k2z2

z
ημνVμ∂zVμ

] ∣∣∣∣
z→z0

, (3)

where g̃2
5 = g2

5/R is the relevant dimensionless coupling of
the vector field and ημν is the Minkowski metric.
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The gauge Vz = 0 is used, so that the boundary values of
the other remaining components of the vector field, V 0

μ(x) =
limz→z0 Vμ(x, z), are the sources of the correlation functions
of the boundary current operator Jμ(x)(= q̄γ μq(x)). That
means that

〈0|Jμ(x)Jν(y)|0〉 = δ

δV 0μ(x)

δ

δV 0ν(y)
exp (−Ion shell) .

(4)

Working in momentum space in the coordinates xμ, or
equivalently taking a plane wave solution, the field Vμ(p, z)
can be decomposed for convenience into a source factor times
a z dependent factor,

Vμ(p, z) = v(p, z)V 0
μ(p), (5)

where v(p, z) is usually called bulk to boundary propagator
and satisfies the equation of motion:

∂z

(
e−k2z2

z
∂zv(p, z)

)
+ p2

z
e−k2z2

v(p, z) = 0. (6)

In order that the factor V 0
μ(p), defined in the decomposition

of Eq. (5), works as the source of the correlators of gauge
theory currents, calculated at z = z0, one must impose the
boundary condition:

v(p, z = z0) = 1. (7)

The solution of Eq. (6) is a Tricomi function U (−p2/4k2, 0,

k2z2). The boundary condition can be trivially satisfied fol-
lowing Ref. [25,26] and writing:

v(p, z) = U (−p2/4k2, 0, k2z2)

U (−p2/4k2, 0, k2z2
0)

. (8)

The decay constants appear in the two point function,

�(p2) =
∞∑
n=1

f 2
n

(−p2) − m2
n + iε

. (9)

On the other hand, the two point function is related to the
current–current correlator,

(p2ημν − pμ pν)�(p2) =
∫

d4xe−i p·x 〈0|Jμ(x)Jν(0)|0〉,
(10)

which can be obtained holographically by differentiating the
on shell action by the boundary values of the fields, with the
result

�(p2) = 1

g̃2
5(−p2)

[
e−k2z2

v(p, z)∂zv(p, z)

z

]

z→z0

. (11)

Equation (11) has simple poles, although it does not have
the exact simple pole structure of Eq. (9). But one can asso-
ciate the coefficients of the approximate expansion near the
poles with the decay constant fn in analogy with the exact
expansion shown in Eq. (9). This way one finds the masses
from the localization of the poles of the two point function
and the decay constants from the corresponding coefficient.
That means, if χn are the roots of the Tricomi function,

U (χn, 0, k2z2
0) = 0, (12)

then the holographic vector meson masses are

m2
n = 4k2χn . (13)

The decay constants are calculated numerically from the fit
to the approximate form of the simple pole of Eq. (9). That
means

f 2
n = lim

p2→−m2
n

(−p2) − m2
n)�(p2). (14)

The coupling g̃5 = g5/
√
R of the vector field in the AdS

bulk is obtained by comparison with QCD (see Refs. [10,
12]), which gives g̃5 = 2π .

The parameter k is flavor dependent, representing the mass
of the heavy quarks. The energy scale 1/z0 is taken as hav-
ing the same value for charmonium and bottomonium, repre-
senting a flavor independent factor associated with just color
interaction. The parameters used in Ref. [14] are

kc = 1.2 GeV; kb = 3.4 GeV; 1/z0 = 12.5 GeV, (15)

where kc and kb are the values of the constants k used for char-
monium and bottomonium, respectively. Using these three
parameters and Eqs. (13) and (14) the masses and decay
constants of the states 1S, 2S, 3S, 4S of charmonium and
bottomonium were estimated with an rms error of 30%.

In the next section we extend this model to finite temper-
ature and then, considering the same choice of parameters
of Eq. (15) we analyze the behavior of charmonium and bot-
tomonium S wave states in a thermal plasma.

3 Heavy vector mesons at finite temperature

Now we extend the zero temperature model of Ref. [14] to
finite temperature. It is important to mention that hadronic
spectra at finite temperature have been studied in the con-
text of AdS/QCD soft wall model before, for example, in
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Refs. [17,19,27–29]. In particular [29] describes light vector
mesons in the soft wall model. However, a complete analysis
of the thermal spectral function for vector states of bottomo-
nium and charmonium like the one performed in this article
is not present in the literature.

3.1 Dual space and Hawking–Page transition

Gauge string duality at finite temperature was discussed orig-
inally in Refs. [6,30]. Considering a Euclidean signature and
a compactified time coordinate, the geometry dual to a gauge
theory at finite temperature is one of the two solutions of Ein-
stein equations with constant negative curvature. One of these
solutions is the AdS black hole space, which in Euclidean
signature reads

ds2 = R2

z2

(
f (z)dt2 + dz2

f (z)
+ d�x · d�x

)
, (16)

where the Schwarzschild factor is f (z) = 1−z4/z4
h and zh is

the horizon position. The other solution is the thermal AdS
space, that is, just AdS space corresponding to f (z) = 1,
with a compactified time.

Following the work by Hawking and Page [31], one
uses the semiclassical argument that there is “competition”
between the two solutions and the one with smaller Einstein–
Hilbert action will be stable at a given temperature. For the
conformal gauge theory case (in a non-compact space) the
black hole is the stable solution for all temperatures [30].
So, the dual geometry is the black hole. For a non-conformal
gauge theory, as in the soft wall model case, the dual geome-
try has two different phases, as discussed in Refs. [32,33]. For
temperatures above a critical value Tc the black hole is stable,
while for temperatures below Tc the thermal AdS case is sta-
ble. The so-called Hawking–Page transition between spaces
was interpreted in [30] as a transition in the dual gauge theory
from a deconfined (T > Tc) to a confined phase (T < Tc).

In order to compare the action integrals of the black hole
AdS and the thermal AdS we must take into account the fact
that the periodicity of the time coordinate is related to the
temperature. In our model the gauge theory is at z = z0

where the transverse part of the metric of the black hole is

ds2 = R2

z2
0

( f (z0)dt
2 + d�x · d�x).

The mapping of the supergravity theory to a gauge theory
in flat space must be performed with the rule that the gauge
theory time has to be τ = t

√
f (z0). Since the period is the

inverse of the gauge theory temperature, τ ∼ τ + 1/T , and
the period of the black hole coordinate t must be π zh to avoid
a conical singularity at the horizon, one finds

T = 1

π zh
√

f (z0)
= 1

π zh

√
1 − z4

0
z4

h

. (17)

In order to obtain the gravitational actions for the black
hole AdS and thermal AdS in the soft wall model we start with
the corresponding Einstein–Hilbert action with the appropri-
ate cosmological constant and with the dilaton background
[32]:

I = − 1

2κ2

∫
d5x

√
ge−k2z2

(
R + 12

R2

)
(18)

where R is the Ricci scalar and κ the gravitational coupling.
The results of Ref. [32] for the gravitational densities can

be adapted to the model considered here, where there is an UV
cutoff, by replacing the minimum value of the coordinate z
that in Ref. [32] is just an UV regulator z = ε by the (inverse
of the) UV energy scale: z = z0. Using also the relation
between the horizon position and the temperature in Eq. (17)
one gets

Vth AdS = 4R3

κ2

1

T

∫ ∞

z0

dz
e−k2z2

z5
(19)

VBH AdS = 4R3

κ2

1

T
√

f (z0)

∫ zh

z0

dz
e−k2z2

z5
. (20)

The critical temperature, where the two actions densities
are equal, depends on the infrared parameter k of the soft wall
background. This parameter is flavor dependent. This means
that each mesonic flavor is represented by a vector field cou-
pled to a dilaton background with a specific parameter k.
The black hole AdS geometry represents the quark–gluon
plasma formed by the deconfinement of the hadronic mat-
ter. The light mesons are more abundant and dissociate at a
lower temperature. The heavy flavors, charmonium and bot-
tomonium states, dissociate at higher temperatures. So, the
plasma is formed by the dissociation of the dominant light-
est hadrons like the ρ meson, not by the dissociation of the
charmonium and bottomonium states. Thus, we assume that
the confinement/deconfinement transition of the plasma is
determined by the soft wall background that describes the ρ

vector mesons states. Therefore, we consider that the dilaton
that couples with gravity in the Einstein–Hilbert action (18)
is the same that couples with the vector field dual to the ρ

meson.
In the present model ρ vector mesons can be described

taking, as in Ref. [14], 1/z0 = 12.5 GeV and reproducing the
calculation of the mass reviewed in Sect. 2. One finds, using
the parameter k = 0.388 GeV as in [32], that the model with
UV cut off leads to a mass of 777.6 MeV for the 1S state.

The corresponding critical temperature is Tc = 191 MeV,
the same result as Ref. [32]. In Fig. 1 we show the difference
�V = VBH AdS−Vth AdS between the action densities of Eqs.
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Fig. 1 Difference between action densities of thermal AdS and black
hole AdS as a function of the temperature for the model with UV cutoff

(19) and (20) as a function of the temperature. The critical
temperature corresponds to the point where the curve crosses
the temperature axis.

3.2 Vector meson solutions in the black hole

As in the zero temperature case, we take a vector field Vm =
(Vμ, Vz) (μ = 0, 1, 2, 3) described by an action integral with
the general form of Eq. (1) and soft wall background � =
k2z2. But for describing the thermal spectra one considers the
geometry as the Minkowski version of the black hole metric
(16):

ds2 = R2

z2

(
− f (z)dt2 + dz2

f (z)
+ d�x · d�x

)
. (21)

where again f (z) = 1 − z4/z4
h and the gauge theory tem-

perature is related to the horizon position by Eq. (17). It is
important to note that this black hole geometry will be stable
only for temperatures T > Tc. We will calculate the thermal
spectral functions using this black hole metric for all temper-
atures with the interpretation that for T < Tc it represents a
super-cooled (unstable) phase.

As in the zero temperature case, we choose the gauge
Vz = 0 and assume V 0

μ(x) = limz→z0 Vμ(x, z) to be the
sources of the correlation functions of Jμ(x). Now, with the
radial AdS coordinate defined in the region: z0 ≤ z ≤ zh,
the on shell action takes the form

Ion shell = − 1

2g2
5

∫
d4x[e−k2z2√−ggzzgμνVμ∂zVν]|z→zh

z→z0
.

(22)

The imaginary part of the on shell action should generate
holographically the thermal spectral function. However, it
was pointed out in Ref. [34] that for an action like (22) the
imaginary part is z independent. So the contributions from
the two integration limits cancel each other out. This problem
can be solved following again [34] and using the additional
prescription that only the boundary z = z0 is considered. In

other words, one takes Eq. (22) with only the lower integra-
tion limit. For an interesting discussion of the interpretation
of the prescription for calculating the retarded Green func-
tion; see [35].

The procedure to find the retarded Green function involves
Fourier transforming the fields and decomposing the momen-
tum space fields as it was done in the finite temperature case
in Eq. (5): Vμ(q, z) = v(q, z)V 0

μ(q). The on shell action
takes the form

Ion shell =
∫

d4q[V 0
μ

∗
(q)Fμν(z, p)V 0

ν (q)]z→z0
, (23)

where

Fμν(z, q) = 1

2g2
5

e−k2z2√−ggzzgμνv∗(q, z)∂zv(q, z).

(24)

The corresponding retarded Green function is

Gμν
R (q) = Fμν(z = z0, q), (25)

and the spectral function is the imaginary part of the retarded
Green’s function:

ρμν(q) = −Im{Gμν
R (q)}. (26)

The bulk to boundary propagators v(q, z) are solutions of the
equations of motion. These equations have different forms
for the temporal V0 and spatial Vi components of the vector
field. For the case of a plane wave solution with momentum
qμ = (ω, �q) they are

∂z

(
e−k2z2

z
∂zV0(q, z)

)
− e−k2z2

z f (z)

(
ω2

f (z)
− |�q|2

)
V0(q, z) = 0

∂z

(
e−k2z2

f (z)

z
∂zVi (q, z)

)
+ e−k2z2

z

(
ω2

f (z)
− |�q|2

)
Vi (q, z) = 0.

(27)

It is convenient [13] to choose the momentum qμ = (ω,�)
where the transversality of the current qμ Jμ = 0 translates
into the vanishing of the temporal component J0. Then we
just need to solve the equation for the spatial component:
Vi (ω, z) = v(ω, z)V 0

i (ω). In this case v(ω, z) satisfies the
equation:

∂z

(
e−k2z2

f (z)

z
∂zv(ω, z)

)
+ e−k2z2

z

ω2

f (z)
v(ω, z) = 0. (28)

The bulk to boundary propagator has to satisfy two bound-
ary conditions. One is

v(ω, z = z0) = 1, (29)
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which was present in the zero temperature case and implies
that the field components work as the sources of the correla-
tion functions at z = z0. The other is the condition that the
solution behaves as an incoming wave in the near horizon
limit z → zh. The absence of outgoing solutions represents
the absorption by the black hole horizon. In order to imple-
ment this condition one can use the Regge–Wheeler tortoise
coordinate, which makes explicit the decomposition of the
solutions of the equations of motion in incoming plus out-
going solutions. One introduces the coordinate r∗ such that
∂r∗ = − f (z)∂z , which implies

r∗ = 1

2
zh

[
− tan−1

(
z

zh

)
+ 1

2
ln

(
zh − z

zh + z

)]
(30)

in the interval z ≤ zh where z is defined.
Performing a Bogoliubov transformation v(ω, z) =

eB/2ψ(ω, z) with eB = zek
2z2

one finds that the equation
of motion (27) takes the form

∂2
r∗ψ + ω2ψ = Uψ,

where the potential

U (z) =
(

1 − z4

z4
h

)[(
k4z2 + 3

4z2

) (
1 − z4

z4
h

)
+ 2z2 (1 + 2k2z2)

z4
h

]

(31)

vanishes at the horizon. Thus, the function ψ has the asymp-
totic near horizon solutions ψin/out = e∓iωr∗ representing
incoming and outgoing waves, respectively.

Expanding the incoming wave solution near the horizon
as

ψin = e−iωr∗ [1 + a1(z − zh) + a2(z − zh)
2 + · · · ], (32)

and inserting in the equation of motion, one finds the relevant
coefficient:

a1 = 1 + 2k2z2
h

zh(iωzh − 2)
. (33)

In order to implement the incoming wave condition we write
the bulk to boundary propagator as

v(ω, z) = e−iωr∗F(ω, z), (34)

so that the function F takes the form

F(ω, z) = √
ze

k2z2
2 [1+a1(z−zh)+a2(z−zh)

2+· · · ], (35)

and the derivative of F at the horizon is obtained from this
expansion and the expression for a1 in Eq. (33).

Finally, the spectral function for spatial components ρi i

with the choice of momentum qμ = (ω, �0) and written in
terms of F takes the form (omitting the indices i i)

ρ(w) = w

2g̃2
5

e−k2z2
h

zh
|F(ω, zh)|2, (36)

where we defined the dimensionless coupling g̃2
5 = g2

5/R,
as in the zero temperature case. This is the object that will
describe the thermal behavior of the heavy vector mesons.
In the next section we present the results of the numerical
calculations of ρ.

4 Spectral functions for charmonium and bottomonium
S-wave states

We solved numerically Eq. (28) for the bulk to boundary
propagator v(ω, z), written in terms of the function F as in
Eq. (34), with the boundary conditions described in the pre-
vious section. The parameters used are the zero temperature
ones, from Ref. [14], namely a flavor independent UV cutoff
1/z0 = 12.5 GeV and flavor dependent soft wall parameters
with values kc = 1.2 GeV for charmonium and kb = 3.4
GeV for bottomonium S-wave states.

The spectral function (36) was calculated for different
temperatures. An important non-trivial fact emerged from
the analysis of the large frequency asymptotic behavior. It
is well known that when one calculates the spectral function
from correlators at the conformal boundary z → 0, the spec-
tral function in the limit ω → ∞ grows up as ρ ∼ ω2. This
results comes from conformal invariance and dimensional
analysis (see for example Ref. [36]).

In the present case we do not calculate the correlators at
the z → 0 conformal limit. There is an extra dimensionful
quantity, the position z0, that appears in the calculation of the
spectral function. So, the argument of simple dimensional
analysis does not hold in the same way here. The numerical
results obtained show a behavior that is different from the
conformal case. For large frequencies the spectral function
grows linearly with the frequency: ρ ∼ ω. We present in
Appendix B an analysis of this behavior. We show there that
if in the present model one takes the limit of z0 → 0 one
finds spectral functions growing with ω2, as expected in the
conformal case. But for the finite value of z0 explored here
they grow with ω for large ω. So, we analyzed the behavior
of the relevant (normalized) quantity:

ρ(ω)

ω
.

We show in Fig. 2 the spectral functions for the bottomo-
nium vector states at four illustrative temperatures. In these
plots one can clearly observe the following situation:
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Fig. 2 Bottomonium melting
process starting at 200 MeV
with three states 1S, 2S, and 3S
at left upper panel. Each panel
shows the melting temperature
for these states

Fig. 3 Charmonium melting
process starting with a
temperature of 70 MeV with
three initial states 1S, 2S, and
3S at left upper panel. Each of
the three remaining panels
shows the melting temperature
of these states

• at T = 200 MeV three peaks corresponding to 1S, 2S
and 3S states;

• at T = 260 MeV two peaks corresponding to the melting
of the 3S state;

• one peak at T = 340 MeV where only the 1S states
survives, and

• at T = 660 MeV the complete melting of the states.

We present in Appendix A a more detailed picture of the melt-
ing process by showing more plots that illustrate the tempera-
ture evolution of the spectral function. From this analysis one
can infer that the states 1S, 2S, and 3S melt at different tem-
peratures, as expected. In particular, the 1S states survives at
temperatures much larger than the critical temperature. The
complete disappearance of the 1S states happens at T ∼ 600

MeV, corresponding to T/Tc ∼ 3.2. For the 2S state there
will be no trace of the peak for temperatures above T ∼ 360
Mev, corresponding to T/Tc ∼ 1.9, while for the 3S states
the total melting happens at T ∼ 220 MeV, which means
T/Tc ∼ 1.2.

Then Fig. 3 shows the spectral functions for the charmo-
nium vector states at four different temperatures that illustrate
the melting process. More details for the thermal evolution
of charmonium states are shown in Appendix A. One can
clearly see the change from the case with three well-defined
peaks corresponding to the states 1S, 2S, and 3S to the case
where there is no well-defined quasi-particle state. An impor-
tant difference with respect to the bottomonium case is that
the melting process occurs at temperatures below Tc. At the
critical temperature there is only a very small peak of the
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state 1S, so one can interpret this situation as meaning that
the charmonium states 2S and 3S do not survive in the decon-
fined plasma phase, while there could be some trace of the
1S state up to temperatures of 1.2Tc.

The present results for bottomonium states are consistent
with the ones obtained using lattice QCD in [37]. This article
predicts a lower bound for the melting temperature of the 1S
state of 2.3Tc. They are also consistent with the lattice results
of [38] where the temperature range between 0.4Tc and 2.1Tc
was analyzed and the 1S state survives for higher tempera-
tures whereas the higher excitations melt around 1.4Tc. It is
interesting to mention that experiments show that in Au +
Au collisions with center of mass energy of 200 GeV the
bottomonium states 2S and 3S are completely suppressed
[39].

Using a potential model, Ref. [40] finds that the excited
states of charmonium melt below Tc while the 1S state melts
at 1.2Tc, that is consistent with our results, taking into account
the error that will be discussed in the next section.

The results obtained here are also consistent with the anal-
ysis of the thermal behavior of quarkonium states using QCD
sum rules developed in Refs. [41–43] regarding the survival
of quarkonium states above the critical temperature.

5 Conclusions

It is shown in this paper that a consistent picture for the
thermal behavior of S-wave states of bottomonium and char-
monium emerges from a finite temperature version of the
model for heavy vector mesons masses and decay constants
proposed in Ref. [14]. The spectral functions obtained numer-
ically for bottomonium and charmonium states exhibit clear
peaks for the states 1S, 2S and 3S at low temperatures. As
the temperature increases, the peaks spread and disappear,
with the expected result that highly excited states melt in the
thermal medium (plasma) at lower temperatures.

One point that must be remarked is that the model of Ref.
[14] presents a rms error of 30% when one fits the decay
constants and masses of the four initial S wave states of char-
monium and bottomonium. So, one should not consider our
numerical results for the melting temperatures of the states
with a precision larger than that. We mean our (rough) esti-
mate for the error in the melting temperatures is of the order
of 30%.

Even with this error, one can infer that the model predicts
a very distinct behavior for bottomonium and charmonium
states. This could be an interesting tool to investigate not
only the formation of quark gluon plasma but also the tem-
perature of the thermal medium. The strong suppression of
charmonium states with a low suppression of bottomonium
states would indicate temperatures not much larger than the
critical one. On the other hand, an eventual observation of

suppression of bottomonium S wave states could indicate the
formation of a plasma at higher temperatures.

One question that could be asked is if one could find more
accurate estimates for the melting temperatures using holog-
raphy. With more accurate results one could be more confi-
dent in analyzing the temperature of the plasma from the rel-
ative suppression of the different states. An alternative model
for calculating masses of heavy vector mesons was recently
proposed in Ref. [44]. In this reference the masses of the
charmonium and bottomonium states are estimated with an
rms error of 2.0%. It would be nice to formulate a finite tem-
perature version of this model also, in order to compare the
thermal behavior with the one found here. There is, however,
an obstruction to this task. The incoming wave condition
that has to be used for the field that describes a vector meson
at finite temperature is apparently inconsistent with the zero
temperature limit of the incoming wave condition at the black
hole horizon. More precisely, at any finite temperature, the
incoming wave condition implies that the derivative of the
bulk to boundary propagator is infinite at the horizon. In the
limit of zero temperature this would mean that the derivative
should be infinite at z → ∞. In contrast, in the model of Ref.
[44] there is the boundary condition that the derivative of the
bulk to boundary propagator is zero at z → ∞. We leave for
future work the non-trivial task of finding a consistent finite
temperature for this model.
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Appendix A: Temperature dependence of the spectral
functions

In order to present a more detailed view of the bottomonium
melting process, we show in Fig. 4 the thermal spectral func-
tion for nine different representative temperatures. At 200
MeV, we have three defined vector states ϒ(1S), ϒ ′(2S) and
ϒ ′′(3S). At 220 MeV, one can see that the 3S state disappears.
So, the 3S melting temperature in this model is between 200
MeV and 220 MeV. Then the 2S peak disappears near 300
MeV (left middle panel). Finally, near 580 MeV one observes
the 1S melting. Lattice calculations [39] show that the ϒ (1S)
melting temperature lies inside the interval 350 MeV–612
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Fig. 4 Complete bottomonium melting process starting at 200 MeV with three states: 1S, 2S, and 3S. The states 3S and 2S melt at temperatures
near 220 and 300 MeV, respectively. The 1S state melts at a temperature near 580 MeV

Fig. 5 Complete charmonium melting process starting at T = 70 MeV, where we have three states: 1S, 2S, and 3S. At a temperature about 90
MeV the 3S state melts. The 2S state melts down near 110 MeV and finally, the 1S state melts at about 250 MeV
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Fig. 6 Spectral function for our model: z0 = 1/12.5 GeV. The second plot (ρ/ω) is constant for large ω

Fig. 7 Spectral function near the conformal boundary: z0 = 10−6 GeV−1. The third plot shows that ρ/ω2 is constant for large ω

MeV, while for the ϒ (2S) and ϒ (3S) the melting temper-
atures are in the 200 MeV–300 MeV region. Our results are
consistent with these calculations.

Figure 5 shows the behavior of charmonium spectral func-
tion. The panels correspond to temperatures varying in steps
of 20 MeV. Starting at the upper left panel, at the tempera-
ture of 70 MeV there are three peaks corresponding to J/�,
� ′ and � ′′. At higher temperatures one observes the melting
starting by the heavier states. At T = 90 MeV, the 3S state
melts. Then at temperatures about 110 MeV the 2S melts.
Then at T = 250 MeV the 1S peak has virtually disappeared.

It is important to take into account the fact that for tem-
peratures below Tc the black hole phase is unstable due to
the Hawking–Page transition, as explained in Sect. 3. So, the
transitions described in the plots of lower temperatures could
be absent if the plasma phase is not formed and the medium
is confined. So, the thermal spectrum is more reliable for
T > Tc = 191 MeV.

Appendix B: High energy behavior of the spectral func-
tions

At high frequencies, the spectral functions studied in this
article show a non-trivial behavior. The holographic model
presented in Sect. 3 and extended to finite temperature in
Sect. 4, with two point correlation functions calculated at
a finite position z = z0 = 1/(12.5GeV ) of AdS space,
leads to spectral functions ρ(ω) ∝ ω in the limit of large ω.
This result contrasts with the situation when gauge theory

correlators are calculated at z = 0 and conformal symmetry
is manifest implying: ρ(ω) ∝ ω2.

In order to display the effect of the z0 parameter in the
asymptotic behavior of spectral functions, we plot in loga-
rithm scale in separate panels ρ(ω), ρ(ω)/ω and ρ(ω)/ω2

for frequencies up to 104GeV using two different choices
of z0. Since we are interested only in the role played by the
parameter z0, we fix the temperature and the dilaton constant
k in all plots to the values: T = 400 MeV, k = 3.4 GeV.

In Fig. 6 we choose the parameter z0 = 1/(12.5 GeV),
which was used in the present article. One clearly sees in
the second panel that ρ/ω reaches a constant value for ω �
50 GeV. As a check, the first panel shows the increase of ρ

and the third the decrease of ρ/ω2 for large ω.
Then, as a check, one can take the limit where the

present model should recover the usual soft wall case,
namely, a very small z0. We show in Fig. 7 the situation
at z0 = 10−6 GeV−1. Consistently, one observes that in this
case where z0 approximately ceases to be a parameter of
the model, the ultraviolet behavior of the spectral function
changes to ρ ∝ ω2.
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