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Abstract We present the implementation and validation
of the techniques used to efficiently evaluate parametric
and perturbative theoretical uncertainties in matrix-element
plus parton-shower simulations within the Sherpa event-
generator framework. By tracing the full αs and PDF depen-
dences, including the parton-shower component, as well as
the fixed-order scale uncertainties, we compute variational
event weights on-the-fly, thereby greatly reducing the com-
putational costs to obtain theoretical-uncertainty estimates.
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1 Introduction

The first operational run of the LHC collider during the years
2009–2013 was a tremendous success, clearly culminating in
the announcement of the discovery of a Higgs-boson candi-
date by the ATLAS and CMS collaborations in July 2012
[1,2]. Through a large number of experimental analyses,
focusing on a variety of final states and observables, the LHC
experiments (re)established and underpinned to an unprece-
dented level of accuracy the validity of the Standard Model
of particle physics (SM) [3].

When comparing theoretical predictions with actual col-
lider data, Monte-Carlo event generators prove to be an indis-
pensable tool. In particular parton-shower Monte-Carlo pro-
grammes like Herwig [4,5], Pythia [6] and Sherpa [7,8]
provide simulations at the level of exclusive particle-level
final states [9]. The cornerstones of these generators are their
implementations of QCD parton-shower algorithms and their
modelling of the non-perturbative parton-to-hadron frag-
mentation process. With the advent of sophisticated tech-
niques to combine parton-shower simulations with exact
higher-order QCD calculations at leading [10,11], next-to-
leading [12,13] and even next-to-next-to-leading order [14–
17], Monte-Carlo simulations have developed into high-
precision tools, encapsulating the best of our current knowl-
edge of perturbative QCD.

With these simulations being widely used for making SM
predictions, e.g. of the background expectation in searches
for New Physics or the detailed properties of Higgs-boson
production final states, a comprehensive and efficient eval-
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uation of associated theoretical uncertainties is of utmost
importance. A comprehensive list of sources for generator
uncertainties has been quoted in [18]. Following the cate-
gories identified there, when focusing on systematics related
to the perturbative phases of event evolution, the following
uncertainties might be distinguished:

• Parametric uncertainties reflecting the dependence of the
prediction on input parameters such as couplings, particle
masses or the parton-density functions (PDFs).

• Perturbative uncertainties originating from the fact that
perturbation theory is used in making predictions, to
fixed-order in the matrix elements and resummed to all-
orders with a certain logarithmic accuracy in the showers,
thereby, however, neglecting higher-order contributions.
Similarly, the use of the large-Nc approximation in the
showers belongs in this category.

• Algorithmic uncertainties corresponding to the actual
choices made in the implementation of the shower algo-
rithm, i.e. for the evolution variable, the inclusion of
non-singular terms in the splitting functions, or the
employed matching/merging prescription. Per construc-
tion, for sensible choices, these systematics also corre-
spond to higher-order perturbative corrections, but might
be addressed separately.

In addition to the listed categories, generically non-
perturbative effects such as hadronisation or the underlying
event are described through phenomenological models that
feature various generator-specific choices and parameters,
typically subject to tuning against experimental data, see for
instance [19,20].

This publication focuses on the efficient evaluation of
parametric and (some) perturbative uncertainties in matrix-
element plus parton-shower simulations within the Sherpa
event-generator framework. We present a comprehensive
approach to fully trace the αs and PDF dependences in the
matrix-element and parton-shower components of particle-
level Sherpa simulations in leading- [21] and next-to-
leading [22] order merged calculations based on the Sherpa
dipole-shower implementation [23]. Furthermore, we pro-
vide the means to quickly evaluate the renormalisation- and
factorisation-scale dependence of the fixed-order matrix-
element contributions. Our approach is based on event-wise
reweighting and allows us to provide with a single generator
run a set of variational event weights corresponding to the
predefined parameter and scale variations, that would other-
wise have to be determined through dedicated re-evaluations.
The alternative event weights can either be accessed through
the output of a HepMC event record [24], or directly passed
via the internal interface of Sherpa to the Rivet analysis
framework [25].

The systematics of leading-order parton-shower simula-
tions with Herwig 7 have recently been discussed in [18], a

corresponding reweighting procedure has been presented in
[26]. A similar reweighting implementation for the Pythia
8 parton shower has also appeared recently [27]. A discus-
sion of uncertainty estimates for the Vincia shower model
can be found in [28–30]. A comprehensive comparison of
various generators is presented in [31]. The impact of PDFs
in parton-shower simulations has been discussed in [32,33].

Our paper is organised as follows. In Sect. 2 we review
the dependence structure of leading-order (LO) and next-
to-leading-order QCD calculations on αs , the PDFs and the
renormalisation and factorisation scales, and introduce the
reweighting approach. In Sect. 3 we extend this to parton-
shower simulations and in particular the algorithm employed
in the Sherpa framework. In Sect. 4 we present the general-
isation of the reweighting approach to multijet-merged cal-
culations, based on leading and next-to-leading-order matrix
elements matched to the parton shower. Our conclusions are
summarised in Sect. 6. In Appendix A we present CPU time
measurements that assess the reduction in computational
time when the reweighting is used. The technical details on
enabling and accessing the variations considered in Sherpa
runs are listed in Appendix B.

Note, while fixed-order reweighting is already available
with Sherpa-2.2, the general reweighting implementation
described here, including parton showers and multijet merg-
ing, will be part of the next release, i.e. Sherpa-2.3.

2 Reweighting fixed-order calculations

In order to re-evaluate a QCD cross-section calculation for a
new choice of input parameters, i.e. αs, PDFs or renormali-
sation and factorisation scales, it is necessary to understand
and trace-out its respective dependences. This is a rather easy
task at leading-order (LO) but is already more involved when
considering next-to-leading order (NLO) calculations in a
given subtraction scheme. However, these decompositions
have been presented for Catani–Seymour dipole subtraction
and the FKS subtraction formalism in [34,35].

In this section, we briefly review the dependence structure
and discuss the corresponding reweighting equations for LO
and Catani–Seymour subtracted NLO calculations within the
Sherpa framework. With this paragraph we also introduce
the notation used in the later sections, which explore the
reweighting of more intricate QCD calculations, involving
QCD parton showers and merging different final-state mul-
tiplicity processes.

2.1 The leading-order case

A LO parton-level calculation of some observable or mea-
surement function of the final-state momenta O is based on
Born matrix elements B ofO (

αn
s

)
. It exhibits explicit depen-

123



Eur. Phys. J. C (2016) 76 :590 Page 3 of 24 590

dences on the PDFs f = fa(x, μ2
F ), the running strong cou-

pling αs = αs(μ
2
R), the renormalisation scale μR and the

factorisation scale μF :

〈O〉LO =
∫

d�B B(�B) O(�B)

= lim
N→∞

1

Ntrial

N∑

i=1

B(�B,i ) O(�B,i ) (1)

with Ntrial = ∑N
i=1 ntrial,i , ntrial denoting the number of

attempts to generate an accepted event configuration, and

B(�B) ≡ B(�B;αs, f ;μR, μF )

= αn
s (μ2

R) fa(xa, μ
2
F ) fb(xb, μ

2
F ) B′(�B). (2)

Therein, the B contains all couplings, symmetry and flux
factors, and PDFs, whereas B′ has the PDFs, here for assumed
two incoming parton flavoursa andb, and the strong coupling
stripped off. Note that we have suppressed the event index i
here. It is understood that B depends on the event kinematics
and that μR and μF can be chosen dynamically, i.e. in a
momentum (and flavour) dependent way. Changing the input
parameters μR → μ̃R , μF → μ̃F , and the input functions
f → f̃ , αs → α̃s results in

B(�B; α̃s, f̃ ; μ̃R, μ̃F )

= α̃n
s (μ̃2

R) f̃a(xa, μ̃
2
F ) f̃b(xb, μ̃

2
F ) B′(�B). (3)

From Eq. (3) we conclude that for PDF reweighting it is
necessary to know the xa,b values of the event.

For an unweighted event generation, the event weights
are uniform initially, i.e. B(�B;αs, f ;μR, μF ) = wnorm,
Eq. (1) thus simplifies to

〈O〉LO = lim
N→∞

wnorm

Ntrial

N∑

i=1

O(�B,i ). (4)

Scale and parameter variations then work the very same
way as for weighted events. Applying Eq. (3) then, how-
ever, leads to a broader weight distribution and Eq. (1) has
to be used again. Partially unweighted events can be treated
on the same footing. These conclusions hold irrespective of
the type of event generation whenever (partially) unweighted
event generation is possible, i.e. when the weight distribution
is bounded from above and below. We therefore will not com-
ment further on it.

2.2 The next-to-leading-order case

A full NLO parton-level calculation including real-emission
and one-loop corrections of O (

αn+1
s

)
based in Catani–

Seymour dipole subtraction [36,37] has the following struc-

ture

〈O〉NLO =
∫

d�B

[
B(�B) + VI(�B)

+
∫

dx ′
a/b KP(�B, x ′

a/b)

]
O(�B)

+
∫

d�R

⎡

⎣R(�R) O(�R)

−
∑

j

DS, j (�B, j · �
j
1) O(�B, j )

⎤

⎦

= lim
N→∞

1

Ntrial

⎧
⎨

⎩

NB∑

i=1

[
B(�B,i )

+VI(�B,i ) + KP(�B,i , x
′
a/b)

]
O(�B,i )

+
NR∑

i=1

⎡

⎣R(�R,i ) O(�R,i )

−
∑

j

DS, j (�B, j,i · �
j
1,i ) O(�B, j,i )

⎤

⎦

⎫
⎬

⎭
, (5)

where the new parts have the following dependences

VI(�B) ≡ VI(�B;αs, f ;μR, μF ),

KP(�B, x ′
a/b) ≡ KP(�B, x ′

a/b;αs, f ;μR, μF ),

R(�R) ≡ R(�R;αs, f ;μR, μF ),

DS, j (�B, j · �
j
1) ≡ DS, j (�B, j · �

j
1;αs, f ;μR, j , μF, j ).

(6)

Therein, VI combines the renormalised one-loop matrix ele-
ment with the I-operator of the Catani–Seymour subtraction
scheme. This operator gives the flavour-diagonal endpoint
contribution of the integrated subtraction terms. VI is thus
separately infrared finite and exhibits a common transforma-
tion behaviour. Thus, for α → α̃s, f → f̃ , μR → μ̃R and
μF → μ̃F

VI(�B; α̃s, f̃ ; μ̃R, μ̃F )

= α̃n+1
s (μ̃2

R) f̃a(xa, μ̃
2
F ) f̃b(xb, μ̃

2
F )

[
VI′(�B)

+ c ′ (0)
R lR + 1

2 c
′ (1)
R l2R

]
, (7)

with αs- and PDF-independent coefficients c ′ (i)
R and lR =

log(μ̃2
R/μ2

R). Again, VI′ is stripped of all coupling and PDF
factors.

The KP-terms are defined as the remainders of the inte-
grated dipole subtraction terms, containing all flavour chang-
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ing and x ′
a/b-dependent pieces, combined with the collinear

counterterms. Here, x ′
a/b are the ratios of the partonic

momentum fractions in the respective dipole before and after
radiation. Again, this combination is separately infrared finite
and transforms as one unit. When evaluated for the modified
set of input parameters, they read

KP(�B, x ′
a/b; α̃s, f̃ ; μ̃R, μ̃F )

= α̃n+1
s (μ̃2

R) f̃a(xa, μ̃
2
F )

× f̃b(xb, μ̃
2
F ) KP′(�B, x ′

a/b; f̃ ; μ̃F )

= α̃n+1
s (μ̃2

R)

[ (
f̃ qa c

′ (0)
F,a + f̃ qa (x ′

a) c
′ (1)
F,a + f̃ ga c

′ (2)
F,a

+ f̃ ga (x ′
a) c

′ (3)
F,a

)
f̃b(xb, μ̃

2
F )

+ f̃a(xa, μ̃
2
F )

(
f̃ qb c

′ (0)
F,b + f̃ qb (x ′

b) c
′ (1)
F,b + f̃ gb c

′ (2)
F,b

+ f̃ gb (x ′
b) c

′ (3)
F,b

) ]
(8)

with the coefficients c ′ (i)
F,a/b = c̃ (i)

F,a/b + c̄ (i)
F,a/b lF for i ∈

{0, . . . , 3}, lF = log(μ̃2
F/μ2

F ), and

f̃ qq = f̃q(xq , μ̃
2
F ), f̃ qg =

∑

q

f̃q(xg, μ̃
2
F ),

f̃ qq (x ′
q) = x ′

q f̃q(
xq
x ′
q
, μ̃2

F ), f̃ qg (x ′
g) = x ′

g

∑

q

f̃q(
xg
x ′
g
, μ̃2

F ),

f̃ gq = f̃g(xq , μ̃
2
F ), f̃ gg = f̃g(xg, μ̃

2
F ),

f̃ gq (x ′
q) = x ′

q f̃g(
xq
x ′
q
, μ̃2

F ), f̃ gg (x ′
g) = x ′

g f̃g(
xg
x ′
g
, μ̃2

F ),

for a, b = {q, g}, respectively. Thereby, the sum over q
includes all light-quark flavours, corresponding to all poten-
tial quarks emitting a gluon. We note that in order to obtain the
reweighted expressions for the VI and KP contributions the
additional book-keeping of the c ′ (i)

R , c̃ (i)
F,a/b and c̄ (i)

F,a/b (alto-

gether 18)1 coefficients is required [34]. Due to its composite
structure, the KP-terms do not possess a coupling- and PDF-
stripped version KP′. Nonetheless, we formally introduce a
still PDF-dependent version KP′ in Eq. (8) for reference in
later sections.

The remaining pieces of Eq. (5) are the Born matrix ele-
ment B, the real emission contribution R and the differential
dipole subtraction terms DS, j . The latter defines an under-
lying Born configuration �B, j through its dipole-dependent
phase-space map, employing the phase-space factorisation
�R = �B, j · �

j
1. While the transformation of B under

1 The two parameters c ′ (i)
R correspond to the single and double pole

coefficients of the loop matrix element while the remaining sixteen coef-
ficients are comprised of eight pairs of coefficients, c̄ (i)

F,a/b and c̃ (i)
F,a/b,

corresponding to the μF -dependent and -independent parts for all four
flavour structures of each beam, respectively.

the exchange of input parameters was detailed in Eq. (3),
the transformation of R and the DS, j contributions works
identically, merely having to adjust the power of the strong-
coupling factor.

2.3 Validation

The reweighting approach outlined above has been imple-
mented in the Sherpa framework for the two matrix-element
generators Amegic [38] and Comix [39,40] in conjunction
with the corresponding Catani–Seymour dipole-subtraction
implementation [41]. The required decomposition of virtual
amplitudes is generic and can be used for matrix elements
from BlackHat [34,42], OpenLoops [43], GoSam [44],
Njet [45], the internal library of simple 2 → 2 processes,
or, via the BLHA interface [46].

Here we shall present the validation of the reweighting
approach in particular of NLO QCD event samples. For
that purpose we consider W-boson zproduction in 13 TeV
proton-proton collisions at NLO QCD, and focus on the
transverse-momentum distribution for the Wand the lep-
ton it decays to. In Fig. 1, the scale, αs and PDF uncer-
tainty bands for the Wp⊥ and the lepton p⊥ distributions
are presented. All three bands have been produced for both
observables using the internal reweighting of Sherpa from
a single event generation run using μF = μR = H ′

T
with

H ′
T ≡ meν⊥ +

∑

j

p j
⊥, (9)

a scale choice that has been motivated in [47]. For the PDFs
the NNPDF 3.0 NLO set [48] has been used with αs(m2

Z) =
0.118. The running of αs(μ

2
R) is calculated within Sherpa

using its renormalisation group equation at NLO with parton
thresholds as given by the PDF.

The treatment of partonic thresholds deserves a short dis-
cussion. While any flavour thresholds in the running of αs do
not present any challenges to the reweighting algorithm as
αs(μ

2) > 0 for all μ2 > 0 and any loop order, this is different
for the PDFs, where crossing a parton threshold results in a
vanishing PDF for that flavour. Hence, the cross section com-
ponent of the given partonic channel may be zero if no other
non-zero contribution exists. Such an event will be discarded
and, thus, cannot be reweighted. If now the respective parton
threshold of the target PDF is smaller than the target factori-
sation scale while the one of the nominal PDF is larger than
the nominal factorisation scale we are in a region of phase
space where the reweighting must fail to reproduce a dedi-
cated calculation. This could be remedied by storing events
as well which vanish solely due to crossing PDF thresholds.
However, as only observables sensitive to on-threshold pro-
duction of light quarks (typically bottom quarks) are suscep-
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Fig. 1 The gauge-boson and
lepton transverse momenta in
off-shell Wproduction at the
LHC with independent
variations of μF,R (green), αs
(red) and the PDF (blue). In the
right-hand panels, the
individual uncertainty bands,
calculated via an on-the-fly
reweighting, are compared to
uncertainty bands from
dedicated calculations (yellow).
They are found to be equal
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tible to these effects, they are of little relevance to the vast
majority of LHC observables.2

For the scale uncertainty band we employ a 7-point scale
variation for μR and μF : Both scales are varied indepen-
dently by factors of 1

2 and 2, omitting the variations with
ratios of 4 between the two scales. The uncertainty is then
taken as the envelope of all variations. The αs uncertainty
band is generated by varying the numerical value of the start-

2 A typical example for the threshold problem in the reweighting would
be the very low-p⊥ part of b-jet spectrum in Wb production in a cal-
culation with five massless flavours. Any strong dependence on the
bottom quark PDF threshold, however, also indicates the invalidity of a
calculation with five massless flavour for this observable.

ing point of the running coupling, αs(m2
Z), to the following

five values: 0.115, 0.117, 0.118, 0.119 and 0.121. Note that
this variation of αs should also enter the PDF fit, and hence
the PDFs are varied consistently. This is expected to exten-
uate the effect of the αs variation in most cases, as the PDF
of the varied αs is still fitted to describe the same data as the
PDF of the nominal αs. This consistent αs+PDF variation is
also part of the PDF4LHC recommendations for LHC Run
II [49]. The envelope of these αs+PDF variations is taken as
the respective uncertainty. The pure PDF uncertainty esti-
mate is generated using the average and the standard devia-
tion over the 100 PDF replicas provided by the NNPDF3.0
set (at a fixed value of αs = 0.118). This corresponds to the
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Table 1 Variations, which are
used for studies in this
publication, with two variants
depending on the PDF choice.
Note that each αs(m2

Z ) value is
used with its associated PDF set
variant in the context of
hadronic collisions

Nominal Variations Error band

PDF sets CT14 56 Hessian error sets with a 90% CL Hessian

NNPDF3.0 100 statistical replicas with a 68% CL Statistical

αs(m2
Z ) value 0.118 0.115, 0.117, 0.119, 0.121 Envelope

μR /μF factors (1, 1)
( 1

2 , 1
2

)
,
(
1, 1

2

)
,
( 1

2 , 1
)
, (2, 1), (1, 2), (2, 2) Envelope

68% confidence level. This set-up is repeated for later ref-
erence in Table 1, along with a CT14 PDF variant, which is
used in later studies.

Comparing the uncertainties for the Wp⊥, we observe that
the scale uncertainties are the largest, with relative deviations
ofO (10%). The relative deviations related to the PDF and the
strong coupling do not exceed ∼3%. The scale uncertainty
exhibits a minimum for 100 TeV < pW⊥ < 200 TeV. The
reason is that the variations of μF alone cross the central
value prediction in this range, such that only the μR variation
contributes to the overall scale uncertainty here.

Note that pW⊥ = 0 at O (
α0

s

)
, and therefore only real-

emission events contribute to the distribution. Hence, the
observable is only described to leading-order. We introduce
it here as a reference for our later validations including the
parton-shower, which use this observable. For the current val-
idation, we complement the discussion of the Wtransverse
momentum with the one of the lepton it decays to, as the
region below mW/2 is already filled at O (

α0
s

)
, and therefore

we have in part a true next-to-leading description for this
observable. In fact, the scale uncertainties are much larger in
that region, especially towards the mW/2 threshold, and at
the lepton p⊥ cut at 25 TeV. This gives a more realistic pic-
ture of the perturbative uncertainties than in the leading-order
region above the threshold.

The small panels on the right of Fig. 1 compare the uncer-
tainty bands calculated using the reweighting approach to
uncertainty bands where dedicated calculations have been
done for each variation. We observe that all bands overlap
perfectly for both observables. This is because the reweight-
ing as presented above is exact and for all runs the same
phase-space points could be used: The reweighted and the
dedicated predictions for each variation are therefore equal,
and so are the uncertainty bands.3

3 Reweighting parton-shower calculations

If parton-showering is added to a LO calculation, the value
of the observable is not evaluated at �B any longer, but at

3 The reweighted and the dedicated calculations are implemented inde-
pendently, such that their predictions can vary within the numerical
uncertainties of the calculation. However, these lie several orders of
magnitude below the physical uncertainties considered here.

PS(�B), which denotes the phase-space point after shower-
ing. Applying this modification to Eq. (1) yields

〈O〉LoPs =
∫

d�B B(�B) PS(O,�B)

= lim
N→∞

1

Ntrial

N∑

i=1

B(�B,i ) PS(O,�B,i ). (10)

Therefore the reweighting for B does not need to be altered,
but the parton-shower emissions depend on the PDF, the
strong coupling, their respective scale prefactors kαs and k f

(detailed below) and the starting scale μQ , i.e.

PS(O,�B) ≡ PS(O,�B;μ2
Q)

≡ PS(O,�B; kαs , k f ;αs, f ;μ2
Q). (11)

In order to reweight the parton-shower emissions, we first
need to identify its exact dependence structure. Schemati-
cally, it acts on the phase-space element in the following
way

PS(O,�n; t ′) = �n(tIR, t ′) O(�n)

+
∫ t ′

tIR
d�1 Kn(�1)�n(t, t

′) PS(O,�n+1; t), (12)

where the Sudakov form factor of the n-parton state, �n ,
and its splitting kernel Kn have been introduced. While the
first term describes the no-emission probability between the
starting scale t ′ and the infrared cut-off tIR and therefore
does not change the phase-space element, the second term
describes the emission of a parton at scale t in the configura-
tion d�1 = dt dz dφ J (t, z) (the integration boundaries are
to be understood in this decomposition), leading to a configu-
ration d�n+1 = d�n ·d�1. The Jacobian J is not relevant to
the discussion here and is subsequently absorbed in the split-
ting kernel Kn . As the emissions are ordered in t , the Sudakov
form factor in the second term ensures that the current emis-
sion is the hardest after starting the evolution at t ′. Additional
emissions may occur at smaller t and are not resolved at this
stage – they are described by the parton shower acting on
the newly produced state �n+1 with the new starting scale
t . In Eq. (12) the dependences on αs, the PDFs, and their
respective scale prefactors kαs and k f have been omitted for
brevity. They directly carry over to the splitting kernel and
the Sudakov form factor, according to
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�n(t2, t1; kαs , k f ;αs, f )

= exp

(
−

∫ t1

t2
d�1 Kn(�1; kαs , k f ;αs, f )

)
. (13)

When considering parton-shower emissions off NLO QCD
matrix elements special emphasis has to be given to the first
emission as described in Sect. 3.3 below.

3.1 Parton-shower dependence structure

The default parton shower of Sherpa, dubbed CSShower
[23], is based on Catani–Seymour dipole factorisation [36,
37]. Each branching of an emitter parton into two daughters
is witnessed by a spectator parton, which takes the recoil, and
ensures that on-shell states are transferred into on-shell states
and energy–momentum conservation is respected simultane-
ously. The emitter and spectator partons reside either in the
initial-state (I) or final-state (F), such that four dipole types
need to be distinguished: II, IF, FI and FF. In this notation,
the first letter refers to emitter, and the second to the spectator
parton. The no-branching probabilities are given by the four
corresponding Sudakov form factors

�n(t2, t1; kαs , k f ;αs, f )

=
∏

type ∈ {FF,FI,IF,II}
�

type
n (t2, t1; kαs , k f ;αs, f ). (14)

They share the common form

�
type
n (t2, t1; kαs , k f ;αs, f )

= exp

⎛

⎝−
∑

i j

∑

k

∫ t1

t2
dt

∫ z+

z−
dz

αs(kαs t) K′
i j,k(t, z)

fc′( ηc
x , k f t)

fc(ηc, k f t)

⎞

⎠ , (15)

wherein the kinematics of the splitting are given by the
default choice for t = Q2 y z(1 − z) in the massless case
while the K′

i j,k(t, z) denote the coupling and PDF stripped
splitting kernels incorporating the remaining pieces of the
Ki j,k and the Jacobian J of the phase-space parametrisation.
The precise definitions of the variables for each dipole type
are given in Table 2. It directly follows that for FF-type dipole
splittings the ratio of PDFs is simply unity. Eq. (15) further
details the dependence on the αs and PDF scale factors kαs

and k f . These multiplicative factors as well as their varia-
tions are assumed to be of order one, such that they do not
induce spurious large logarithms. The generalisation to the
massive case is straightforward and only involves generalised
definitions of t , x , y and z, cf. [23].

Table 2 Definition of the evolution and splitting variables for each
dipole type. The fifth column lists the splitting process as seen from
the Born process, c and c′ refer to the flavour of the initial state before
and after the splitting process, respectively. The variables yi j,k , z̃i , xi j,a ,
x jk,a , x j,ab, u j and v j are defined in [23,36,37]

Type z y x (i j, k) → (i, j, k) c, c′

FF z̃i yi j,k 1 (i j, k) → (i, j, k) a, a

FI z̃i
1 − xi j,a
xi j,a

xi j,a (i j, a) → (i, j, a) a, a

IF x jk,a
u j

x jk,a
x jk,a (aj, k) → (a, j, k) aj, a

II x j,ab
ṽ j

x j,ab
x j,ab (aj, b) → (a, j, b) aj, a

3.2 Reweighting trial emissions

To numerically integrate Sudakov form factors typically the
Sudakov Veto Algorithm is used [50–55]. Therein the inte-
grands K found in the Sudakov form factors are replaced with
integrable overestimates K̂. This is balanced by only accept-
ing a proposed emission with probability Pacc = K/K̂. A
multiplicative factor in K is therefore equivalent to a mul-
tiplicative factor in Pacc [52]. This observation is for exam-
ple used to apply matrix-element corrections [54], where the
splitting kernels are replaced with a real-emission-like kernel
R/B. This is done a-posteriori, i.e. the event weight is multi-
plied by (R/B)/K, the emission itself is unchanged. The same
method is also used in the Vincia parton shower to calcu-
late uncertainty variations for different scales, finite terms of
the antenna functions, ordering parameters and sub-leading
colour corrections [28]. Here we employ this technique to
account for variations of the strong-coupling parameter and
the PDFs in the shower evolution of LO and NLO QCD
matrix elements.

As has been laid out in the previous section, the emission
kernels K depend linearly on αs and on a ratio of parton den-
sities fc′(ηc/x, k f t)/ fc(ηc, k f t). A change of PDFs f → f̃ ,
the strong coupling αs → α̃s and the scale prefactors entering
both, i.e. kαs → k̃αs and k f → k̃ f , is equivalent to modifying
the emission probability accordingly:4

Pacc → qacc Pacc,

qacc ≡ α̃s(k̃αs t)

αs(kαs t)

f̃c′( ηc
x , k̃ f t)

fc′( ηc
x , k f t)

fc(ηc, k f t)

f̃c(ηc, k̃ f t)
, (16)

where the scale dependence and the definition of ηc and x can
be read off the Sudakov form factors given in Eq. (15) and

4 Although the emission scales can not be reweighted themselves using
the presented method, the input scales of the strong coupling and the
PDFs can be changed, as indicated in the text. We focus on constant
prefactors here, but the functional form can also be changed, although
the overall functional form of kαs t should be restricted to the CMW-like
rescaling [56].

123



590 Page 8 of 24 Eur. Phys. J. C (2016) 76 :590

Table 2. In case of FF dipoles Eq. (16) simplifies significantly
as the ratios of PDF factors reduces to unity. It further follows,
that the event weight for each accepted emission needs to
be multiplied by the corresponding factor qacc in order to
incorporate the new choice of αs, PDFs and the scales they
are evaluated at. Accordingly, the probability to reject an
emission is changed to

Prej = 1 − Pacc → 1 − qaccPacc

=
[

1 + (1 − qacc)
Pacc

1 − Pacc

]
Prej ≡ qrej Prej. (17)

Consequently, for each rejected emission the event weight
receives a corrective weight of qrej. Proofs that this treatment
indeed results in the correct Sudakov form factors can be
found in [26,27,52].

3.3 Next-to-leading-order matching

To match NLO QCD parton-level calculations with subse-
quent parton-shower evolution Sherpa employs a variant of
the original Mc@Nlo algorithm presented in [12], referred
to as S- Mc@Nlo [54]. Schematically, such a S- Mc@Nlo
calculation has the following structure:

〈O〉NloPs =
∫

d�B

⎡

⎣B(�B) + VI(�B)

+
∫

dx ′
a/b KP(�B, x ′

a/b)

+
∑

j

∫
d�

j
1

(
DA, j − DS, j

)
(�B · �

j
1)

⎤

⎦

× PSNloPs(O,�B)

+
∫

d�R

⎡

⎣ R(�R) −
∑

j

DA, j (�B, j · �
j
1)

⎤

⎦

× PS(O,�R)

=
∫

d�B B(�B) PSNloPs(O,�B)

+
∫

d�R HA(�R) PS(O,�R). (18)

Here the real-emission contribution R of the NLO calculation
has effectively been split into an infrared-singular (soft) and
an infrared-regular (hard) part, the resummation kernel DA

and the finite hard remainder HA, respectively, such that R =
DA +HA [54,57]. The B-function has the following explicit
parameter dependences

B(�B) ≡ B(�B;αs, f ;μR, μF )

= B(�B;αs, f ;μR, μF ) + VI(�B;αs, f ;μR, μF )

+
∫

dx ′
a/b KP(�B, x ′

a/b;αs, f ;μR, μF )

+
∑

j

∫
d�

j
1

(
DA, j − DS, j

)

× (�B · �
j
1;αs, f ;μR, μF ). (19)

From the perspective of parameter reweighting, the resum-
mation kernel DA behaves the same way as the subtrac-
tion term DS . In fact, in our reweighting implementation the
(DA − DS) contribution is treated as a single term, as indi-
cated. It is only to note that their PDFs are evaluated at the
partonic momentum fraction xa/b, j and external flavours a j

and b j of their �B ·� j
1 phase-space configuration rather than

those of �B . The other parts of the B-function can then be
reweighted as described in Sect. 2.2, leading to

B(�B; α̃s, f̃ ; μ̃R, μ̃F )

= α̃n
s (μ̃2

R) f̃a(xa, μ̃
2
F ) f̃b(xb, μ̃

2
F )

×
[

B′(�B)+α̃s(μ̃
2
R)

(
VI′(�B) + c ′ (0)

R lR+ 1
2 c

′ (1)
R l2R

)

+α̃s(μ̃
2
R)

∫
dx ′

a/b KP′
j (� j , x

′
a/b; f̃ ; μ̃F,core)

]

+
∑

j

∫
d�

j
1 f̃a j (xa, j , μ̃

2
F ) f̃b j (xb, j , μ̃

2
F ) α̃n+1

s (μ̃2
R)

×
[
D′

A, j − D′
S, j

]
(�B · �

j
1). (20)

The HA-function then transforms as

HA(�R; α̃s, f̃ ; μ̃R, μ̃F )

= R(�R; α̃s, f̃ ; μ̃R, μ̃F )

−
∑

j

DA, j (�B, j · �
j
1, j ; α̃s, f̃ ; μ̃R, j , μ̃F, j )

= α̃n+1
s (μ̃2

R) f̃a(xa, μ̃
2
F ) f̃b(xb, μ̃

2
F ) R′(�R)

−
∑

j

α̃n+1
s (μ̃2

R, j ) f̃a(xa, μ̃
2
F, j ) f̃b(xb, μ̃

2
F, j )

× D′
A, j (�B, j · �

j
1, j ), (21)

wherein each subtraction term DA, j has its own scales μR, j ,
μF, j defined on its underlying Born configuration �B, j .
Writing Eq. (18) as a Monte-Carlo sum over events with
B-like and R-like structure, which are conventionally called
S and H events in Mc@Nlo calculations, and with N =
NS + NH, we obtain

〈O〉NloPs = lim
N→∞

1

Ntrial

⎧
⎨

⎩

NS∑

i=1

B(�B,i ) PSNloPs(O,�B,i )

+
NH∑

i=1

HA(�R,i ) PS(O,�R,i )

⎫
⎬

⎭
. (22)
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Thus, under μR → μ̃R , μF → μ̃F , αs → α̃s and f → f̃
both B of the S-events and HA of the H-events transform as
composite objects in terms of their constituents, as defined
above. This leaves the S- Mc@Nlo parton shower, PSNloPs,
defined through

PSNloPs(O,�B) ≡ PSNloPs(O,�B; kαs , k f ;αs, f ;μ2
Q)

= �n(tIR, t ′) O(�n)

+
∫ t ′

tIR
d�1

DA(�B · �1)

B(�B)

× �n(t, t
′) PS(O,�n+1; t). (23)

It differs from the usual PS of Eq. (12) with respect to the
splitting kernel for the first emission and the associated defi-
nition of the Sudakov form factor, cf. [54,58]. However, for
the purpose of reweighting, all trial emissions can be treated
in the same way as in the standard parton shower as the
parameter dependences are identical.

3.4 Validation

To validate the reweighting of scale and parameter depen-
dences in CSShower and S- Mc@Nlo calculations within
the Sherpa framework we perform closure tests between
reweighting results and dedicated simulations.

Our implementation allows to constrain the maximum
number of reweighted shower emissions per event. For a
pure leading-order parton-shower run or H-like events in
S- Mc@Nlo calculations this amounts to setting nPS ∈
{0, 1, 2, . . . ,∞}. When considering S- Mc@Nlo simula-
tions in addition the parameter nNloPs ∈ {0, 1} can be used to
disable the reweighting of the O(αs) emission for S-events.

Of course the reweighting result will only coincide with
a dedicated calculation if all emissions are reweighted, i.e.
nNloPs = 1 and nPS = ∞. However, by subsequently
enabling the reweighting of more and more emissions the
relevance of their dependences for the determination of the
full uncertainty can be studied. A finite value of nPS can
also be useful in production, if the effect of reweighting
higher-order emissions becomes negligible. The reduced
amount of reweighting per event then allows for a faster
event generation. An additional benefit would be that rare
high-multiplicity shower histories do not spoil the statisti-
cal convergence of the reweighted result, even if their exact
kinematics might be irrelevant for the studied observable.

The final-state only case: Thrust in e+ e− → qq̄ events

To validate LoPs reweighting, we consider two observ-
ables, which are complementary in their sensitivity to parton-
shower emissions. At first, we consider the event-shape vari-
able thrust T [59] in hadronic events in e+e−-collisions at

√
s = 91.2 TeV. In this case QCD emissions are restricted to

the final-state. Accordingly, there appear no PDF factors in
the shower reweighting, cf. Eq. (16), and thus no factorisa-
tion scale dependence. Moreover, as we consider the leading-
order matrix element for e+e− → qq̄ only, the renormali-
sation scale is also absent in the hard-process component.
Therefore, we can concentrate on the pure αs uncertainty in
the parton shower here. Leaving the perturbative order of its
running invariant it is defined by its value at the input scale
mZ .

In Fig. 2, we compare αs uncertainty bands generated by
reweighting the nominal prediction with the one generated
by dedicated predictions for each variation. As in Fig. 1,
the uncertainty band is defined as the envelope over the dis-
tributions with different αs(m2

Z ) input values. The nominal
value is taken as αs(m2

Z ) = 0.120, and its up/down varia-
tions are 0.128 and 0.108, respectively. Reweighting bands
are presented for nPS = 1, 4, 8,∞. The nPS = 1 band under-
estimates the uncertainty, especially for T ≤ 2/3, where
multiple hard emissions are required, and for T ≈ 1, the
region sensitive to multiple soft emissions. For nPS = 4, the
uncertainty is underestimated only for bins with T ≤ 2/3,
and less so than for the nPS = 1 case. The difference
between the two choices of nPS = 8 and ∞ is merely sta-
tistical and both reproduce the dedicated result very accu-
rately.

However, for low values of T , the statistical fluctuations
of the reweighting results with higher nPS grow larger, cor-
responding to a widening of the distribution of reweighting
factors. Low values of the thrust observable correspond to
the emission of several hard partons, which is less proba-
ble in the parton-shower approximation, and more appro-
priately modelled in multijet-merged calculations, cf. Sect.
4. In this phase-space region it is difficult for the reweight-
ing to compensate the multitude of accepted soft emissions
off these hard legs, that turn unstable for Pacc → 1, with
rejected ones, cf. Eq. (17). This issue can be addressed by
introducing a prefactor for the over-estimator function K̂ in
the reweighting runs, to ensure that Pacc does not approach
1, cf. [26,27,52]. This renders the Sudakov Veto Algorithm
somewhat less efficient, but is shown to reduce statistical
fluctuations in the reweighting.

The initial-state dominated case: pW⊥ in pp → W[eν] events

The second observable considered to validate ourCSShower
and S- Mc@Nlo reweighting implementation is the W-
boson transverse-momentum distribution pW⊥ in 13 TeV
proton-proton collisions, that has already been used in Sect.
2.3 in the NLO case. The definitions for constructing the
uncertainty bands used there are kept the same, and are stated
in Table 1. We now use the CT14nlo PDF set, which uses a
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Fig. 2 Uncertainty band for the
Thrust event shape in dijet
production in e− e+ annihilation
for a variation of αs. The left
panel shows the nominal
distribution and the ratio to the
central value. The uncertainty
band calculated using
reweighting (including all
emissions, i.e. nPS = ∞) is
compared to the one obtained
from dedicated calculations. The
comparison is repeated in the
three panels on the right for
different maximum number of
reweighted emission nPS
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Hessian error representation at a 90% confidence level [60].5

Therefore the PDF error band will be larger than before, as
it now corresponds to nearly two standard deviations instead
of only one.

Considering a hadronic environment, initial-state emis-
sions are present, which means that our reweighting factors
now include PDF double ratios. In Fig. 3, we compare LoPs
uncertainty bands for scale, αs and PDF variations, including
comparisons between reweighted and dedicated predictions
for a varying maximum number of reweighted shower emis-
sions nPS. Before discussing the bands, we observe that the
tail of the pW⊥ spectrum is not populated, in particular in com-
parison to Fig. 1. This is expected, as the LO configuration
is restricted to pW⊥ = 0, such that all other bins are filled
through recoils against parton-shower emissions only. How-
ever, the phase space of parton-shower emissions is restricted
to the soft region, and therefore the Wboson can not build up
a large recoil.

We now turn to the scale uncertainty band – which is
entirely due to factorisation scale variations, because the LO
matrix element is independent of αs , and therefore the band
underestimates the perturbative uncertainty. We also observe
that the band is nearly flat. As we vary only the scales of the
matrix-element calculation, the constant spread corresponds
to the factorisation-scale uncertainty of the Born configu-
ration at pW⊥ = 0, merely propagating to higher pW⊥ bins
through the parton shower, which is unaware of the scale

5 The reason for switching from NNPDF to CT14 PDFs is the strict
positivity of the latter. The CSShower rejects emissions when negative
PDF values are involved, a behaviour which spoils the reweighting in
regions where the original and the target PDF do not have the same sign.
The deviations seem to be small in practical applications, but here we
chose to establish closure in a clean context first.

variations. In the matrix-element reweighting, we can guar-
antee the same phase-space points as in the dedicated run,
such that we see perfect agreement between dedicated and
reweighted predictions. We therefore omit comparisons for
different nPS for the scale-uncertainty band.

Looking at the αs uncertainty band, we can see that the
envelope constricts at the position of the peak of the distribu-
tions. This reflects that the variation of αs shifts the position
of the peak, such that variations that are below the nominal
distribution on the left side of the peak, are exceeding the
nominal distribution on the right side, and vice versa. Com-
paring the reweighted prediction to the dedicated one, we
find a flat band for nPS = 0, corresponding to restricting
the reweighting to the fixed-order matrix element. As the LO
calculation is independent of αs, this only reflects the change
of the PDFs, which are fitted to αs(mZ). The reproduction of
the shape of the αs uncertainty improves a lot when reweight-
ing up to one emission (nPS = 1), and slightly more when
adding another emission on top (nPS = 2).

For the PDF uncertainty, we see that the reweighting with
nPS = 0 underestimates it by at least 1–5% for small trans-
verse momenta, and overestimate it around the Wmass. As
for the αs uncertainty, this improves for nPS = 1, 2.

The last depicted step, i.e. nPS = 3, on the other hand,
does not contribute further to the reproduction of the αs and
PDF uncertainties. No significant differences with respect to
the nPS = 2 case is observed. It can be concluded that it is
sufficient to include up to two emissions to reproduce the
uncertainty bands for this observable.

This is to be expected, as the gauge boson recoils against
the shower emissions and is therefore mostly affected by
the few hardest branchings. These mainly originate from
the incoming hard virtual partons, so the generally softer
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Fig. 3 The same as in Fig. 1,
but for LO + parton-shower (PS)
generation. The uncertainty
bands are calculated by
reweighting the ME and up to
nPS shower emissions. In the
upper four plots, nPS = 3. In the
lower plots, nPS is varied for
comparison. The scale
uncertainties do not change with
nPS and are therefore not
repeated

10−6

10−3

100

103

106

dσ
/
dp

W ⊥
[p
b/
G
eV

]

W p⊥ uncertainty bands

SHERPA LOPS
pp → W[eν ]
√

s = 13TeV
nPS = 3

μF,R

αS

CT14
dedicated

100 101 102 103

pW⊥ [GeV]

0.8

1.0

1.2
ra
tio

to
C
V

100 101 102 103

0.8

1.0

1.2

scale uncertainty

100 101 102 103
0.9

1.0

1.1

ra
tio

to
C
V

αS uncertainty

100 101 102 103

pW⊥ [GeV]

0.9

1.0

1.1

CT14 uncertainty

0.9

1.0

1.1

nPS = 0 (ME only)

αS uncert.

nPS = 1 nPS = 2

100 101 102 103
0.9

1.0

1.1

ra
tio

to
C
V

CT14 uncert.

101 102 103

pW⊥ [GeV]
101 102 103

other maximum numbers of reweighted emissions nPS

final-state emissions barely contribute. Although we do not
reproduce this here, we confirmed this by entirely disabling
final-state emissions, which showed no effect on the results.

In Fig. 4 we present the validation of NloPs predictions
for the W-boson transverse-momentum distribution. Over-
all, we get a similar picture as in the LoPs case. The main
differences are the increased high-pW⊥ reach and the signif-
icantly smaller scale uncertainties in the low pW⊥ range, a
consequence of including the complete set of O(αs) correc-
tions to the production process. For large pW⊥ , the uncertainty
increases again, because we fall back to a LO description
again: Only the 2 → 3 matrix element still contributes.

To assess the quality of the reweighting, we consider again
different settings for the parameters nNloPs and nPS. Assum-
ing nNloPs = nPS = 0, only the scale variations of the
hard process are considered and the parton-shower contribu-
tion to the O(αs) correction is not reweighted. Furthermore,
we present results for nNloPs = 1 and nPS = 0, 1, 2. With
these settings, theO(αs) corrections get properly reweighted,

but the number of subsequent shower emissions off the S-
and H-like events treated correctly is varied. We observe
a saturation for reproducing the dedicated calculations at
nNloPs + nPS ≥ 2, with no further improvement when nPS

is increased from 1 to 2. This confirms the findings made
when considering the LoPs setup in Fig. 3: the gauge-boson
transverse-momentum distribution is dominated by the few
hardest emissions.

4 Reweighting multijet-merged calculations

In this section we address the reweighting of multijet-merged
event generation runs. These approaches allow to combine
LO or NLO QCD matrix elements of different multiplicity
dressed with parton showers into inclusive samples. Accord-
ingly, the production of jets associating a given core pro-
cess can be modelled through exact matrix elements rather
than relying on the logarithmic approximation of the par-
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Fig. 4 The same as in Fig. 3,
but for NLO + parton-shower
(PS) generation. The uncertainty
bands are calculated by
reweighting the ME and a
maximum number of emissions
from the Mc@Nlo (nNloPs)
and the ordinary PS (nPS).
nNloPs is constrained to 0 or 1,
as the Mc@Nlo prescription
only affects the first emission. In
the upper four plots we consider
nNloPs = 1 and nPS = 2, thus
up to three emissions get
reweighted. In the lower plots,
we consider variations of nNloPs
and nPS
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ton shower only. In particular, when considering hard jet
kinematics or angular correlations such techniques prove to
be indispensable to properly describe experimental observa-
tions, see for instance [61–64].

To first approximation the reweighting as described in the
previous sections can be used without change, only that the
perturbative order p is no longer a constant across the sam-
ple, but varies for each event, corresponding to the consid-
ered matrix-element parton multiplicity. However, there are
also new algorithm-specific intricacies which complicate the
dependence on the input parameters and need to be dealt
with to allow for a consistent reweighting. The LO and NLO
merging techniques employed within the Sherpa frame-
work are presented in [21,65,66], respectively. They rely
on the reconstruction of parton-shower histories for multi-
parton amplitudes that set the parton-shower initial condi-
tions for their subsequent evolution. This is achieved by run-
ning a backward-clustering algorithm that identifies a cor-
responding core process and calculates hard-parton splitting

scales that serve as predetermined shower branchings. In the
Sherpa approach the actual parton shower then starts off
the reconstructed core process and implements the prede-
termined hard splittings based on a truncated shower. Fur-
thermore, it is the purpose of the truncated-shower evolution
to implement possible Sudakov vetoes for shower emissions
above the phase-space separation or merging scale Qcut. It
should be emphasised here, parton-shower reweighting is
vital when using modified input parameters in order to cancel
the Qcut dependence to the accuracy of the parton shower.
In case only the hard-process matrix element parameters get
reweighted, the dependence on Qcut is cancelled to leading-
logarithmic accuracy only, however, residual subleading con-
tributions from the running coupling or the PDF evolution
remain [65].

For the reweighting of the truncated-shower Sudakov veto
probability the methods described in Sect. 3 can be applied.
In what follows we will detail the specifics of the reweight-
ing procedure for LO and NLO multijet-merging runs with
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Fig. 5 Possible parton-shower histories of a qg → Zgqq ′q̄ ′ matrix element allowing only QCD splittings (left) and also including electroweak
splittings (right)

Sherpa supplemented by an extensive validation of the
implementation.

4.1 Preliminaries

Common to the LO and NLO merging techniques used in
Sherpa, cf. [21,22,65–67], is the separation of the emission
phase space into a soft and a hard region, defined through
a suitable m-parton measure Qm and a separation criterion
Qcut. For each parton configuration �m with Qm > Qcut

a shower history that represents the event as a core process
with subsequent 1 → 2 shower splittings is probabilistically
build through backward clustering. The resulting sequence of
cluster steps is characterised by tuples {ai , bi , xa,i , xb,i , ti },
recording the (possibly changing) initial-state flavours and
momentum fractions as well as the evolution variable of each
splitting. We allow for both QCD and EW splitting functions
[21,68] to identify such splitting processes and veto recom-
binations that would lead to the reduction of configurations
which are not present in the matrix elements.6 Figure 5 details
possible cluster histories for a given pp → Z + 4jets con-
figuration, depending on its kinematics, allowing for QCD
splittings only (left) or both QCD and EW splittings (right).

The sequence {ti } of reconstructed branching scales then
may be either ordered or unordered, with an ordered his-
tory satisfying t j < t j−1 < · · · < t1 < t0 = μ2

F,core. The
recombination probabilities in each clustering step are deter-
mined by the forward-splitting probabilities and are there-
fore dependent on the parton shower and its parameters and
choices. This is reflected, step-by-step, in the addition of one
factor of αs (when appropriate) at the reconstructed splitting
scale, a ratio of PDFs at the reconstructed initial flavours
and their momentum fractions, and a Sudakov form factor
describing the evolution of each step.

In the Sherpa implementations the αs and PDF factors are
added explicitly onto the respective matrix elements and can
therefore be reweighted directly. The Sudakov form factor,
on the other hand, is implemented through a vetoed trun-
cated parton shower [21,22]. The truncated shower itself,

6 An example here is the interpretation of a e+ e− → gdd̄ configuration.
Its matrix element does not contain terms/diagrams that allow the quark-
antiquark pair to be clustered.

accounting for the possibility of soft parton-shower emis-
sions between subsequent reconstructed hard emissions, i.e.
with tm < t < tm−1 but Q < Qcut, can be reweighted with
the methods described in Sect. 3. If, however, an emission
with Q > Qcut occurs the event is vetoed. Practically, this is
accounted for through increasing ntrial of the next accepted
event by ntrial of the vetoed event. Thus, ntrial becomes depen-
dent on the parton-shower parameters.

A special remark concerning unordered histories, i.e. his-
tories whose sequence of {ti } has at least one pair tk ≥ tk−1,
is in order. Such histories can be encountered in various con-
figurations, e.g. when the last clustering step produces a split-
ting scale larger than the nominal starting scale of the core
process7 or the flavour structure only allows further cluster-
ings at scales tk−1 lower than the last identified one tk .8 As
such configurations cannot be generated by a strictly ordered
parton shower, for each unordered step neither the accompa-
nying PDF ratio nor Sudakov factor is therefore present in the
calculation. More than one unordering in a cluster history of a
given event is possible and in fact likely at high multiplicities.
PDF ratios and Sudakov factors then of course only occur in
the ordered subhistories in between the unorderings. For the
sake of clarity and brevity we will omit this case from the dis-
cussion of the following subsections. Its implications to the
algorithm, and therefore to the reweighting, are straightfor-
ward. If ordered histories are enforced, core configurations
beyond the standard 2 → 2 processes occur. Independent of
the presence and number of unorderings, the renormalisation
and factorisation scales μR and μF are always set in the way,
as will be detailed below.

4.2 The leading-order case

We start the discussion with the simplest case, where all
matrix elements used in the merging are given at leading

7 An example here is the interpretation of a gq → Zq configuration. In
regions of large transverse momenta of the final state parton its identified
branching scale t1 is larger than the starting scale t0 of the core process
qq̄ → Z, usually defined as the Zvirtuality.
8 An example here is the interpretation of a e+e− → dd̄uū configu-
ration. In a first step there are only two choices to cluster, resulting in
an identified branching scale t2. There now is a finite region in phase
space where the gluon can (only) be clustered with scale t1 < t2.

123



590 Page 14 of 24 Eur. Phys. J. C (2016) 76 :590

order. A LO multijet-merged calculation, with Born matrix
elements atO(α

n+ j
s ), containing j additional partons relative

to the core process, has the following structure

〈O〉MePs@Lo =
jmax∑

j=0

∫
d� j Bmerge

j (� j ) �(Q j − Qcut)

× PStv(O,� j )

= lim
N→∞

1

Ntrial

N∑

i=1

jmax∑

j=0

Bmerge
j (� j,i )

× �(Q j − Qcut) PSvt(O,� j,i ). (24)

Note that � j here denotes the entire final-state phase space
of the process, including all particles of the core process.
As before, Q j is a suitable infrared-safe distance measure
of � j . The �-function thus realises a minimum separation
of Qcut and acts as an infrared regulator. PSvt is the vetoed
truncated parton shower derived from Eq. (12). As the limit
in the second line is well defined, it can be transposed with
the summation over parton multiplicities. As the ingredient
leading-order matrix elements need to incorporate the soft-
collinear resummation properties of the parton shower, they
have the following parameter dependences:

Bmerge
j (� j ) ≡ Bmerge

j (� j ;αs, f ;μR,core, μF,core, kαs , k f ;
{ai , bi , xa,i , xb,i , ti }). (25)

The cluster steps {ai , bi , xa,i , xb,i , ti } denote the identified
cluster history of the configuration � j , as discussed above.
Therein, the ai , bi are the possibly changing initial-state
flavours, the xa,i , xb,i their momentum fractions, and the ti
are the reconstructed values of the parton-shower evolution
variable at each splitting. Together with the αs and PDF scale
prefactors kαs , k f of the parton shower, the cluster steps relate
Bmerge

j to the scale and PDF stripped Born matrix element B′
j

encountered in Sect. 2.1,

Bmerge
j (� j ;αs, f ;μR,core, μF,core, kαs , k f ;
{ai , bi , xa,i , xb,i , ti })

=
j∏

i=1

fai (xa,i , k f ti )

fai−1(xa,i−1, k f ti )
fa0(xa,0, μ

2
F,core)

×
j∏

i=1

fbi (xb,i , k f ti )

fbi−1(xb,i−1, k f ti )
fb0(xb,0, μ

2
F,core)

× αn+ j
s (μ2

R) B′
j (� j ). (26)

In this notation, the core scale is t0 = μ2
F,core, it is there-

fore not multiplied by the prefactors of the parton shower.
The partonic momentum fractions of the core process are
xa,0, xb,0.

The scales of each single αs within the cluster history vary,
but an effective global renormalisation scale can be defined
through

αn+ j
s (μ2

R) = αn+e
s (μ2

R,core)

j∏

i=1

α1−εi
s (kαs ti ), (27)

where εi = 0 if the identified splitting process at branching
i is of QCD-type, and 1 otherwise, e = ∑ j

i=1 εi . To consis-
tently vary the μR scale, we consider variations of the split-
ting scales ti and the core scale μR,core on the right-hand side
by a common factor, solving for the prefactor of the effec-
tive μR to be used in the matrix-element calculation. Thus,
while up to NLO accuracy μR is varied by the same common
factor, the full solution of this procedure results in slightly
larger variations of the effective renormalisation scale.

Apart from the Sudakov form factors the soft-collinear
structure of the Bmerge

j is now identical to the emission of
j partons off a B0 configuration with the parton shower
described in Sect. 3. In case of final-state splittings the ratio
of parton distribution functions is simply unity as neither
the partonic xa/b,i and xa/b,i−1 nor the initial-state flavours
ai , bi and ai−1, bi−1 differ. In principle, with every ratio of
PDFs there is also a ratio of flux factors. However, all such
factors cancel except for the outermost ones, corresponding
to � j and, hence, are regarded as part of B′

j .
Changing the scales μR,core → μ̃R,core, μF,core →

μ̃F,core, kαs → k̃αs , k f → k̃ f as well as αs → α̃s and
f → f̃ results in

Bmerge
j (� j ; α̃s, f̃ ; μ̃R,core, μ̃F,core, k̃αs , k̃ f ;
{ai , bi , xa,i , xb,i , ti })

=
j∏

i=1

f̃ai (xa,i , k̃ f ti )

f̃ai−1(xa,i−1, k̃ f ti )
f̃a0(xa,0, μ̃

2
F,core)

×
j∏

i=1

f̃bi (xb,i , k̃ f ti )

f̃bi−1(xb,i−1, k̃ f ti )
f̃b0(xb,0, μ̃

2
F,core)

× α̃n+ j
s (μ̃2

R) B′
j (� j ). (28)

The scale μ̃2
R is now calculated from Eq. (27) using μ̃2

R,core

and k̃αs as input.
Equation (28) describes what happens to the matrix-

element part of a multijet-merged calculation. This leaves the
vetoed truncated shower PSvt. While the truncated and stan-
dard shower part is described in Sect. 3, the vetoed shower
leads to vetoed events. As vetoed events correspond to events
whose weights have been set to zero, their description is
equivalent to increasing the number of trials, ntrial, by one.
Thus, when varying the parameters of the parton shower,
also the probabilities of vetoing events are changed. Conse-
quently, ntrial acquires a dependence on the parameters of the
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variation. Thus, now explicitly stating the dependence on the
shower’s starting scale μ2

Q and the merging scale Qcut,

ntrial(μ
2
Q; Q2

cut; {ai , bi , xa,i , xb,i , ti })
≡ ntrial(μ

2
Q; Q2

cut; {ai , bi , xa,i , xb,i , ti }; αs, f ; kαs , k f )

= 1 − �n+ j (tIR, μ2
Q; Q2

cut; α̃s, f̃ ; k̃αs , k̃ f ; {ai , bi , xa,i , xb,i , ti })
1 − �n+ j (tIR, μ2

Q; Q2
cut; αs, f ; kαs , k f ; {ai , bi , xa,i , xb,i , ti })

,

(29)

where

�n+ j (tIR, μ2
Q; Q2

cut;αs, f ; kαs , k f ; {ai , bi , xa,i , xb,i , ti })

=
j∏

i=1

exp

⎧
⎨

⎩
−

ti−1∫

ti

d�1 Kn+i (�1; kαs , k f ;αs, f )

× �(Qn+i > Qcut)

⎫
⎬

⎭
. (30)

Thus, ntrial corresponds to the survival probability between
the unfolding of preexisting splittings when evolving from
the n-parton core configuration to the (n + j)-parton con-
figuration. Hence, when changing the parameters of the sim-
ulation the truncated showers probability to emit a parton
with Q > Qcut must be re-evaluated following the substi-
tutions kαs → k̃αs , k f → k̃ f , αs → α̃s and f → f̃ using
the methods of Sect. 3. Note, all emissions produced by the
truncated shower prior to the one that triggers the veto need
to be reweighted as they impact the initial conditions for that
emission.

4.3 The next-to-leading-order case

The merging of multijet matrix elements at next-to-leading
order accuracy proceeds schematically similar as in the lead-
ing order case. The input quantity is now the NloPs matched
(n + j)-parton configuration, thus

〈O〉MePs@Nlo =
jmax∑

j=0

[∫
d� j B

merge
j (� j ) �(Q j − Qcut)

× PSv
NloPs(O,� j )

+
∫

d� j+1 Hmerge
A, j (� j+1, Qcut) PSvt(O,� j+1)

]

= lim
N→∞

1

Ntrial

⎧
⎨

⎩

NS∑

i=1

jmax∑

j=0

B
merge
j (� j,i ) �(Q j − Qcut)

× PSv
NloPs(O,� j,i )

+
NH∑

i=1

jmax∑

j=0

Hmerge
A, j (� j+1,i , Qcut) PSvt(O,� j+1,i )

⎫
⎬

⎭
,

(31)

keeping the notation of Eqs. (18) and (24). For the S-events
the same �-function of Eq. (24) is used as an infrared regula-
tor and theS- Mc@Nlo parton shower of Eq. (23) is replaced
by its vetoed version, it only matches the softest emission in
t and, thus, does not generate truncated emissions. These are
added dressing it with additional emissions through the stan-
dard parton shower. As all ingredients of B

merge
j are evaluated

at the same phase-space point � j they share a common clus-
ter history {ai , bi , xa,i , xb,i , ti }. Hence, again suppressing
any further Qcut-dependence which is not varied,

B
merge
j (� j ) ≡ B

merge
j (� j ;αs, f ;μR,core, μF,core, kαs , k f ;

{ai , bi , xa,i , xb,i , ti }) (32)

transforms under the replacements kαs → k̃αs , k f → k̃ f ,
αs → α̃s and f → f̃ in the following way:

B
merge
j (� j ; α̃s, f̃ ; μ̃R,core, μ̃F,core, k̃αs , k̃ f ;
{ai , bi , xa,i , xb,i , ti })

=
j∏

i=1

f̃ai (xa,i , k̃ f ti )

f̃ai−1(xa,i−1, k̃ f ti )
f̃a0(xa,0, μ̃

2
F,core)

×
j∏

i=1

f̃bi (xb,i , k̃ f ti )

f̃bi−1(xb,i−1, k̃ f ti )
fb0(xb,0, μ̃

2
F,core)

× α̃n+ j
s (μ̃2

R)

[
B′

j (� j ) + α̃s(μ̃
2
R)

(
VI′j (� j ) + c ′ (0)

R, j lR

+ 1
2 c

′ (1)
R, j l

2
R

)

+α̃s(μ̃
2
R)

∫
dx ′

a/b KP′
j (� j , x

′
a/b; f̃ ; μ̃F,core)

+α̃s(μ̃
2
R)

∑

k

∫
d�k

1

(
D′

A,k − D′
S,k

)
(� j · �k

1)

]

−
j∑

i=1

α̃s(μ̃
2
R)

2π
log

ti−1

ti

×
(

∑

c=q,g

∫ dx ′
a,i

x ′
a,i

Pac(x
′
a,i ) f̃c(

xa,i
x ′
a,i

, k̃ f ti )

+
∑

d=q,g

∫ dx ′
b,i

x ′
b,i

Pbd(x
′
b,i ) f̃d(

xb,i
x ′
b,i

, k̃ f ti )

⎞

⎠

× α̃n+ j
s (μ̃2

R) B′
j (� j ). (33)

In addition to the transformation properties of the B-function
of Eq. (19), supplemented with the PDF ratios already
encountered in the leading-order case, additional terms
appear. They subtract the O (αs) expansion of these ratios, in
order to retain the NLO accuracy of the merged calculation.
Again, please note t0 = μ2

F,core.

123



590 Page 16 of 24 Eur. Phys. J. C (2016) 76 :590

The same does not hold, however, for the H-events. Their
constituent real-emission matrix elements are defined on
� j+1 , while each subtraction term DA,k has its own pro-
jection on a phase-space point �k

j . Thus,

Hmerge
A, j (� j+1, Qcut)

≡ Rmerge
j (� j+1;αs, f ;μR,core, μF,core, kαs , k f ;

{ai , bi , xa,i , xb,i , ti }) �(Q j − Qcut)

−
∑

k

Dmerge
A,k, j (�

k
j · �k

1;αs, f ;μR,core,k, μF,core,k,

kαs,k, k f,k; {ai,k, bi,k, xa,i,k, xb,i,k, ti,k})
× �(Qk

j − Qcut), (34)

wherein both Rmerge
j and the Dmerge

A,k, j separately transform as

the leading-order counterpart Bmerge
j . While the measure Q

on � j+1 of Rmerge
j is defined to act on the underlying � j after

the first cluster step where the real emission configuration has
been reduced to a Born configuration, it is defined directly on
each �k

j in each DA,k . Infrared safety is guaranteed through
the infrared safety of their phase-space maps, the clustering
algorithm and the measure Q.

Finally, we consider merging additional multiplicities up
to jmax described through leading-order matrix elements on
top of a next-to-leading order merged calculation with up to
jnlomax jets, where jmax > jnlomax. The method of choice was
outlined in [22,65,66,69,70] and is historically referred to
as MeNloPs. Its methodology is defined as

〈O〉MePs@Nlo+MeNloPs

=
jnlomax∑

j=0

[∫
d� j B

merge
j (� j ) PSv

NloPs(O,� j )

+
∫

d� j+1 Hmerge
A, j (� j+1) PSvt(O,� j+1)

]

+
jmax∑

j= jnlomax+1

∫
d� j k jnlomax

(� jnlomax+1(� j )) Bmerge
j (� j )

× PSvt(O,� j )

= lim
N→∞

1

Ntrial

⎧
⎨

⎩

NS∑

i=1

jnlomax∑

j=0

B
merge
j (� j,i ) PSv

NloPs(O,� j,i )

+
NH∑

i=1

jnlomax∑

j=0

Hmerge
A, j (� j+1,i ) PSvt(O,� j+1,i )

+
NLO∑

i=1

jmax∑

j= jnlomax+1

k jnlomax
(� jnlomax+1(� j )) Bmerge

j (� j,i )

× PSvt(O,� j,i )

⎫
⎬

⎭
, (35)

with N = NS + NH + NLO. A differential K -factor k jnlomax
is a applied to the higher-multiplicity leading-order matrix
elements in order to facilitate a smooth transition across Qcut.
It has the form

km(�m+1) = Bm(�m)

Bm(�m)

(
1 − HA,m(�m+1)

Rm(�m+1)

)

+ HA,m(�m+1)

Rm(�m+1)
, (36)

and therefore moulds the B jnlomax+1 into the same form as
the HA, jnlomax

it is replacing. The projection � jnlomax+1(� j ) for

j > jnlomax + 1 is defined through its cluster history, as is
�m(�m+1) inside km itself. When now changing the param-
eters of the calculation, αs → α̃s, f → f̃ , μR → μ̃R

and μF → μ̃F , k jnlomax
transforms as a composite object in

terms of its constituents, cf. Sects. 2 and 3. The scales are
set directly by the Bmerge

j process. Of course, in the interest
of decreased computational costs one may decide to choose
km ≡ 1 throughout at the cost of larger merging systematics.
Similarly, if an electroweak cluster history leads to a changed
signature in �m+1, km ≡ 1 is chosen.

4.4 Validation

The reweighting for multijet-merged calculations as dis-
cussed in the previous sections has been implemented within
Sherpa with the CSShower for leading-order matrix ele-
ments (MePs@Lo), next-to-leading order matrix elements
(MePs@Nlo) and next-to-leading-order matrix elements
with additional leading-order ones on top (MeNloPs). For
the validation, we again perform closure tests between
reweighted and dedicated predictions for the transverse
momentum of the Wboson in Figs. 6, 7 and 8. As before,
the uncertainty bands are the ones defined in Table 1, with
the CT14 PDF set. For all merged calculations, we employ a
merging cut of Qcut = 20 TeV.

For the MePs@Lo validation in Fig. 6, we combine LO
matrix elements for 0-, 1- and 2-jet multiplicities, obtained
from Comix [39]. We can observe that we populate a much
larger phase space than for a mere LoPs calculation in terms
of pW⊥ . Below the merging cut (i.e. pW⊥ � 20 TeV), the scale
uncertainty band is equal to the one of the LoPs calculation.
For higher pW⊥ , the scale uncertainty increases correspond-
ing to the larger uncertainty of the higher-multiplicity matrix
elements, that contribute renormalisation scale uncertainties.

In Fig. 7, we consider the MeNloPs case. We combine
an NLO matrix element for the 0-jet multiplicities with LO
matrix elements for the 1- and 2-jet multiplicities. The scale

123



Eur. Phys. J. C (2016) 76 :590 Page 17 of 24 590

Fig. 6 The same as in Figs. 3
and 4, but for a multijet-merged
generation with LO matrix
elements for 0-, 1- and 2-jet
multiplicities. The uncertainty
bands are calculated by
reweighting the ME and a
maximum number of emissions
nPS of PS emissions. In the
upper four plots, nPS = 3, thus
up to three emissions are
reweighted. In the lower plots,
nPS is varied for comparison.
Again, we find a saturation
when reproducing dedicated
calculations for nPS ≥ 2, with
no further improvement when
nPS is increased from 2 to 3
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uncertainty for low pW⊥ values now features the reduced scale
uncertainty, that we already have seen in the NloPs valida-
tion.

The same is true in theMePs@Nlo case depicted in Fig. 8.
A direct comparison of the scale uncertainties to the MeN-
loPs case is not straightforward though, as we combineNLO
matrix elements for the 0- and the 1-jet multiplicity, where
the virtual amplitudes are obtained from BlackHat [42].
Hence, the 2-jet multiplicity is described at leading order
through the 1-jet H-events. As such, the set-up is not a sim-
ple upgrade from our MeNloPs calculation.

In all multijet-merging validations, we find a similar
behaviour with respect to the imprint of including emissions
in the reweighting. For nNloPs + nPS = 2, the dedicated cal-
culations are well reproduced, and no further improvement
is found for nNloPs + nPS = 3. It is noteworthy, that for the
MeNloPs case we find a worse reproduction for nNloPs = 1
and nPS = 0 compared to the NloPs and the MePs@Nlo
cases. This originates in the fact that in the latter two cases,

we enable the reweighting of emissions off S-events at all
involved multiplicities, whereas in the MeNloPs case only
the first of the three multiplicities is affected, because the
other two are at LO and therefore do not have S-events. Thus,
the overall importance of the S emission reweighting gets
restricted to the region below Qcut of the 1-jet configuration
in the MeNloPs case.

5 Consistent variations

In general, the renormalisation and factorisation scales, αs

and the PDFs should be varied consistently throughout any
of the presented calculations. While at fixed order the situa-
tion is clear, the matched and merged approaches allow for
some degree of freedom regarding partial variations while
still retaining their respective accuracies.

In the simplest case, LOPS, μR and μF of the short
distance cross section and the parton shower may be var-
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Fig. 7 The same as in Figs. 3, 4
and 6, but for a multijet-merged
generation with one NLO matrix
element for the 0-jet
multiplicity, and LO matrix
elements for the 1- and 2-jet
multiplicities. The uncertainty
bands are calculated by
reweighting the ME and a
maximum number of emissions
from the Mc@Nlo (nNloPs)
and the ordinary PS (nPS). In the
upper four plots, nNloPs = 1
and nPS = 2, thus up to three
emissions are reweighted. In the
lower plots, both n are varied for
comparison. Again, we find a
saturation when reproducing
dedicated calculations for
nNloPs + nPS ≥ 2, with no
further improvement when nPS
is increased from 1 to 2
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ied independently as these variations can be expressed as
higher-order terms in a perturbative expansion in the cou-
pling parameter αs . This is not the case for αs itself and the
PDFs as they are fixed through measured input values and
parametrisations. Changes in these input values cannot be
expressed as simple higher-order terms. Thus they need to
be chosen consistently throughout.

Similarly, in NLOPS calculations, the renormalisation and
factorisation scales may be varied in the matrix element (B
and HA) or the parton shower (PSNloPs and PS) separately
without losing neither the fixed-order nor the resummation
accuracy. As the pseudo-subtraction through the DA in any
case employs different scales in PSNloPs and the B and HA

functions, it always leaves remainders of O(α2
s ). Hence, fur-

ther scale variations in either one, the short-distance cross
sections or the PSNloPs, do not worsen the nominal accu-
racy of the method. Retaining the logarithmic accuracy of the
parton shower on the other hand requires identical renormal-
isation and factorisation scales throughout all resummation-

relevant components, i.e. PSNloPs and PS. Again, variations
in αs or the PDFs need to be consistent throughout the cal-
culation.

The multijet-merged calculations impose further con-
straints since they treat multijet matrix elements and parton-
shower emissions on the same footing. The notation of the
scales already reflects this for μR and μF . In their definitions
only the core scales remain as free parameters and may be
varied independently. Again, the αs and PDF parametrisa-
tions need to be the same throughout.

6 Conclusions

In this publication we have presented the implementation
and validation of reweighting techniques allowing for the
fast and efficient evaluation of perturbative systematic uncer-
tainties in the Sherpa event-generator framework. We have
lifted the available techniques for the determination of PDF,
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Fig. 8 The same as in Figs. 3,
4, 6 and 7, but for a multijet
merged generation with NLO
matrix elements for the 0- and
1-jet multiplicities. The
uncertainty bands are calculated
by reweighting the ME and a
maximum number of emissions
from the Mc@Nlo (nNloPs)
and the ordinary PS (nPS). In the
upper four plots, nNloPs = 1
and = nPS = 2, thus up to three
emissions are reweighted. In the
lower plots, both n are varied for
comparison. Again, we find a
saturation when reproducing
dedicated calculations for
nNloPs + nPS ≥ 2, with no
further improvement when nPS
is increased from 1 to 2
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αs and scale uncertainties in leading- and next-to-leading
order QCD calculations to include the respective varia-
tions in parton-shower simulations. In turn we provide the
means to perform consistent uncertainty evaluations for
multijet-merged simulations based on leading- or next-to-
leading-order accurate matrix elements of varying multiplic-
ity matched with parton showers. The foundation for our
reweighting method is the knowledge of the very dependence
structure of the perturbative calculations on the parameters
to be varied. For the fixed-order components this amounts
to the corresponding decomposition of the Catani–Seymour
dipole subtraction terms. This needed to be supplemented by
the reweighting of the parametric dependences of the parton
shower treated through the Sudakov Veto Algorithm.

With our extensive validation we have been able to prove
on the one-hand-side the correctness of the implementation
and have, furthermore, been able to illustrate the impor-
tance of parton-shower reweighting for reliable uncertainty

estimates. With comparably little additional computational
costs this allows for the on-the-fly determination of PDF, αS

and scale uncertainties based on one single generator run,
that, otherwise, would require explicit re-computations. The
overall reduction in CPU time is by a factor of about 3–20,
depending on the event-generation mode used, see Appendix
A. The variational event weights provided are easily acces-
sible through the HepMC event record and are furthermore
consistently handed over to the Rivet analysis software by
the corresponding Sherpa interface.

The methods presented in this publication are ideally
suited for event-wise uncertainty estimates and can readily
be used in arbitrary theoretical and experimental analyses.
An extension to next-to-next-to-leading-order QCD calcu-
lations possibly dressed with parton showers, as presented
in [16,17,71], is straightforward and planned for the near
future.
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The decomposition of the fixed-order part of QCD calcu-
lations employed here is also a necessary ingredient to pro-
duce cross-section grids as provided by the APPLgrid [72]
and FastNLO [73,74] tools. These store the perturbative
coefficients for a certain observable calculation discretised
in Q2 and x . Using interpolation methods, this allows for
the a posteriori inclusion of PDFs, αs and variations of the
renormalisation and factorisation scales. In turn, such tech-
niques are well suited for (combined) fits of PDFs and αs that
require a multitude of re-computations of the theoretical pre-
dictions. Over the last years, tools have been developed that
automate the projection of arbitrary next-to-leading-order
QCD calculations onto such grids, namely theaMCfast [75]
and the MCgrid [76–78] packages. The first one produces
APPLgrids with MadGraph5_aMC@NLO [79], the latter
APPLgrids or FastNLO grids from Sherpa events pro-
jected on the observables through Rivet. The APFELgrid
tool [80] provides an improved convolution method for use
with APPLgrid files that furthermore speeds-up the re-
evaluations.

However, none of these approaches includes generic
parton-shower effects, i.e. the parametric dependence of the
shower component on the PDFs and αs is ignored. With the
methods presented in this publication we are confident that
we can surmount this limitation and in the future provide
interpolation grids that properly reflect shower-resummation
effects and allow for the inclusion of the affected phase-space
regions in PDF determinations.
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Appendix A: CPU time measurements

The benefit of reweighted calculations is given by the saving
of CPU time. In order to evaluate the gain, we shall compare
the event generation time of reweighted calculations with the
sum of generation times for all corresponding dedicated com-
putations. Here we consider both parton-level calculations,
as well as runs including multiple interactions and hadroni-
sation, the typical default in physics analyses applications.
For the latter it can be expected that the gain in CPU time
by using the reweighting approach is most considerable, as

the CPU intense non-perturbative event generation phases
do not need to be re-evaluated. In what follows we compare
actual event-generation times, neglecting the set-up times of
the individual runs.9

In Fig. 9, we consider event generations using LoPs,
NloPs, MePs@Lo and MePs@Nlo calculations for pp →
W

[
e−ν̄

]
at 13 TeV. The ratio of CPU time between the

reweighting and the dedicated generations is shown for dif-
ferent maximum numbers of reweighted shower emissions
nPS +nNloPs. Whether non-perturbative effects are included
or not, the time needed for the reweighting calculation is
below 10% of the time needed for dedicated calculations if
only the matrix element is reweighted (nPS = nNloPs = 0).
The ratio then increases for larger numbers of reweighted
emissions, as their reweighting needs additional time, asymp-
totically approaching the value when all parton-shower emis-
sions are reweighted. For parton-level-only calculations, this
ratio is around 0.35 for LoPs events, and around 0.3 for
NloPs events. This reduction can be explained due to rela-
tively smaller computational cost of the parton shower as a
whole when the rest of the calculation is more complex. Also
note that nPS for LoPs is only equivalent to nPS + nNloPs
for S events. H events do not feature the S- Mc@Nlo-
emission, and hence for them nNloPs does not contribute to
their reweighting.

For the same reason, when non-perturbative effects are
included, that ratio improves to about 0.1: The parton shower
(and its reweighting) component plays a relatively smaller
rôle in terms of CPU cycles, when multiple interactions and
hadronisation are enabled.

If on top of the non-perturbative effects the events are also
unweighted, the ratio does not change in the LoPs case, but
in the NloPs case (by about 20%). A reason might be, that
only for NloPs a sizeable number of events gets rejected.
For these, the jet evolution and non-perturbative phases are
not performed at all, whereas the matrix-element calcula-
tion (and its reweighting) is always done, for accepted and
rejected events alike. The same is true for the S- Mc@Nlo
emission from S events. As a consequence, the relative cost
of the reweighting grows slightly. A future improvement of
the implementation would postpone these futile reweightings
in unweighted calculations to a time point after the possible
rejection. This of course requires that the dependence of the
rejection probability is negligible. For the observables stud-
ied so far this was found to be true, at least to O (

10−4
)
.

9 If NLO matrix elements at higher multiplicities are needed for an
event generation, the time needed for the integrator optimisation and
the process selection weight optimisation can be quite substantial, e.g.
a couple of days. In the case of unweighted event generation, this even
has to be re-done for every single parameter variation, as the channel
weights are used for the unweighting. When reweighting is used, this
is not necessary and so even more CPU time is saved.
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Fig. 9 The ratio of CPU time needed for a reweighting event gen-
eration trew over the time needed for generating predictions for all
variations with dedicated runs tded. The reweighting includes up to
nPS+nNloPs parton-shower emissions. The sampled variations are listed
in Table 1. Parton-level-only results are compared to results for cal-

culations including multiple interactions and hadronisation effects (“+
non-perturbative”), and to calculations where in addition to adding non-
perturbative effects the events have also been unweighted (“+ unweight-
ing”). The ratios for reweighting all emissions are indicated with a hor-
izontal line

Note that the effective gains will be lower than the results
presented in this section, when we take into account the
reduced statistical accuracy which comes with the parton-
shower reweighting. This requires more events to be gener-
ated in a reweighting calculation to reach the same statistical
accuracy as in a dedicated calculation.

Appendix B: Configuring and accessing event-weight
variations

Sherpa provides a list of pre-calculated alternative event
weights, which are automatically output to the HepMC event
record [24] or directly to an interfaced Rivet analysis [25].
For versions of Sherpa later than v.2.2.0, the variations
to calculate can be specified with the following line in the
(run) section of the Sherpa run card:

VARIATIONS muR2fac1,muF2fac1,PDF1
muR2fac2,muF2fac2,PDF2 ...;

Each variation is characterised by up to three arguments

muR2fac a prefactor multiplying the nominal (squared)
renormalisation scale
muF2fac a prefactor multiplying the nominal (squared)
factorisation scale
PDF a parton density and its accompanying αs parametri-
sation.

This syntax works for all employed scale setters of Sherpa
and both Sherpa’s internal PDFs and PDFs interfaced
through Lhapdf5/6 [81,82]. If trailing arguments are omit-
ted from a variation, their default values are used, which is
1.0 for scale factors and the PDF set used by Sherpa for the
nominal calculation.
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In HepMC event records (v. 2.06 or later), the alter-
nate weights can be accessed as named weights within the
HepMC::WeightContainer of each event. The keys are
given in one of the following formats:

MUR<muR2fac>_MUF<muF2fac>_PDF<ID>
MUR<muR2fac>_MUF<muF2fac>_PDF<ID>

_PSMUR<muR2fac>_PSMUF<muF2fac>

The parts in angle brackets are replaced with the respective
scale factors and Lhapdf IDs. The second form is used, if
a factor is applied to the renormalisation/factorisation scale
of parton-shower splittings. This includes splittings within
cluster histories determined by the multijet merging proce-
dure, as discussed in Sect. 4. If the scale reweighting with
parton-shower splittings has been enabled (we discuss below
how to do so), the scale factors for MUR, MUF and PSMUR,
PSMUF are always equal, respectively, in the current imple-
mentation.

If the internalRivet interface of Sherpa is used to analyse
events during the generation, one histogram file per variation
is written to disk, along with the nominal one. The file names
follow a pattern resembling the HepMC weight-container
keys as specified above.

Scale variations

The scale argument can also be specified by enclosing
it in square brackets: [mu2fac]. This syntactic sugar
implies both the given factor, its inverse and the default
value. For example, 1.0,[4.0] is equivalent to 1.0,4.0
1.0,0.25 1.0,1.0 and therefore triggers up and down
variations of the factorisation scale, along with the central
value. If both scale factors are enclosed in brackets, they
are expanded individually, keeping the other at its default
value of 1.0: Hence, [4.0],[4.0] is equivalent to the
5-point scale variation 4.0,1.0 0.25,1.0 1.0,4.0
1.0,0.25 1.0,1.0. To include simultaneous variations
in the same direction, both factors can be surrounded by a sin-
gle pair of brackets. Thus, [4.0,4.0] is equivalent to the
7-point scale variation 4.0,1.0 0.25,1.0 1.0,4.0
1.0,0.25 4.0,4.0 0.25,0.25 1.0,1.0.

PDF and αs variations

PDF and αs variations both work by specifying a PDF set
through the PDF argument of a variation. This is because
Sherpa per default uses the value for αs(m2

Z ) given by the
PDF set in use. Therefore an αs variation can be achieved by
using PDF fits for different values of αs(m2

Z ).
To specify a specific member of a PDF set, its number is

given as an additional argument separated by a slash. Thus,
1.0,1.0,CT14nlo/38 asks for the 38th member of the
CT14nlo PDF set, without modifying the renormalisation

and factorisation scales. If the slash and the number are not
given, the central PDF member is used, i.e. CT14nlo is
equivalent to CT14nlo/0.

Sherpa can also be asked to do variations for all mem-
bers of a PDF set by enclosing it in square brackets. Hence,
1.0,1.0,[CT14nlo] is equivalent to

1.0,1.0,CT14nlo/0 1.0,1.0,CT14nlo/1 ...
1.0,1.0,CT14nlo/56

This [PDF]-notation only works with PDFs interfaced
through Lhapdf6 [82]. It can be combined with scale fac-
tors that are enclosed in square brackets. Again, the expan-
sions are done individually, keeping other arguments at their
default values. This means that for example 1.0,[4.0],
[CT14nlo] is equivalent to 1.0,[4.0] 1.0,1.0,
[CT14nlo]. Hence, a 7-point scale variation and a full
CT14nlo PDF variation can be requested by

VARIATIONS [4.0,4.0],[CT14nlo];

Configuring how variations are calculated

The following options always affect all variations that are
specified by arguments to the VARIATIONS keyword.

REWEIGHT_SPLITTING_ALPHAS_SCALES (default:
0) If this is set to 1, the renormalisation scale factor is
applied to theαs argument of individual splittings, instead
of applying it only to the overall renormalisation scale,
see Sect. 4.2. This means that parton-shower splittings are
only included in the rescaling, if this option is enabled.
In the notation of Sects. 3 and 4, this sets k̃αs = μ̃R/μR .
REWEIGHT_SPLITTING_PDF_SCALES (default: 0)
If this is set to 1, the factorisation scale factor is also
applied to PDF scale arguments within shower splittings
(and intermediate cluster history PDF ratios), and not
only to the core-process PDFs. In the notation of Sects. 3
and 4, this sets k̃ f = μ̃F/μF .
REWEIGHT_MAXEM (default: −1) This option speci-
fies the number of ordinary parton-shower emissions
included in the reweighting per event. If this is set to 0,
no emission is reweighted. The default value −1 means
that all emissions should be reweighted.
REWEIGHT_MCATNLO_EM (default: 1) If this is set to 0,
the single parton-shower emission within the Mc@Nlo
contribution is not reweighted.
VARIATIONS_INCLUDE_CV (default: 1) If this is set
to 0, the behaviour of the square bracket syntax is
changed, such that the central-value variation is not
included when expanding a parameter in square brack-
ets. It is recommended not to disable it, such that one can
do a closure test between the dedicated calculation and
the reweighting. However, in CPU intensive applications,
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this setting can be used to omit this one obsolete variation
while still making use of the convenient square-bracket
syntax.
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