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Abstract This study investigates B∗
s,d → μ+μ− in the

dimuon distributions and the hadronic contribution Bs,d →
B∗
s,dγ → μ+μ−. The μ+μ− decay widths of the vec-

tor mesons B∗
s,d are approximately a factor of 700 larger

than the corresponding scalar mesons Bs,d . The ratio of

the branching fractions obtained,
Br(B∗

s,d→μ+μ−)

Br(Bs,d→μ+μ−)
, is approx-

imately 0.3×eV
�(B∗

s,d→Bs,dγ )
. The hadronic contribution Bs,d →

B∗
s,dγ → μ+μ− is also estimated. The relative increase

in the Bs,d → μ+μ− amplitude is approximately (0.01 ±
0.006)

√
�(B∗

s,d→Bs,dγ )

100 eV . If we select �(B∗
s,d → Bs,dγ ) =

2 eV, then the branching fractions of the vector mesons to
the lepton pair are 5.3 × 10−10 and 1.6 × 10−11 for B∗

s
and B∗

d , respectively. If we select �(B∗
s,d → Bs,dγ ) =

200 eV, then the updated branching fractions of the scalar
mesons to the muon pair are (3.78 ± 0.25) × 10−9 and
(1.09 ± 0.09) × 10−10 for Bs and Bd , respectively. If we
select the recent predicted M1 widths �(B∗

s,d → Bs,dγ ) =
313, 1230 eV (arXiv:1607.02169), then the updated branch-
ing fractions are (3.8 ± 0.3)×10−9 and (1.2 ± 0.1)×10−10

for Bs → μ+μ− and Bd → μ+μ−, respectively. Further
studies on B∗

s,d , including those on dielectron decay and two-
body decay with J/ψ , should be conducted.

1 Introduction

The leptonic decays of the Bs,d mesons play an important role
in the standard model (SM) and the new physics (NP) [1,2].
The leptonic decays are highly suppressed in the SM because
flavor-changing neutral current decays are generated through
W-box and Z-penguin diagrams. Furthermore, the branching
fractions of the leptonic decays of scalar meson go through
an additional helicity suppression factor by m2

μ/M2
S , where

a e-mail: nophy0@gmail.com

mμ and MS denote the masses of the muon lepton and the
scalar meson, respectively. The suppression can be removed
in several NP models, such as the two-Higgs-doublet mod-
els [3], the minimal supersymmetric standard model [4], the
next minimal supersymmetric standard model [5], the dark
matter [6], the universal extra dimensional model [7], the
lepton universality violation model [8], the fourth generation
of fermions [9], and so on [10]. The branching fractions of
Bs,d → μ+μ− measured by the CMS and LHCb Collabora-
tions [2], and predicted within the SM [1] with NNLO QCD
[11] and NLO EW [12] corrections are presented in Table 1.

On one hand, the experimental branching fractions of
Bs,d → μ+μ− are measured from the dimuon distribu-
tions by the CMS and LHCb Collaborations [2]. Thus, the
process B∗

s,d → μ+μ− will enhance the dimuon distribu-
tions for mass splitting between Bs,d and B∗

s,d at approxi-
mately 45 MeV. On the other hand, the hadronic contribu-
tion Bs,d → B∗

s,dγ → μ+μ− is missing in the theoreti-
cal prediction [1]. Therefore, this study focuses on B∗

s,d →
μ+μ− and its impact on Bs,d → μ+μ− within SM. The
Bs → B∗

s γ → μ+μ−γ process was considered in Ref. [13].
B∗
s,d → μ+μ− was recently considered in Refs. [14,15].

Moreover, Refs. [16,17]. also investigated the hadronic con-
tribution of charmonium in B → K (∗)�+�− and B → Xsγ .

2 The Decay of B∗
s (B

∗
d ) → μ+μ−

An effective Lagrangian related to bs̄ → μ+μ− within the
SM is given in Refs. [18–20]

L = N

[
Ceff

7 (μ f )O
γ
7 + Ceff

9 (μ f )O
V
9 + C10(μ f )O

A
10

]
,

(1)

where N = GF√
2
VtbV ∗

ts
e2

4π2 , and the operators O7,9,10 read
as follows:
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Table 1 The branching
fractions of Bs,d → μ+μ−
measured by the CMS and
LHCb Collaborations [2] and
predicted within the SM [1] with
NNLO QCD [11] and NLO EW
[12] corrections included

EX [2] SM [1] Deviations

Br(Bd → μ+μ−) (3.9+1.6
−1.4) × 10−10 (1.06 ± 0.09) × 10−10 2.2σ

Br(Bs → μ+μ−) (2.8+0.7
−0.6) × 10−9 (3.66 ± 0.23) × 10−9 1.2σ

Br(Bd→μ+μ−)

Br(Bs→μ+μ−)
0.14+0.08

−0.06 0.0295+0.0028
−0.0025 2.3σ

O
γ
7 = −2imb(pν

μ + pν
μ̄)

(pμ + pμ̄)2 (s̄σρν PRb)(μ̄γ ρμ), (2)

OV
9 = (s̄γρPLb)(μ̄γ ρμ), (3)

O A
10 = (s̄γρPLb)(μ̄γ ργ5μ), (4)

where PL = (1−γ5)/2 , PR = (1+γ5)/2. The Wilson coef-
ficients are Ceff

7,9,10(μ f ) = (−0.316, 4.403−0.47i,−4.493)

at μ f = mb = 4.5 GeV [15]. The superscripts γ , V , and
A denote the contributions from photon, vector current, and
axial vector current, respectively.

The relationships between the quark level operators and
the meson are described as follows:

〈0|s̄γ μb|B∗
s (q, ε)〉 = mB∗

s
fB∗

s
εμ, (5)

〈0|s̄σμνb|B∗
s (q, ε)〉 = −i f TB∗

s
(qμεν − εμqν), (6)

〈0|s̄γ μγ5b|Bs(q)〉 = i fBs q
μ, (7)

where the three decay constants fBs , fB∗
s
, and f TB∗

s
depend

on the renormalization scale, whose relationships have been
investigated in the heavy-quark limit of the Ref. [21]. Ignor-
ing the mass difference between Bs and B∗

s and the high-order
QCD corrections, we derive the following expression:

fB∗
s

= f TB∗
s

= fBs . (8)

Afterward, the B∗
s (Bs) → μ+μ− amplitudes are

expressed as follows [13]:

M (B∗
s → μ+μ−) = fB∗

s

N

2
mB∗

s
μ̄/ε

[
Ceff
V + C10γ5

]
μ,

M (Bs → μ+μ−) = i fBsN C10mμμ̄γ5μ, (9)

where

Ceff
V = Ceff

9 + 2
mb

mB∗
s

Ceff
7 . (10)

The helicity suppression factor m2
μ/m2

M in the decay width
is removed in the vector meson decay. Then the B∗

s (Bs) →
μ+μ− decay widths are obtained:

�(B∗
s → μ+μ−) = G2

f α
2
em

96π3

∣∣VtbV ∗
ts

∣∣2
(

|C10|2 +
∣∣∣Ceff

V

∣∣∣
2
)

×m3
B∗
s
f 2
B∗
s

(
1 + O(m2

μ/m2
Bs )

)
,

�(Bs → μ+μ−) = G2
f α

2
em

16π3

∣∣VtbV ∗
ts

∣∣2 |C10|2

×m2
μmBs f

2
Bs

(
1 + O(m2

μ/m2
Bs )

)
,

�(B∗
s → μ+μ−)

�(Bs → μ+μ−)
=

(
|C10|2 + ∣∣Ceff

V

∣∣2
)
m3

B∗
s
f 2
B∗
s

6 |C10|2 m2
μmBs f

2
Bs

×
(

1 + O(m2
μ/m2

Bs )
)
. (11)

The decay width ratio is approximately 700 for B(∗)
s and B(∗)

d
both.

3 The impact of B∗
s (B

∗
d ) → μ+μ− on

Bs(Bd) → B∗
s (B

∗
d )γ → μ+μ−

Furthermore, B∗
s,d will impact on the Bs,d leptonic decay

through the loop contribution Bs,d → B∗
s,dγ → μ+μ−.

The Feynman diagrams are shown in Fig. 1. This calcu-
lation is a part of EM corrections to Bs,d → μ+μ−. The
NLO EW corrections of Bs,d → μ+μ− within the SM have
been calculated in Refs. [1,12]. The hadronic contribution of
Bs,d → B∗

s,dγsoft → μ+μ− + γsoft has been calculated in
Ref. [13]. However, the contribution of Bs,d → B∗

s,dγ →
μ+μ− is missing in the previous calculation. This calculation
is incomplete. For instance, there is double counting between
the NLO EW corrections Bs → b+s+γ → μ+μ− [12] and
this calculation Bs → B∗

s γ → μ+μ−. We considered that
the contribution of Bs → B∗

s γ → μ+μ− will be retained
only when the B∗

s is nearly on-shell. If B∗
s is far away from

Bs

γ

B∗
s

μ−

μ+

Bs

γ

B∗
s

μ−

μ+

Fig. 1 Feynman diagrams of Bs,d → B∗
s,dγ → μ+μ−
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mass shell, Bs → b+s+γ → μ+μ− is dominant. As is well
known, the propagator of hadron will be modified duo to the
off-shell of hadron [22], and the Wilson coefficients Ceff

7,9,10
will be modified too [17,19]. Therefore, this treatment may
be regarded as a crude estimate, and the error may be large
in this treatment.

The vertex of Bs,d → B∗
s,dγ is expressed as the following

operator [23,24]:

MBs B∗
s γ =

∑
q=s,b

< B∗
s γ |ieeq q̄(pq̄)γμq(pq)|Bs >

=
∑
q=s,b

εμ
γ pν

γ < B∗
s |ieeq q̄(pq̄)

iσμν

2mq
q(pq)|Bs > .

We can simplify the matrix element< B∗
s |q̄(p)σμνq(p)|Bs >

with the procedure in Refs. [25,26],1

MBs B∗
s γ =

∑
q=s,b

−eeq
2mq

εμ
γ pν

γ < B∗
s |q̄(p)σμνq(p)|Bs >

= iεμναβεμ
γ pν

γ εα
B∗
s
pβ
B∗
s

∑
q=s,b

(
eeq
mq

)
I . (12)

I is related to the wave functions of B∗
s and Bs [25], which

is I =< Bs | j0(pγ r)|B∗
s >∼ 1 [27,28]. We can rewrite Eq.

(12) as follows:

MBs B∗
s γ = i

gBs B∗
s γ

mB∗
s

εμναβεμ
γ pν

γ εα
B∗
s
pβ
B∗
s
. (13)

Here the dimensionless vector–scalar–photon coupling con-
stant gBs B∗

s γ is related to the magnetic moments of b and s
quarks; and the phase factor i is consistent with the amplitude
of γ ∗ → V P in Ref. [29].

Ultraviolet (UV) logarithmic divergences are observed in
the evaluation of loop integrals. In the NLO EW corrections
of Bs,d → μ+μ− [12], the UV divergences are canceled
by the renormalization of C10. Just as R− value of hadron
production in e+e− annihilation, the hadronic contributions
will return the quark contributions if the B∗

s is far away from
the mass shell. So that the UV part of loop integral will be
suppressed due to avoid the double counting. We introduce
a cutoff regularization scheme for the following UV diver-
gence integral:

1 The decay constants defined of vector meson in Eq. (5) is different
from Eq. (44) in Ref. [25] with an additional i .

∫
d4q

(2π)4

1
(
q2
i − m2

i

) (
q2
j − m2

j

)

→
∫

d4q

(2π)4

⎡
⎣ 1

(
q2
i − m2

i

) (
q2
j − m2

j

)

− 1
(
q2
i − (mi + �)2

) (
q2
j − (m j + �)2

)
⎤
⎦ , (14)

where i, j = B∗
s , γ or μ, and qi corresponds to the i momen-

tum in the loop. � � MW for the amplitude is UV finite
when W boson is involved. The hadronic contribution will
be suppressed when

√
q2
j −m j 	 �QCD , where� is approx-

imately several �QCD . The cutoff regularization scheme is
similar to Pauli–Villars regularization scheme; however, the
cutoff regularization scheme acts on two propagators. The
Pauli–Villars regularization scheme of the UV divergence
integral is the same as the form factor F introduced in the
Bs B∗

s γ vertex in Ref. [30],

F =
(

�2 − m2
B∗
s

�2 − q2
B∗
s

)
, (15)

for

1

q2
B∗
s

− m2
B∗
s

F = 1

q2
B∗
s

− m2
B∗
s

− 1

q2
B∗
s

− �2
. (16)

However, the cutoff regularization scheme acts on the UV
divergence term, as well as the two propagators. Then the
soft contribution will be maintained in our calculation.

The amplitude from Bs → B∗
s γ → μ+μ− can be written

as follows:

M (Bs → B∗
s γ → μ+μ−)

= ieN gBs B∗
s γ R(�)Ceff

V fB∗
s
mμμ̄γ5μ, (17)

where Ceff
V = Ceff

9 + 2mb/mB∗
s
Ceff

7 and considered as a
constant.mμ reappears in the amplitude of the leptonic decay
of the scalar mesons. The R(�) factor serves as a function of
the high energy cut, as shown in Fig. 2. Detailed information
on the R(�) factor is provided in the appendix.

Compared with Eq. (9), the previous amplitude added the
factor F ,

F(B∗
s ) = M (Bs → B∗

s γ → μ+μ−)

M (Bs → μ+μ−)

= Ceff
V fB∗

s

C10 fBs
egBs B∗

s γ R(�). (18)

We can estimate gBs B∗
s γ in several ways, including the

heavy-quark and chiral effective theories [31,32] with the
radiative and pion transition widths of D∗+, the light cone
QCD sum rules [33,34], and the radiative M1 decay widths
of B∗

s → Bsγ from the potential model [27,35].

123
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Fig. 2 R(�) of Bs → μ+μ− defined in Eq. (17) as a function of the
cut off energy

The heavy-quark and chiral effective theories yield the
following expression [13–15]:

gBd B∗
d γ = −1.7 ± 0.2,

gBs B∗
s γ = −1.2 ± 0.2. (19)

The light cone QCD sum rules yield the following expression
[33,34]:

gBd B∗
d γ = −2.3 ± 0.3,

gBs B∗
s γ = −1.5 ± 0.2. (20)

The radiative M1 decay width of B∗
s → Bsγ is derived as

follows:

gBs B∗
s γ = −mB∗

s

(
12π

E3
γ

�(B∗
s → Bsγ )

)1/2

. (21)

The predicted M1 widths are 0.15–400 eV and 10–300 eV for
B∗
s → Bsγ and B∗

d → Bdγ , respectively [24,26,27,35,36].
Recently new predicted M1 widths were given in Ref. [28]:

�B∗
s →Bsγ = 0.313 KeV,

�B∗
d→Bdγ = 1.23 KeV. (22)

Then we can get the following value:

gBd B∗
d γ = −3.8,

gBs B∗
s γ = −2.0. (23)

4 Numerical result

The parameters in the numerical calculation are selected as
follows [37]:

� = 1.2 GeV,

mb = 4.2 GeV,

αem = 1/137. (24)

In the branch fraction of B∗
s,d , the weak decay is less than the

M1 decay, �tot(B∗
s,d) ≈ �(B∗

s,d → Bs,dγ ). The following
ratio is obtained:

Br(B∗
s → μ+μ−)

Br(Bs → μ+μ−)
= (0.34 ± 0.03) × eV

�(B∗
s → Bsγ )

,

Br(B∗
d → μ+μ−)

Br(Bd → μ+μ−)
= (0.33 ± 0.03) × eV

�(B∗
d → Bdγ )

.

(25)

The main uncertainty is derived from the f ∗
Bs,d

value. The
dimuon invariant mass distribution measured by the CMS and
LHCb Collaborations in Ref. [2] should include the B∗

s,d →
μ+μ− contributions. If �(B∗

s → Bsγ ) = 1 eV [27], we can

get Br(B∗
s →�+�−)

Br(Bs→μ+μ−)
= 0.34 for � = e, μ. Afterward, B∗

s →
e+e− may be searched by the CMS and LHCb experiments
with larger data samples.

Moreover, we observe that the amplitude of Bs,d →
μ+μ− is modified by the contributions of B∗

s,d with a factor

F(B∗
s,d) = (0.011 ± 0.006)

√
�(B∗

s,d → Bs,dγ )

100eV
, (26)

if �(B∗
s,d → Bs,dγ ) ∼ 100 eV. The main uncertainty is

caused by the � value. The new predictions of �(Bs,d →
μ+μ−) are provided as follows:

Br(Bs → μ+μ−) = (36.6 ± 2.3) ×

×
(

1 + (0.023 ± 0.012)

√
�tot(B∗

s )

100eV

)
× 10−10,

Br(Bd → μ+μ−) = (10.6 ± 0.9) ×

×
(

1 + (0.023 ± 0.012)

√
�tot(B∗

d )

100eV

)
× 10−11.

If �(B∗
s,d → Bs,dγ ) = 200 eV, then this factor will

increase the �(Bs,d → μ+μ−) decay width by a factor
of (3.3 ± 1.7)%, which is approximately a factor 10 times
larger than the neglect NLO EW correction factor 0.3% at
the decay width in Ref. [1]. In addition, the correspond-
ing gBs,d B∗

s,dγ = −1.5 about a factor 15 times larger than

eqe = −1/3
√

4παem = −0.10. �(B∗
s,d → Bs,dγ ) may be

measured through two-body decay B∗
s,d → J/ψ + M by

CMS and LHCb.
If �(B∗

s,d → Bs,dγ ) = 313, 1230 eV [28], then we can
get

Br(B∗
s → μ+μ−)

Br(Bs → μ+μ−)
= (1.1 ± 0.1) × 10−3,

Br(B∗
d → μ+μ−)

Br(Bd → μ+μ−)
= (2.7 ± 0.3) × 10−4. (27)

New predictions of �(Bs,d → μ+μ−) are provided as fol-
lows:
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Table 2 The branching
fractions of Bs,d → μ+μ−
measured by the CMS and
LHCb Collaborations [2] and
updated SM prediction with
�(B∗

s,d → Bs,dγ ) =
313, 1230 eV [28]

EX [2] SM [1] Updated SM

Br(Bd → μ+μ−) (3.9+1.6
−1.4) × 10−10 (1.06 ± 0.09) × 10−10 (1.2 ± 0.1) × 10−10

Br(Bs → μ+μ−) (2.8+0.7
−0.6) × 10−9 (3.66 ± 0.23) × 10−9 (3.8 ± 0.3) × 10−9

Br(Bd→μ+μ−)

Br(Bs→μ+μ−)
0.14+0.08

−0.06 0.0295+0.0028
−0.0025 0.031 ± 0.0036

Br(Bs → μ+μ−) = (3.8 ± 0.3) × 10−9,

Br(Bd → μ+μ−) = (1.2 ± 0.1) × 10−10,

Br(Bd → μ+μ−)

Br(Bs → μ+μ−)
= 0.031 ± 0.0036. (28)

The numerical results are shown in Table 2 too.

5 Summary

In summary, this study investigated B∗
s,d → μ+μ− in the

dimuon distributions and the hadronic contribution Bs,d →
B∗
s,dγ → μ+μ−. The μ+μ− decay widths of the vec-

tor mesons B∗
s,d are approximately a factor of 700 larger

than the corresponding scalar mesons Bs,d . The obtained

ratio of the branching fractions
Br(B∗

s,d→μ+μ−)

Br(Bs,d→μ+μ−)
is approx-

imately 0.3×eV
�(B∗

s,d→Bs,dγ )
. The hadronic contribution Bs,d →

B∗
s,dγ → μ+μ− is also estimated. The relative increase

in the Bs,d → μ+μ− amplitude is approximately (0.01 ±
0.006)

√
�(B∗

s,d→Bs,dγ )

100 eV . If we select �(B∗
s,d → Bs,dγ ) =

2 eV, then the branching fractions of the vector mesons to the
lepton pair are 5.3 × 10−10 and 1.6 × 10−11 for B∗

s and B∗
d ,

respectively. If we select �(B∗
s,d → Bs,dγ ) = 200 eV, then

the updated branching fractions of the scalar mesons to the
muon pair are (3.78±0.25)×10−9 and (1.09±0.09)×10−10

for Bs and Bd , respectively. If we select the recent predicted
M1 widths �(B∗

s,d → Bs,dγ ) = 313, 1230 eV [28], then

the updated branching fractions are (3.8 ± 0.3) × 10−9 and
(1.2 ± 0.1) × 10−10 for Bs → μ+μ− and Bd → μ+μ−,
respectively. Further studies on B∗

s,d , including those on
dielectron decay and two-body decay with J/ψ should be
conducted.
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Appendix A: Appendix R(�)

R(�) of Bs → B∗
s γ → μ+μ− defined in Eq. (17) is

obtained as follows:

R(�) = 1

32π2mBs
2m2

μ

{
3mBs

2m2
μ − 2m2

μ

(
mBs

2 − mB∗
s

2)2

×C0
(
mBs

2,m2
μ,m2

μ,mB∗
s

2, 0,m2
μ

)

+mBs
2(m2

μ − mB∗
s

2)
(
B0

(
0,m2

μ,mB∗
s

2)

− B0
(
0, (� + mμ)2, (� + mB∗

s
)2))

+ (
m2

Bs

(
2m2

μ + mB∗
s

2) + 2m2
μmB∗

s
2)

(
B0

(
m2

μ,m2
μ,mB∗

s
2)

− B0
(
m2

μ, (� + mμ)2, (� + mB∗
s
)2))

+m2
μ

(
3mBs

2 − 2mB∗
s

2) (
B0

(
m2

μ, 0,m2
μ

)

− B0
(
m2

μ, �2, (� + mμ)2))
}
. (A.1)

The scalar functions B0 and C0 are given in Refs. [38–40].
As a numerical fit between 0.5 − 2 GeV, R(�) is obtained
as follows:

R(�) = 0.022 + 0.062 × ln

(
� + mBs

mBs

)
. (A.2)
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