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Abstract Solving field equations in the context of higher
curvature gravity theories is a formidable task. However, in
many situations, e.g., in the context of f(R) theories, the
higher curvature gravity action can be written as an Einstein—
Hilbert action plus a scalar field action. We show that not only
the action but the field equations derived from the action
are also equivalent, provided the spacetime is regular. We
also demonstrate that such an equivalence continues to hold
even when the gravitational field equations are projected on a
lower-dimensional hypersurface. We have further addressed
explicit examples in which the solutions for Einstein—Hilbert
and a scalar field system lead to solutions of the equiva-
lent higher curvature theory. The same, but on the lower-
dimensional hypersurface, has been illustrated in the reverse
order as well. We conclude with a brief discussion on this
technique of solving higher curvature field equations.

1 Introduction

The energy scales in particle physics are arranged in a hierar-
chical manner. While the scale of the weak interaction corre-
sponds to E ~ 103 GeV, the strong interaction at a scale of
E ~ 10'° GeV exceeds the weak scale by a factor of 10!3.
This large difference leads to a fine tuning problem in the
scheme of renormalization — known as the gauge hierarchy
problem. This fine tuning is absolutely necessary to renor-
malize the mass of the Higgs boson, which recently has been
detected with a mass of 127 GeV. At face value, this fine tun-
ing is what nature prefers and the question is why? Hence it
is natural to ask, is there a more fundamental principle from
which this fine tuning would appear naturally?

There has been a large amount of work to address the
hierarchy problem, and a few candidates have emerged out of
it—supersymmetry, technicolor, and extra dimensions. In this
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work we will be concerned solely with the third alternative,
i.e., we will assume the actual spacetime has more than three
spatial dimensions (commonly referred to as the bulk), while
the spacetime we live in is a four-dimensional hypersurface
in the bulk (commonly referred to as the brane). The two
immediate observable consequences are a change of 1/r>
gravitational force law at the length scale of extra dimensions,
and the existence of a massive graviton through the Kaluza—
Klein tower [1-9].

To probe these extra dimensions one needs to have a high
enough energy or a high enough curvature, such that the rel-
evant energy scale of the problem comes close to the Planck
scale. General Relativity, described by the Einstein—Hilbert
action is considered to be an effective theory of gravity,
valid far below the fundamental Planck scale [10]. Once
energies approach the Planck scale, one not only expects
to observe deviations from the Einstein—Hilbert action but
also signatures of the extra dimensions. This is particu-
larly relevant, since future colliders will probe higher and
higher energies such that aspects beyond general relativity
should become apparent. Since the ultraviolet behavior of the
true gravity theory is yet unknown one hopes that in these
high energy/high curvature regimes deviations from stan-
dard model or deviations from Einstein gravity may appear
through the existence of extra dimensions. To capture some
of the aspects of “quantum gravity” one is tempted to con-
sider how the presence of higher curvature (and higher deriva-
tive) invariants in the higher-dimensional gravitational action
modifies the well-known results [11-15].

The higher derivative terms that one can add to the
Einstein—Hilbert action are not unique. However, many of
these terms can lead to a linear instability, called the Ostro-
gradski instability, leading to the appearance of ghost fields
and hence will not be considered in this work. Among the
higher curvature theories, the Lanczos—Lovelock gravity and
the f(R) gravity are of much importance. The Lanczos—
Lovelock gravity is special in the sense that the field equa-
tions derived from the Lanczos—Lovelock action contain only
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second order derivatives of the metric and have a natural ther-
modynamic interpretation [16-20]. On the other hand, f(R)
gravity was first introduced to explain both early and late
time exponential expansion of the universe without invoking
additional matter components, e.g., dark energy [21-27]. But
only addressing cosmological observations does not lead to
a viable model, for that the f(R) theories should pass the
local gravity tests — perihelion precession of Mercury and
bending angle of light — as well. It turns out that solar system
experiments do not exclude the viability of f(R) theories at
scales shorter than the cosmological ones, but they provide
constraints on f”(R) and hence constraints on the parame-
ters of the model. Thus it is can be affirmed that extended
gravity theories cannot be ruled out, definitively, using Solar
System experiments [28-31].

It is also well known that f(R) gravity theories can be
related to scalar—tensor theories by a conformal transforma-
tion at the action level [22-24,32-38]. Thus it is important to
consider the following situation — obtaining field equations
from the scalar—tensor representation and from the f(R)
gravity representation. Since the two actions are related by
a conformal transformation, the field equations should also
be equivalent. However, the situation is not trivial, since the
metric in scalar—tensor representation depends on the con-
formal factor, its variation can potentially lead to various
additional terms, which must cancel other terms exactly in
order to arrive at the equivalence. If the equivalence exists,
we can use it to solve field equations for scalar—tensor the-
ory and obtain the solution corresponding to f(R) action
and vice versa. This would be advantageous, since in gen-
eral solving the field equations for f(R) gravity, where R is
not a constant, is difficult' [22,41-47]. The corresponding
scalar—tensor solution could in principle be much simpler.
The same should work on the brane hypersurface as well.
The effective field equations on the brane derived through the
Gauss—Codazzi formalism in the f(R) representation [48—
53] should be equivalent to the same but derived from the
scalar—tensor representation. The non-triviality of this result
originates from the quadratic combination of energy momen-
tum tensor and extrinsic curvature appearing in the effective
field equations.

As an aside, we should mention that the conformal trans-
formation is well motivated only when the spacetime does
not have singularities. Such singularity free spacetimes have
been obtained earlier in the context of cosmology with mod-
uli dependent loop corrections of the gravitational part of
superstring effective action with orbifold compactifications
[54]. However, to obtain a singularity free description it was

! Note that in the cosmological context one can solve the field equations
for f(R) gravity by a trick, known as the reconstruction method [39,40].
We will have an occasion to comment on this method when we compare
our technique introduced in this work with the reconstruction scheme.
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necessary that the stress energy tensor associated with the
modulus should violate the strong energy condition. In cir-
cumstances where the energy conditions are obeyed, one
obtains singular solutions in general. For singular space-
times, viz., cosmological spacetimes near the Big Rip or Big
Crunch the transformation can break down. In those contexts
it can exhibit peculiar behavior, e.g., the Big Rip singular-
ity, which may appear in some versions of f(R) gravity can
either map itself to the infinite past or future, or it can be
replaced by a Big Crunch singularity [35,55]. Another point
requires clarification at this stage; this has to do with the
physical non-equivalence of the two frames. All the com-
ments phrased above have to do with mathematical equiva-
lence, but the physical solutions can be very different [55].
This is evident, since the conformal factor can change the
complete structure of the spacetime. This fact was pointed
out earlier in [56] by showing that through a conformal trans-
formation one can create matter and as a result, one frame is
empty while another has matter, and clearly they are phys-
ically non-equivalent. This should not come as a surprise,
since the Schwarzschild metric under conformal transforma-
tion no longer satisfies Einstein’s equations. Further in the
cosmological context for f(R) gravity model it was explic-
itly demonstrated [55,57] that neither the Hubble parameter
nor the deceleration parameter matches in Jordan and Ein-
stein frame, showing the physical non-equivalence. In view
of the above, the phrase “equivalence” in the following sec-
tions should be understood in a mathematical sense, not in
a physical sense. Further, we will content ourselves, with
only those spacetimes (or regions of spacetimes) which are
regular, such that the conformal transformation between the
two frames is well defined throughout the region of inter-
est.

The paper is organized as follows: In Sect. 2 we present
a brief review of the equivalence between the f(R) grav-
ity and scalar—tensor theory in five dimensions and hence
the equivalence between the bulk field equations as well.
Section 3 is devoted to show the equivalence between the
effective field equations on the brane. The application of
the bulk equivalence is presented in Sect. 5. There we have
started from scalar—tensor theory and have solved the bulk
equations, from which the solution in f(R) representa-
tion is obtained. In Sect. 6 we consider brane spacetime
where the solution in scalar—tensor representation starting
from the f(R) representation is derived as another explicit
example. We conclude with a brief discussion of this tech-
nique.

We have set the fundamental constants ¢ and 7 to unity
and shall work with mostly the positive signature of the
metric. The Latin indices, a, b, ... runs over the full space-
time indices, while Greek indices, i, v, ... stand for four-
dimensional spacetime.
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2 Equivalence of gravitational field equations in the
bulk

The starting point for any fundamental theory corresponds to
correct identification of the dynamical variable and the asso-
ciated field equations. A useful trick to obtain the field equa-
tions is to introduce an action principle, extremizing which
one can obtain the field equations. Along similar lines, in
gravitational theories as well one considers the metric g, as
dynamical. Given an appropriate action, when arbitrary vari-
ations of g, are considered, the gravitational action reaches
an extremum value only if g, satisfies the gravitational field
equations. For example, Einstein’s equations follow from
variation of the Einstein—Hilbert action, which is the Ricci
scalar. At high enough curvature (or energy) the Einstein—
Hilbert action is most likely to be supplemented by higher
curvature corrections. Among many such viable modifica-
tions, f (R) theories are of particular interest. The action for
the f(R) gravity model (also known as the Jordan frame) in
five spacetime dimensions reads

5= [ e 480 2

5

— /deJTg[(f/R - f/R—_f> +£m], (1

2 2
2k 25

where «5 is the five-dimensional gravitational constant, £,
is the matter Lagrangian, and f’ stands for d f/dR. A con-
formal transformation of the Jordan frame metric g, results
ing, = Q2 gab, Where 2 is the conformal factor. The result-
ing action, written in terms of g,5, can be obtained using the
transformation properties of the curvature tensor yielding

P
S = ‘/‘dsx«/—g [sz 5 {W (522R 1802010 Q

5

—IZgHbVaQVbQ) - U(f)] T Lm} . )

Here U(f) stands for (f'R — f)/2fc52 and L,, is the mat-
ter Lagrangian in the conformally transformed action. Note
that, with our conventions, all the metric dependent quantities
originating from a conformal transformation of the Jordan
frame are boldfaced. We will follow this convention through-
out this work. Under the following identifications:

Q= f; K5¢=%ln f'=2V3In Q, )

the action presented in Eq. (2) reduces to the following form
(known as the Einstein frame action):

R 1
Sg = /d5x./—g <—2 - —g”bVa¢Vb¢ - Vi) + L:m)
2 2
4
+/d4x«/ﬁ—2n°vcln Q. “4)
ks

The Einstein frame action can be divided into a bulk term
and a surface term, as evident from Eq. (4). If we are only
interested in a variation of the action and a derivation of the
field equations, the boundary term can be safely ignored.
However, while concentrating on brane dynamics, which is a
boundary effect, the surface term will be important. Further,
the potential term V (¢) appearing in Eq. (4) corresponds to

J'(@)R(P) — [($)

V(g) = 2271

&)

which can be obtained by solving Eq. (3). Extremizing the
Einstein frame action presented in Eq. (4) with respect to
arbitrary variations of the metric g?”, we readily obtain the
field equations in the Einstein frame,

1
Gap =Ryp — ERgab

1
=3 [Vawm — 8ab (Engvc¢Vd¢+ V(qb))} + k2T yp.
(6)

The energy momentum tensor T, is obtained from the matter
action L, by variation of the Einstein frame metric ggp.
Using the conformal transformation, the energy momentum
tensor T, in the Einstein frame can be related to the energy
momentum tensor Ty in the Jordan frame by

2 5(V/=8Lm)
/_g 5gab
2 8(v—gLm) 1
\/—_gQS Q—Z(ggab

= ?Tab .

Since the Jordan frame action S; is derivable from the Ein-
stein frame action Sg through a conformal transformation,
the bulk equations derived from them should coincide. The
above statement, though physically well motivated is by no
means trivial. This has to do with the fact that while deriving
the Einstein frame equations one should vary the Einstein
frame metric g,5. This in turn leads to an arbitrary variation
of the Jordan frame metric g,; and the conformal factor 2.
Since the conformal factor can be written in terms of the cur-
vature tensor due to the identification in Eq. (3), it can lead
to various additional correction terms. It is not clear a priori
how these terms combine and yield correct field equations
in the Jordan frame. Since there exists no explicit derivation
of the same, it is worthwhile to explicitly demonstrate the
equivalence.

(N
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In order to prove the same we will start from Eq. (6) and
shall try to write every curvature tensor components in terms
of the Jordan frame metric g,,. This can be done using the
transformation properties of curvature tensors between the
two frames related by a conformal transformation, leading
to

VaVo f' ANV f af’
Rap = Rap — af/ + 3 ! Iz — 8ab 3/ 3
and
8 Of 4 gV fVaf
gapR = gupR — ggabT + ggabT- 9)

Having expressed both the Ricci tensor and the Ricci scalar
in the Einstein frame in terms of the conformal factor and the
corresponding curvature components in the Jordan frame, the
Einstein tensor in the Einstein frame can be expressed as

Gup = Gup — VaVo f' 4 Vaf"Vi ]’
ap — a
f/ 3 f/2
2 g fIVaf g
—ggabg‘f#mab ff,. (10)

Further the contribution from the scalar field present in the
right hand side of Eq. (6) can be written in terms of f(R)
and its various derivatives as

1 .
VadVid — gab <7g‘dvc¢vd¢ + V(¢)>

2
L[4V 2 N f'R—f
_K52 3 Iz 3gab Iz 8ab 2f .
(11)

Using these relations between the Einstein frame and the Jor-
dan frame, the field equations in the Einstein frame presented
in Eq. (6) can be written as

f'R—f

B 8ab — Vavhf/ + gath/ = K52Taba

12)

f/Gab +

which are precisely the field equations one would have
obtained by extremizing Eq. (1) for an arbitrary variation
of the Jordan frame metric g,5. Hence follows the equiv-
alence. As a consequence if one can solve for g, starting
from the field equations in the Einstein frame, the solution in
aJordan frame can be obtained through a conformal transfor-
mation and vice versa. We should emphasize that the above
statement, though mathematically correct, practically might
require suitable approximations for inverting various func-
tional relations connecting the two frames. We will provide
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detailed comments on this aspect later on, while providing
concrete examples.

Even though we have used the metric formalism to arrive
at the equivalence, one can also use another method known
as the Palatini method. For discussions of the same we refer
the reader to [23,58-61].

3 Equivalence of effective field equations on the brane

In the previous section, we have shown the equivalence
between the bulk field equations derived from the Einstein
and the Jordan frames. However, from the perspective of
brane world, governed by effective field equations derived
from the bulk action, the equivalence of the effective field
equations is more important. The effective field equations
involve various quadratic combinations of the extrinsic cur-
vature and the matter energy momentum tensor. Thus all the
additional terms with their appropriate factors present in the
Einstein frame must cancel each other such that effective
field equations in the Jordan frame are obtained. In this con-
nection we would like to highlight that in most of the works
related to f (R) gravity the surface term in the Einstein frame
is ignored; however, in order to prove the equivalence on the
brane this term is absolutely necessary. Hence the equiv-
alence of the effective field equations too, is a non-trivial
statement. In this section we will explicitly demonstrate this.

The bulk field equations in the Einstein frame involve the
energy momentum tensor of the scalar field along with any
other matter fields which may be present in the bulk. The
bulk energy momentum tensor Tubg'lk (the trace is denoted
by 7K will induce an effective brane energy momentum
tensor T;)gane as

2 1
KZTlEffme = §K52 [T;glkeﬁee + hp <Tabl;'1knanb - ZTbUIk>i| .

13)

Here &5 is the five-dimensional (i.e., bulk) gravitational con-
stant while x4 is the four-dimensional (i.e., brane) gravita-
tional constant. Moreover, the object e, stands for dx“ /9y,
where y* corresponds to the brane coordinates and x“ are
the bulk coordinates. The normal to the brane hypersurface
is n, such that the induced metric on the brane hypersurface
becomes A, = eﬁef(gab — ngnp) [62].

To obtain the effective field equations in the Jordan frame,
we need to express the scalar field in terms of f(R) and its
derivatives. Thus, the bulk energy momentum tensor T((;i) for
the scalar field reads

4 2
T = SValn £V In ' = S (8 Veln f'Valn f)

f'R—f

37 (14)

— 8ab
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Using this the following results can be obtained:

4 2
k2T nnb = @[5 (n"Valn f) = SVain £V
f'R—f
/ e —
xin f' = S5 | (15)
| r4 10
K2T®) = @[gva In f'VIn f' = =VaIn £V
!
R —
x1In f’ —su]. (16)
27

From these expressions of the bulk energy momentum tensor
of the scalar field, the brane energy momentum tensor, after
some simplifications (using Eq. (13) in particular), leads to

8 5
Ky TP)Prane — Ve In f'V,In f’—gh,wva In f'Ven f’
3 f'R—f 8 2
- ZthB—f/ + 6}1,“; (n“Va In f/) .

a7

Let us now work through the last bit of this analysis regarding
the Einstein tensor. Using the transformation properties of the
Riemann tensor and the Ricci scalar we immediately obtain
the following result for the induced Einstein tensor:

V.V, Q hPV,VsQ  V,QV,Q
G =Gy -2 +42h,, S‘; +4 “Qz”
h*PV,QVgQ
_ W%' (18)

In this particular case, the conformal factor €2 is related to
d f/dR through the relation Q = f’!/3. Using this relation,
after some straightforward manipulation and simplification,
we arrive at

2V f | BV f

3 f/ 9 f/2

5 Vo f'Vs f' 2V, Vs
haﬂLzﬂf P EALA) 2

— Sl 7 7

G =Gy —
(19)

The only remaining part corresponds to the electric part
E, of the bulk Weyl tensor Cypcq. From the transforma-
tion property of the Weyl tensor it immediately follows that
E,, = E,,. Combining all these, in the Einstein frame the
effective gravitational field equations on the brane take the
form

1
Tzrsne = GV«V - :KKMU - Ksza - Ehuv (K2 - KMUKMU)}

+Eyu — kT

1
=Gy — :KKW—K;jKW—EhW (KZ_KWKM)}+EW

2V Vg f

2V, Y, f f'R—f
_z + i

3T a7 + hy hob

(20)

which are precisely the effective gravitational field equa-
tions in the Jordan frame with the identification TIE’ff"‘e =
a/f ’)Tzﬂ‘}“e. Hence the equivalence works at the level of
effective field equations as well. However, the practical
implementation of the above result again requires inversion
of complicated functional forms and hence invites approxi-

mations.

4 A comparison with reconstruction methods in f(R)
gravity

In the above two sections we have shown the equivalence of
gravitational field equations both in the bulk and in the brane,
respectively. In this section we will present a comparison of
our method with an existing well-known method in f(R)
gravity, the reconstruction method. As already emphasized,
due to the presence of higher derivatives in the field equa-
tions for f(R) gravity, obtaining a straightforward solution
in a general case is very difficult. Even for systems with a
large number of symmetries, e.g., in cosmology which has
a single unknown function a(#), solving the field equations
directly in the Jordan frame is very complicated. This leads to
the reconstruction method, which we will briefly summarize
[63-66].

In the reconstruction method one assumes that the expan-
sion history of the universe is known exactly and by invert-
ing the field equations one can determine what class of f(R)
theories can give rise to the observed universe. For example,
power law solutions for the scale factor singles out R" to be
the gravitational action. Since the scale factor a(t) is known,
the Ricci scalar is also known as R(¢). This can be inverted
to gett = g(R) and hence the Hubble parameter is known to
be a function of the Ricci scalar. This, when used in the field
equations, leads to a differential equation for f(R), which
can be solved to find the gravity model [63—-65]. There have
been other variants of this model, e.g., assuming every physi-
cal quantity to be a function of the scale factor or a function of
the Hubble parameter, which ultimately leads to a differential
equation for the gravity model [66]. The essential ingredients
remain the same but one particular case may be convenient
in comparison to the other in a particular situation. Let us
now explicitly point out the advantages and disadvantages of
the reconstruction scheme as well as our approach.

e An important limitation of the reconstruction method is
that only very simple cosmic histories, e.g. simple power
law behaviors, can be connected to f(R) theory in an
exact way. Our method has similar disadvantages. Even
though the field equations can be exactly solved in the

@ Springer
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Einstein frame for a few cases of interest, the inversion
of the potential to f(R) theory can be performed only in
simple situations.

e The reconstruction method is adapted to cosmologi-
cal spacetimes only, since the cosmic history is known
through experiments. However, the situation we are inter-
ested in corresponds to higher-dimensional physics in the
presence of higher curvature gravity, the possible behav-
ior of the warp factor, and the brane separation. Since
there is no experimental backdrop for extra dimensions
it is not possible to come up with a physical ansatz. Thus
one needs to solve the field equations at face value, which
can be efficiently done using our method as we have illus-
trated in the next sections.

e The utility of the reconstruction scheme lies in its quick
and straightforward analysis. Given a phenomenological
scale factor a(t) one needs to solve a single differential
equation to get f(R), given the inversion t = 7(R). In
our method one first need to solve the gravity plus scalar
field system to get the solution in Einstein frame, which
itself is a formidable task. Then one needs to invert the
potential V(¢) to get f(R) and finally the conformal
transformation will yield the solution in the Jordan frame.

Thus both methods have their own advantages and disadvan-
tages. The reconstruction method is very simple, applicable
even in the presence of singularity and useful in a cosmo-
logical context, while it is not so useful when applied to
other scenarios, e.g. extra dimensions. On the other hand,
the method introduced in this work, even though it requires
a regular spacetime region and involves more steps to arrive
at the solution, is very robust. It will work for any regu-
lar spacetime region, from cosmological scenarios to extra
dimensions as explained in later examples.

5 Einstein to Jordan frame in the bulk: explicit
examples

We will now illustrate through simple examples how one
might obtain solutions to bulk field equations in f(R) grav-
ity, which involve higher derivative terms, by exploiting the
equivalence with scalar tensor theory depicted in the previ-
ous sections. As emphasized before, due to the occurrence
of higher derivative terms it is difficult to solve for the bulk
equations of f(R) gravity. On the other hand, solving a set of
coupled equations of gravity plus scalar field system is much
simpler. Hence, through the equivalence shown earlier, if we
can obtain a solution for the bulk metric g, in the Einstein
frame, the corresponding solution in the Jordan frame will
differ only by a conformal factor.

Before we jump into detailed calculations it is worthwhile
to sketch the flowchart we are going to follow — (a) We will

@ Springer

start with the bulk action in the Einstein frame. (b) For some
suitable potential, we will find the metric describing the bulk
spacetime, by solving the bulk field equations. (c) We will
match the potential in the Einstein frame with the corre-
sponding f(R) theory in the Jordan frame. (d) Finally the
conformal transformation will yield the corresponding bulk
metric in the Jordan frame. In the examples to follow we will
explicitly illustrate all the four steps mentioned above.

Bulk field equations in Einstein frame We start by solving the
field equations of gravity and the scalar field in the Einstein
frame. We assume that the branes are flat, viz., 1., is the
spacetime metric on the brane. Further, the two branes are
assumed to be separated by the stabilized value of the radion
field r. [67,68] such that the metric ansatz turns out to be
(this ansatz is useful, particularly in the context of the gauge
hierarchy problem)

ds® = e A0y dxtdx” + r2dy?, (21)

where A(y) is the warp factor and is dependent on the extra
spacetime coordinate alone. From the above metric ansatz
the non-zero components of the Ricci tensor are immediate,

€_2A

Ruv = (4= 4A%) nus Ry, =44" = 442,

2
re

(22)

Note that we are following the previously mentioned con-
vention: all the metric dependent quantities in the Einstein
frame are boldfaced. From the components of the Ricci ten-
sor, a straightforward computation of the Ricci scalar leads
to

R = iz <8A” _ 20A’2) . (23)

rC
Given the Ricci tensor and the Ricci scalar one can further
compute the non-zero components of the Einstein tensor:

—24
G =3 mu (—A"+24%): Gy, =642 (24)
rC
such that the bulk gravitational field equations (see Eq. (6))
in the Einstein frame become

1 .
Gap = —Agap + K3 [aacpab«p — g {Eg“amadzp + V<¢>” ,
25)

where A is the bulk cosmological constant. From Eq. (23) it
is clear that the bulk curvature depends only on the extra coor-
dinate y, since A depends on y only. Thus logical consistency
of the field equations demand that ¢ should also depend only
on the extra-dimensional coordinate y. In this case Eq. (25)
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reduces to the following three coupled equations for gravity
and scalar field:

—3A" +6A”% = —Ar? —KS[ —¢”? 4 r? V(¢>):| (26)
LIS T P 02 “Syeg), o
512
"o (YA 2&
¢ 4A¢—rca¢, (28)

where a prime denotes the derivative with respect to y. Elim-
inating A’ from the first two equations we obtain

A = ';—52¢/2. (29)

In general the solution to the above coupled equations can
be obtained by introducing a super-potential W (¢) which
satisfies the following differential equation:

bwo Ay L (WY
W = r.—i-IZK52 20 V(g). (30)

The above differential equation for W (¢) can be inverted and
the potential V (¢) gets determined in terms of W(¢) by

A 1 oW\ 2
V(¢)=——2+ . ( )— w2. (31)

K3 ksrk \ ¢ 3/(521'2

c

In such a scenario the coupled equations become separable.
One thus obtains separate differential equations for the metric
function A and the scalar field ¢ in the following form:

1 10w
A=-W; ¢ =—"—". 32
=2 (32)

On the other hand, if one postulates the separability of the
coupled field equations, then also the expression of the poten-
tial V (¢) in terms of the super-potential W (¢) follows. This
choice for A and ¢ also satisfies the field equation for ¢ as
well, as one can easily check. The only remaining one cor-
responds to Eq. (29), i.e., the A” equation.

Solutions in Einstein frame We have set the stage; it is now
time to act. Having obtained the field equations in a sensible
form, let us now solve for the bulk metric. In order to satisfy
Eq. (29) one requires two possible choices for W(¢) — (i)
W(p) = cop, (i) W(pp) = a — b¢2 for arbitrary choices of a,
b, and c. Solving the field equations in both cases separately
leads to the following:

e The super-potential is linear in ¢, i.e., W(¢) = c¢. Then
from Eq. (32) one obtains A’ = (b/3)¢, such that A” =
(c/3)¢’, while ¢’ = c//<52. This set identically satisfies

Eq. (29). The corresponding potential V (¢) turns out to
be

vy =R 2 (33)
o 52 2/<g‘r2 3”52’%2 ’

c

with the following solution for A(y) and ¢ (y):

S =do+ 5, (34)
ks
coo c? 2
AY) =Ao+ —y+ —r" . (35)
3 6/(52

e The super-potential is quadratic in ¢, i.e., W(¢) = a —
b¢?. From Eq. (32) we get A’ = (1/3)(a — b¢?), hence
this yields A” = —(2b/3)¢¢’, with ¢’ = —(2b/K52)¢
These expressions can easily be manipulated to show that
Eq. (29) is indeed satisfied. Then the potential becomes

Vi) = A 2a?
B K52 3r§K52

2 2
+< L 4ab>¢2_ 21; S G6)

2r§icg‘ 3r02/<52 3r] K52

with the following solutions for A(y) and ¢ (y):

b
¢ (y) = doexp (—py) ; 37

5
2 2

AL LS b2 )b (38)
- —¢pexp| —2—y).
6 y 6 0 p Kszy

Thus we have exactly solved the bulk gravitational field equa-
tions in the Einstein frame for two choices of the scalar field
potential. One of them is quadratic, i.e., V(¢) = a + b¢>2,
while the other corresponds to quartic potential, V(¢) =
a+bg? + cop*. Now we need to execute the last two steps in
our flowchart, namely, (a) one should identify a f (R) model,
which gives rise to the potentials obtained above and (b) one
needs to find the conformal factor relating the two frames
and hence the metric can be obtained in the Jordan frame.

A(y) = Ao +

Connecting Jordan and Einstein frame So far we have been
working solely in the Einstein frame. In order to obtain the
respective solution in the Jordan frame, we have to connect
the scalar field to a f (R) model, which can be done through
the relations

f'R—f

2f/5/3 : 39)

Ksp = %m f(R); «k3V =

These relations follow from the original connection between
Einstein and Jordan frame discussed in Egs. (3) and (5),

@ Springer
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respectively. In principle one should start with the quadratic
and quartic potentials obtained previously and hence obtain
the corresponding f(R) theory in the Jordan frame by using
Eq. (39). However, we will take the opposite route, i.e., we
will start with some f(R) model and arrive at the respective
potentials in the Einstein frame using Eq. (39) and map it to
those obtained earlier.

e The simplest model is always the best to start with. For
f(R) gravity this corresponds to a situation, where the
Einstein—Hilbert term receives a quadratic correction,?
i.e., f(R) = R+aR?. For this particular model of f(R)
gravity, the scalar field and the potential can be written
in terms of the Ricci scalar in the Jordan frame as (using

Eq. (39))

K5¢:%1n (1+2R); Rzi [exp(pr _1}
(40)

Vo= g [0 (535) 2ow (-%)
reow (-3 750) | (41)

The minimum of the potential corresponds to 9V /d¢ =
0, with ii)zV/quﬁ2 > (. Both conditions can be satis-
fied, provided 5 = 1, or ¢ = 0. Finally, expanding
around the minimum one obtains the following form for
the potential:

V(¢)=1[<1+"5¢+

2,2
L5 )_2(1_/<5¢+é,(52¢2>

a2 23 2 12 V3
5 12547\ | 3 ,

Thus we have a quadratic potential for ¢, which originates
from R + aR? gravity. Matching the potential to that
derived in the Einstein frame, given by Eq. (33), we obtain
the following relation: A = —9/(128«).

e Let us now consider a more general f(R) gravity model
for which f(R) = R + «R?> + BR*, where « and f8 are
dimensionful constant coefficients, with values such that
the model becomes ghost free. Then from Eq. (39) we
obtain R = (\/§K5¢) /(4a), such that the potential turns
out to be

aR*+3BR* 3,
%2 3«

3 2
13 B
2 444

V(p) = ¢t (43)

2 The quadratic correction is well known in the literature; see for exam-
ple [69-73].

@ Springer

where we have assumed o > f > a2, consistent with
the ghost free criterion for this f(R) model. Compar-
ing this with the potential obtained by solving bulk field
equations in the Einstein frame, presented in Eq. (36) we

immediately obtain
y— _3r2A . _4a/<52 N 16a%kc N 3r2is
27 3 9 16a ’
(44)

45p2a4
p=- 34r02/cg"

This completes the connection between Einstein and Jordan
frames. The potentials obtained in the Einstein frame get
mapped to respective f(R) theories.

Solutions in Jordan frame We have now reached the final step
of our flowchart, viz., a solution to the bulk field equations in
the Jordan frame. For this purpose we can use the connection
with the Einstein frame derived earlier.

e For f(R) = R + aR?, the corresponding scalar field
potential in the Einstein frame is quadratic with the map-
ping being given by Eq. (42). Thus, the conformal factor
turns outtobe Q@ = (14+2aR)'/3 = [1+ (V359 /2)1'/3.
Hence the bulk solution in the Jordan frame corresponds

to
—2/3

3

as? = [1 . M]
2
X {e*ZA(y)nwdx“dx” + rczdyz} , (45)

c coo c?
d(y) =¢o+ 5y AQY) =Ao+—y+—5y%

K3 3 6k

where ¢ and ¢( are arbitrary constants of integration.
Thus for the quadratic f(R) model under consideration,
one can map it to the Einstein frame and obtain the respec-
tive potential. For this particular case, the field equations
in the Einstein frame become exactly solvable and hence
by a conformal transformation one can obtain the cor-
responding solution in the Jordan frame. Further, from
Eq. (45) it turns out that the warp factor is governed by
the factors c¢ and c/ks5. Hence in order to have proper
suppression of the Planck scale on the visible brane one
must have the conditions ¢ < k5 and c¢g ~ 36. Hence
one arrives at ¢y > k5 !, Further, in this model the radion
field varies with extra dimension y as (a 4+ by)?/3, where
a and b depend on ¢, 5 and ¢yg.

e For the other model, i.e., f(R) = R + aR? + /3R4,
the scalar field potential in the Einstein frame is quar-
tic. From this one can relate the parameters «, 8 with
the respective ones in the Einstein frame. Following the
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same strategy as above, the conformal factor turns out to
yield @ = (1 4+ 2aR + 48R3 = [1 + (V3ks5¢/2) +
3 \/§,3K53¢3/16053)] 173 Using this the solution in the Jor-
dan frame becomes

s [y, Beseo) | 3V3Bge0 ]
- 2 16a°

x o240, axtax” + r2ay?], (46)
b
¢(y) =doexp| ——y |
ks

Ar? K2 b
A(y) = Ag+,/——Sy+ 2dgexp (2] .
6 6 K52

This demonstrates another f(R) theory for which the
corresponding potential in the Einstein frame leads to an
exact solution. Using this and the mapping between Ein-
stein and Jordan frame one obtains the respective solution
in the Jordan frame. However, in contrast with the previ-
ous situation, in this case the warp factor behaves exactly
like the Randall-Sundrum scenario, since all the correc-
tions are exponentially suppressed (see Eq. (46)). The
radion field is almost constant due to identical exponen-
tial suppression. Hence the f(R) model with quartic cor-
rection is more favored in the extra-dimensional physics
than the earlier one.

Aside: comment on domain of applicability After illustrating
two examples on how to obtain solutions to higher order
field equations, by using the Einstein frame judiciously, we
would like to comment on the domain of applicability of this
approach.

We should emphasize that we are working in a mesoscopic
energy scale, i.e., the energy scale is larger compared to gen-
eral relativity, such that the effect of higher order terms, e.g.,
o R? cannot be ignored. On the other hand, the energy scale
is much smaller compared to the Planck scale so that the
additional contributions are still sub-dominant, i.e., R < 1.
This is important, in particular when one obtains the scalar
field in the Einstein frame in terms of the curvature. In order
to obtain a closed form expression one has to expand the
potential near its minimum, and this in turn requires one to
neglect higher order curvature corrections, e.g., one might
neglect «?R? in comparison with @ R. In a nutshell, we are
working in a high curvature regime such that the effect of
S (R) gravity can be felt, but it is not high enough that the
Einstein—Hilbert action becomes sub-dominant.

Another point that requires clarification is the approxima-
tions involved in general scenarios. The conformal transfor-
mation and hence the conversion of a potential to a corre-
sponding f(R) model is not at all straightforward. In most

of the cases the relations turn out to be non-invertible, and
one needs to resort to approximations. As explained earlier,
on physical grounds, one can assume that the higher order
terms are sub-leading and hence one can keep only linear
order terms. While dealing with complicated potentials, most
often one needs to resort to these approximations, justified
by physical intuitions. However, at the Planck scale these
approximations break down, since the assumption that higher
orders terms are sub-leading cannot be trusted.

Having discussed two possible scenarios in the context of
bulk physics let us now consider brane dynamics. In partic-
ular, we will be interested in one spherically symmetric and
one cosmological application.

6 Jordan to Einstein frame in the brane: explicit
examples

Both examples depicted above are related to bulk spacetimes.
To complete the discussion we will also derive the metric in
the Einstein frame starting from the Jordan frame, but in the
brane spacetime. This is to explicitly demonstrate that the
technique works both ways — whenever it is convenient to
solve in the Einstein frame, we can solve it and transform
back to the Jordan frame, while if the solution is simpler in
the Jordan frame it can give insight into what happens in
scalar coupled gravity, viz., the Einstein frame.

e In this example, we will start with a particular f(R)
model on the brane, solve the effective field equations,
and obtain a cosmological solution. Then using a con-
formal transformation the corresponding solution in the
Einstein frame can be obtained.

Solution in the Jordan frame Let us start with the f(R)
model given by f(R) = fo(R — Rp)¥, where fo and Rg
are constants and @ # 1. The corresponding solution for
the scale factor on the brane can be obtained by solving
the effective field equations derived in [48,74]. This leads
to the power law solution a(¢) ~ t", where n is related
to o and the matter fields present on the brane.

Converting back to Einstein frame We need to convert it
back to the Einstein frame and hence obtain the corre-
sponding solution in the scalar coupled gravity. For this
choice for f(R), we obtain for the scalar field

ksp=—=1n (foa>+i3 (@=Dln (R—Ro). (47

Ne N

which in turn can be inverted, leading to, R — Ry =
explaks(¢p—¢o)], wherea = «/§/(2(a —1))and k5¢9 =
(2/+/3)In (fow). Then the potential can be determined
readily, using Eq. (5), leading to

@ Springer
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v . a—1 5 2«
(¢) = W exp |:K5a (3 - ?) (¢ — ¢0)i| .
(48)

Hence the power law behavior of the f(R) theory trans-
forms back to an exponential potential.

Solution in Einstein frame The corresponding cosmolog-
ical solution in the Einstein frame could be obtained
by transforming the Jordan frame solution using the
conformal factor. In this particular class of f(R) mod-
els, the conformal factor becomes = (foa)'/3(R —
Rp) @~ D/3 ~ t=2@=D/3 Thys the corresponding solu-
tion in the Einstein frame is again cosmological with a
new scale factor: a(r) ~ ¢B3n=4@=D1/3 Hence the cos-
mological solution in the Einstein frame with an expo-
nential potential is still a power law.

So far we have been dealing with power law f(R) theo-
ries. However, to show the applicability of our method to
more general scenarios, we will consider the following
f(R)model: R—(«/R) onthe brane. This f(R) modelin
four-dimensional spacetime has been discussed in detail
in [75], however, no such solution in the context of effec-
tive field equations exists, which by itself would be an
interesting future work. However, in this work we will
content ourselves by providing basic ingredients regard-
ing this model. Furthermore, given a solution in the Jor-
dan frame, use of a conformal transformation will lead
to the corresponding solution in the Einstein frame.

Solution in the Jordan frame Let us start with the above
mentioned f (R) model. The corresponding solution for
the scale factor on the brane can be obtained by solving
the effective field equations and can be taken to be a(t) ~
t", where n should be related to o and the matter fields
present on the brane.

Converting back to Einstein frame We need to convert it
back to Einstein frame and hence obtain the correspond-
ing solution in the scalar coupled gravity. For this choice
for f(R), we obtain for the scalar field

K5 = % In (1 + %) , (49)

which in turn can be inverted, leading to R = /o
(exp[(2/+/3)ksp] — 1)~1/2. Then the potential can be
determined readily, using Eq. (5), leading to

5
V($) = Vaexp (—ﬁw) Jexpl@/VAsgl — 1.
(50)

Expanding for small ¢, we obtain V (¢) =/ aks/3¢ /2
(1—(5«s5¢/ 2«/5)). Hence, the negative power law behav-

@ Springer

ior of the f(R) theory transforms back to a potential with
/@ as the leading order contribution.

Solution in Einstein frame The corresponding cosmolog-
ical solution in the Einstein frame could be obtained by
transforming the Jordan frame solution using the confor-
mal factor. In this particular class of f(R) model, the
conformal factor becomes © = [1 + («/R?*)]'/? ~ [1 +
ozt4]1/3, since R ~ t~2. Thus for late times,  ~ %3,
Thus the corresponding late time solution in the Ein-
stein frame is again cosmological with a new scale fac-
tor: a(r) ~ t"+®/3 again a power law behavior. Hence
the cosmological solution in the Einstein frame with /¢
potential is still a power law.

Another explicit spherically symmetric solution on the
brane in the Jordan frame has been constructed in [48]
by decomposing the electric part of the Weyl tensor into a
dark radiation term U (r) and a dark pressure term P(r).

Solution in Jordan frame The dark radiation U(r) and
dark pressure P(r) act as auxiliary sources to the effec-
tive gravitational field equations [76]. A possible solution
can be obtained when an “equation of state” between
U(r) and P(r) is specified. For the particular choice
2U(r) + P(r) = 0, we immediately obtain the corre-
sponding spherically symmetric solution [48]

ds? = — f(r)dr® + o +r2dQ%;
f)
2GM + Qo 3k Py F(R) — A4
— re.

fn=1= 27 3

(S

Here Q¢ and Py correspond to constants of integration,
captures the effect of bulk spacetime, i.e., it depends on
the bulk gravitational constant, and F (R), evaluated at the
brane location, can be constructed from the original f(R)
theory by taking an appropriate derivative. Assuming that
the bulk scalar depends only on the bulk coordinates and
for a f(R) theory of the form f(R) = R+« R?> + BR*,
the leading order behavior of F(R) is like an effective
four-dimensional cosmological constant A4.

Converting back to Einstein frame The corresponding
scalar—tensor solution can be obtained by transform-
ing the metric in Eq. (51) using the appropriate con-
formal factor: Q@ = (1 + 2aR + 48R>'3 = [1 +
(ks /2) + (27Br3¢3 /64a>)]'/3. Since the scalar field
depends on the extra coordinate only, the conformal
factor evaluated on the location of the brane is just a
constant.

Solution in Einstein frame Since the corresponding con-
formal factor is just a constant it will scale the metric,
which can be absorbed by rescaling of the time and radial
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coordinate by the conformal factor. Hence the solution in
the Einstein frame would remain the same.

Thus even in the context of brane models solving effective
gravitational field equations in one frame and obtaining the
solution in the other often requires approximations. One has
to keep in mind that we are working in the mesoscopic scale,
where neither the higher curvature terms are dominant nor
are they negligible. This allows one to invert various relations
connecting the Einstein frame scalar with Jordan frame cur-
vature, a key aspect while converting solutions in one frame
to another.

7 Conclusions

A technique for solving field equations of higher curvature
gravity theories has been proposed. The technique essentially
hinges on the mathematical equivalence of higher curvature
gravity theory, e.g., f(R) theories of gravity with scalar—
tensor representation. Earlier this equivalence was known
only at the level of the action principle. It was not clear a pri-
ori whether the field equations derived from either the f(R)
representation or the scalar—tensor representation would also
be equivalent. In this work starting from a five-dimensional
theory we have explicitly demonstrated — (a) the bulk gravita-
tional field equations derived from Jordan and Einstein frame
are equivalent and (b) the effective field equations on the
brane in these two approaches are also equivalent. Using this
equivalence we have argued that, if one can solve for the field
equations in one frame, the solution in the other frame can
easily be obtained. Even though for simple models one can
perform the above operation exactly, often it requires suitable
approximations. The approximations essentially requires one
to work in mesoscopic energy scales, viz., higher than the
weak scale but less than the Planck scale. For practical appli-
cation of the technique, we have illustrated it in two related
situations:

e The bulk field equations in the Einstein frame have been
solved in the context of warped geometry models for two
choices of the potential — quadratic and quartic. Follow-
ing expectation, the warp factor behaves differently in
these two scenarios, but leads to the desired exponential
warping. These potential through conformal transforma-
tions are related to two f(R) models — (a) R + aR? and
(b) R + aR? 4+ BR*, respectively. From the solution in
the Einstein frame we have obtained the solution in the
f(R) representation as well, having a different warp fac-
tor behavior and an extra dimension dependent radion
field.

e Second, using the known solutions to the effective field
equations in the f(R) representations we have obtained

the corresponding solutions in the scalar—tensor repre-
sentation. In the cosmological context, the scale factor
still exhibits a power law behavior, but with a differ-
ent power. The spherically symmetric solution results in
mere rescaling of the coordinates.

In the two examples depicted in this work we have explored
a practical illustration of the technique for both the bulk and
the brane spacetimes. Further it turns out that, even though in
the Einstein frame the brane separation has been fixed at the
stabilized value, in the Jordan frame it starts depending on
the extra dimension. Interestingly, the warp factors in the two
frames are different, leading to different suppression of the
Planck scale on the visible brane. This might lead to potential
observables, distinguishing the two frames in the context of
recent LHC experiments.
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