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Abstract The Schrödinger equation of the spherically
symmetrical quantum models such as the hydrogen atom
problem seems to be analytically non-solvable in higher
dimensions. When we try compactifying one or several
dimensions this question can maybe solved. This paper
presents a study of the spherically symmetrical quantum
models on noncommutative spacetime with compactified
extra dimensions. We provide analytically the resulting spec-
trum of the hydrogen atom and Yukawa problem in 4 + 1
dimensional noncommutative spacetime in the first order
approximation of the noncommutative parameter. The case
of higher dimensions D ≥ 4 is also discussed.

1 Introduction

One of the recently discovered concepts that has impacted the
theoretical physics community in the most significant way is
most likely the idea of a noncommutative (NC) spacetime,
which led to a NC generalization of quantum mechanics and
field theory. The idea of noncommutativity of spacetime was
first discussed in the work by Snyder [1] and Connes [2,3].
The above concept (NC) spacetime allows one to find a pos-
sible solution to ultraviolet divergencies in quantum field the-
ory [4,5]. The NC physics also arises as a possible scenario
for the short-distance behavior of physical theories (at the
Planck scale). At this scale, the universal constants c, h̄, and
G appear naturally equivalent. Below the Planck length, the
distance loses its meaning [4–6] and the physical phenomena
are believed to be nonlocal. NC geometry could be realized by
introducing the noncommutativity through the coordinates
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which satisfy the commutation relations [xμ, xν] = iθμν ,
where θμν is a skew-symmetric matrix characterizing the
deformation of the spacetime. This leads to a new Heisen-
berg uncertainty relation, given on the spacetime coordinates
by �xμ�xν ≥ θμν , and this makes this spacetime a quan-
tum space [6,7]. The important implications of noncommu-
tativity are the loss of Lorentz invariance in the dispersion
relations and the loss of causality [8–13]. Intuitive arguments
involving quantum mechanics in NC space are realized by
imposing the commutation relations, now between coordi-
nates and momenta, as

[xμ, xν] = iθμν, [pμ, pν] = iγ μν, [xμ, pν] = i h̄κμν

(1)

where γ μν are also skew-symmetric matrices. In this paper
we restrict ourself to the case where γ μν = 0, this implies
that κμν = δμν , the Kronecker symbol. We also assume that
the tensor θμν is chosen to have the dimension of length ·
time, i.e., θ0 j = θ j ∈ R, θ i j = 0, i, j = 1, 2, . . . , D.

The noncommutative variables can be expressed in terms of
commutative coordinates as x j = x j

c − iθ j∂0 = (x), and
p j = p j

c , p0 = i h̄∂0 = E , where the index c is used to
specify the commutative variables and where E is the energy
of the system. The Hamiltonian of quantum system on NC
space can be expressed with the commutative coordinates
H(x, p) ≡ Hc(xc, pc, θ), where the parameter θ = θ j is
showed to have the fundamental limit θ � 1.6 ·10−27m · s ≈
0.3(keV)−2, which is smaller than the one obtained by the
theory of quantum gravity [14,15].

The compactified extra dimension is motivated by string
theory, which predicts the existence of extra dimensions and
noncommutativity between coordinates. Our idea is to under-
stand how the eigenvalue problem changes if we periodically
identify one of the NC coordinates x j = (x1, x2, x3, x4)

in the target space, say [−πR, πR] � w, such that x4 =
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w − 2πRk, k ∈ Z, and R is the radius of the circle. The
wave function ψ(x0, x �̄, x4), �̄ = 1, 2, 3, can be expanded
in the Fourier mode as [16]

ψ(x0, x �̄, x4) = 1√
2πR

∞∑

n=−∞
ψn(x

0, x �̄) exp

(
in x4

R

)
.

(2)

Note that the orthonormalized functions (2πR)−1/2 exp(
i x4n/R

)
are eigenfunctions of the operator ∇2

x4 with eigen-

values En0 = −n2/R2. This means that the spectrum of a
quantum system defined with one dimension compactified
is in the form Enl = En0 + E ′

nl , where l is a positive inte-
ger, E ′

nl depends on the potential associated to the system
which is required to be computed. In the following paper we
investigate the spectrum of the Coulomb and Yukawa Hamil-
tonian on (4 + 1)-dimensional NC spacetime. Using the first
order approximation of the deformation parameter θ and by
compactifying one extra dimension x4 we have the result-
ing topology R

3+1 × S1 (see [17] and [18] for the essential
reviews), the spectrum may be given exactly. We prove that
in the case of space · time noncommutativity, the correction
of the energy spectrum does not depend on the NC deforma-
tion parameter θ but rather on the parameter associated to the
compactified dimension.

Our paper is organized as follows. In Sect. 2, we focus on
the hydrogen atom in (D+ 1)-dimensional noncommutative
space with non-compactified extra dimension. We discuss
the particular case where D = 4 in which the solution of
the spectral problem can be solved. The Yukawa potential is
also discussed in this section. In Sect. 3 the same problem is
solved with compactified extra dimensions. The discussion
and conclusion are given in Sect. 4.

2 Hydrogen atom in noncommutative space with
non-compactified extra dimension

In this section we focus on the hydrogen atom problem
defined in (D + 1) dimensional NC spacetime (we consider
the particular case where D = 4). To be specific, the model
is given with the spherical potential of the form

V (�rnc) = − q2
e

|�rnc|D−2 , (3)

where qe is related to the atomic charge and where we use the
following notation: �rnc = �r − i �θ∂0, i.e., the NC coordinates
are �rnc = (x) and the commutative coordinates are �r =
(xc). It would be advisable to work in a spherical coordinates
system, �r = (r, α1, α2, α3), such that r ∈ R+, 0 < α�̄ <

π, �̄ = 1, 2, and 0 < α3 < 2π . It thus follows that the

Hamiltonian of the system is

H = − h̄2

2m

[ ∂2

∂r2 + D − 1

r

∂

∂r
− L2(D − 1)

r2

]
+ V (�rnc),

(4)

where L2(D − 1) is the Laplace–Beltrami operator on the
(D− 1)-sphere. Hence the potential (3), using the first order
Taylor expansion on �θ , is

V (�rnc) = − q2
e

|�r − i �θ∂0|D−2

≈ − q2
e

r D−2

(
1 + i(D − 2)

�r .�θ
r2 ∂0

)
. (5)

We consider the adequate choice, such that the vector �θ is
transformed in the spherical coordinates to �r .�θ ≡ rθ [14].
Furthermore, the spherical functions Y(D−1)

� (α1, α2, . . . ,

αD−1), which are the eigenfunctions of the operatorL(D−1)

are considered:

L2(D − 1)Y(D−1)
� = �(� + D − 2)Y(D−1)

� = λDY(D−1)
� ,

(6)

where � is the orbital angular momentum quantum number.
Note that the Hamiltonian (4) depends on the partial

derivative with respect to the time t , due to the relation (5).
But one can show that the wave function ψ(�r , t), namely
the solution of the Schrödinger equation is expressed as
ψ(�r , t) = Y(D−1)

� ψ(r) f (t), where the time dependent func-
tion is f (t) = exp

(− i
h̄ Et

)
and where ψ(r) satisfies the

radial equation
[

d2

dr2 + D−1

r

d

dr
−

(λD

r2 − ν2

r D−2 − μD

r D−1 −α2
)]

ψ(r)=0,

(7)

with α2 = 2mE
h̄2 , ν2 = 2mq2

e
h̄2 , μD = (D− 2)ν2θ E/h̄. Now

for D = 4, this equation turns to become
[

d2

dr2 + 3

r

d

dr
−

(λ4 − ν2

r2 − μ4

r3 − α2
)]

ψ(r) = 0. (8)

However, in this case (unlike for the commutative case
discussed in [17,18]), such an equation seems to be non-
solvable. We provide an algebraic method, which will allow
us to derive the solution of this equation. For this purpose,
let us reparameterize the function ψ(r) as ψ(r) := ψ(r, θ ).
Then ψ(r, 0) corresponds to the solution of Eq. (8) in the
case where θ = 0. The first order Taylor expansion on θ of
the function ψ(r, θ) takes the form

ψ(r, θ ) = ψ(r, 0) + θ
dψ(r, θ )

dθ

∣∣∣
θ =0

+ O(θ 2). (9)

We get simply

ψ(r, 0) = c

r
Jν(αr) + c′

r
Yν(αr), c, c′ ∈ R, (10)
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where Jν(αr) and Yν(αr) are, respectively, the first and sec-
ond kind Bessel functions (see [18] for more details). By
replacing the solution (9) in the partial differential equation
(8), we get

[
d2

dr2 + 3

r

d

dr
+

(
α2− λ4 − ν2

r2

)]
χ̃ (r) = −2ν2E

h̄r3 ψ(r, 0),

(11)

where χ̃ (r) = dψ(r,θ )
dθ

∣∣∣
θ =0

. This equation corresponds

to a nonhomogeneous differential equation, which can be
solved easily. For ε = (1 + λ4 − ν2)1/2 and g(r) =
−2ν2Eψ(r, 0)/h̄r3, by using the Wronskian method, the
solution of Eq. (11) takes the form

χ̃ (r) = cJε(αr) + c′Yε(αr)

− π

2r
Jε(αr)

∫ r

1
x2Yε(αx)g(x)dx

+ π

2r
Yε(αr)

∫ r

1
x2 Jε(αx)g(x)dx, c, c′ ∈ R. (12)

Note that there are some difficulties, however. One defect of
this method (in the commutative and NC case) is that the
energy spectrum can only be determined numerically, and
we do not deal here with a numerical method to provide this
spectrum. In more than (4 + 1) dimensions, the differential
equations (7) are much more complicated.

Now let us discuss the case of a Yukawa potential:

V (�rnc) = −V0
e−ηrnc

|�rnc|D−2 , (13)

where V0 and η depend on the constant of the neutral atom.
In order to probe this potential, we write the expression (13)
at the first order in θ as

V (�rnc, t) = −V0e−ηr

r D−2

[
1 + i

(
ηr + D − 2

)θ

r
∂0

]
. (14)

After separation variables in the Schrödinger equation, it
become easy to show that the radial equation is given by
the following:

[ ∂2

∂r2 + D − 1

r

∂

∂r
+ sD(r)

]
ψ(r) = 0. (15)

where

sD(r) = 2mV0e−ηr

h̄3r D−2

(
D − 2 + ηr

) Eθ

r

+2mE

h̄2 − λD

r2 + 2mV0e−ηr

h̄2r D−2
,

In the particular case where D = 4, this equation is reduced
to

d2ψ(r)

dr2 + 3

r

dψ(r)

dr
+ s4(r)ψ(r) = 0. (16)

This equation (including now the occurrence of the exponen-
tial factor e−ηr ) has the same shape as (8), and therefore the
same conclusion with (12) will be made.

3 Hydrogen atom in noncommutative space with
compactified extra dimension

In this section we consider (D+1) NC spacetime, where one
dimension xD is compactified on a circle of radius R. This
means that RD+1 is reduced to R

D−1+1 × [−πR, πR] and
xD = ω−2πnR, n ∈ Z. The interaction potential (5) written
now with the required coordinates �r = (r, α1, . . . , αD−2) and
the compactify coordinate w is

V (�r , w) = −q2
e

∞∑

n=−∞

⎧
⎨

⎩
1

(
r2 + (w − 2πnR)2

) D−2
2

+ i(D − 2)rθ
(
r2 + (w − 2πnR)2

) D
2

∂0

⎫
⎬

⎭ , (17)

where r is now the radial coordinates in (D−1)-dimensional
space, and the extra dimension xD satisfy the condition |xD−
2πnR| ≤ πR. For D = 4, we get

V (�r , w) = −q2
e

∑

n∈Z

{
1

r2 + (w − 2πnR)2

+ 2irθ
(
r2 + (w − 2πnR)2

)2 ∂0

}
. (18)

Then we can compute the following identities:

∑

n∈Z

1

r2 + (w − 2πnR)2 = 1

2Rr

sinh(r/R)

cosh(r/R) − cos(w/R)

(19)

and

∑

n∈Z

2r
(
r2 + (w − 2πnR)2

)2 = G(r) + F(r) (20)

where

G(r) = − 1

2Rr2

sinh(r/R)

cosh(r/R) − cos(w/R)
, (21)

F(r) = 1

2R2r

1 − cosh(r/R) cos(w/R)
(

cosh(r/R) − cos(w/R)
)2 . (22)

The potential V (�r , w) is periodic with respect to the w-
direction, and it can be expanded in a Fourier series as fol-
lows:
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V (�r , w) =
∑

n∈Z
an(r)e

inw/R + iθ
∑

n∈Z
bn(r)e

inw/R∂0, (23)

where

an(r) = − q2
e

2r R
e−|n|r/R,

bn(r) = − q2
e

2Rr2

[
1 + |n|

]
e−|n|r/R, (24)

such that

V (�r , w) = − q2
e

2r R

∑

n∈Z

[
1 + iθ

(1

r
+ |n|

R

)
∂0

]
e−(|n|r−inw)/R .

(25)

The separation of the variables in the Schrödinger equation
shows that the radial function ψ(r) satisfies

( d2

dr2 + 2

r

d

dr
− n2

R2 + α2 + ζ

r
− ν2

θ

r2

)
ψn(r) = 0, (26)

with α2 = 2mE
h̄2 , ν2

θ = λ4 − ζ Eθ/h̄, ζ = ν2/(2R), ν2 =
2mq2

e
h̄2 .

The solution of the above equation is expressed as

ψn(r) =
[ (2ζ )a+2 l!
(2l + 1 + a)a+3�(l + 1 + a)

] 1
2
r

1
2 (a−1)e− ζr

2l+a+1

× La
l

( 2ζr

2l + a + 1

)
, a =

√
4ν2

θ + 1, (27)

where we have used the normalization condition
∫ ∞

0 e−z za+1

[La
l (z)]2dz = (2l+1+a)�(l+1+a)

l! , and where La
l stands for the

generalized Laguerre polynomial. The quantum number l is a
positive integer, which corresponds to the physical situation.
This integer is given by

l = −1

2
− 1

2

√
4ν2

θ + 1 + ζ R

2
√
n2 − α2R2

. (28)

Two energy contributions appear from Eq. (28):

E (1)
nl = h̄2

2m

( n2

R2 − ζ 2

(2l + 1 + √
1 + 4λ4)2

)
(29)

and

E (2)
nl = h̄2

2m

ζ 2

(2l + 1 + √
1 + 4λ4)2

+ h̄
√

1 + 4λ4

4θζ
(2l + 1 + √

1 + 4λ4). (30)

Let us discuss the energy spectrum (30). In the limit where
θ → 0, E (2)

nl is not well defined. Also as expected in our intro-
duction the eigenfunctions of the operator ∇2

x4 with eigenval-

ues En0 = −n2/R2 are not recovered. Finally this expression
cannot be taking into account as a solution of the eigenvalue
problem. Then the energy spectrum becomes

Enl = h̄2

2m

( n2

R2 − ζ 2

(2l + 1 + √
1 + 4λ4)2

)
. (31)

Remark 1 • Our result shows that the energy spectrum (31)
does not depend on the NC parameter θ if we consider the
first order approximation in this parameter. The solution
of the eigenvalue problem of the hydrogen atom with
one compactified dimension is solved numerically in [17,
18] (see also [19,20] in the case where no dimensions
are compactified). Due to the fact that limθ→0 Enl =
Enl , the expression (31) can be considered as a solution
of the hydrogen atom in 4 + 1-dimensional spacetime
for both the NC1 and the commutative cases, where one
dimension is compactified.

• The quantity

E ′
nl = − h̄2ζ 2

2m(2l + 1 + √
1 + 4λ4)2

(32)

corresponds to the reduced dimension energy spectrum
and is discussed in the introduction of our paper.

We consider now the case of a Yukawa potential (13) for
D = 4. On shell, and with the compactified x4 direction on
the circle we get the reduced potential

V (�r , w) = iV0θ

[
− 1

2Rr2

sinh(r/R)

cosh(r/R) − cos(w/R)

+ 1

2R2r

1 − cosh(r/R) cos(w/R)
(

cosh(r/R) − cos(w/R)
)2

]
∂0

− V0

2Rr

sinh(r/R)

cosh(r/R) − cos(w/R)
. (33)

Let us briefly give the proof of this relation. The goal of this
proof is to compute the integral

∫
�

f (z)dz, where � is a
closed contour on the complex plane and f (z) is a holomor-
phic function given by

f (z) = cot(π z) exp
[ − c

(
(a − z)2 + b2

)1/2]

(a − z)2 + b2 , (34)

where a, b, c are three real numbers. The poles of f (z) are
zn = n, n ∈ Z, zI = a + ib, and zI I = a − ib. Using the
residue theorem,

∫

�

f (z)dz = 2iπ
∑

Res[ f (z)] = 0, (35)

with

Res[ f (z)]
zn

= exp
[ − c

(
(a − n)2 + b2

) 1
2
]

π [(a − n)2 + b2] ,

Res[ f (z)]
zI

= − i

2b
cot[π(a + ib)], and

1 This energy is valid where the first order approximation in θ is con-
sidered.
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Res[ f (z)]
zI I

= i

2b
cot[π(a − ib)]. (36)

Hence,

∑

n∈Z

exp
[ − c

(
(a − n)2 + b2

)1/2]

(a − n)2 + b2

= π

b

sinh(2πb)

cosh(2πb) − cos(2πa)
. (37)

The first term on the right hand side of (33) is

∑

n∈Z

exp
[ − ζ

(
r2 + (w − 2πnR)2

)1/2]

r2 + (w − 2πnR)2

= 1

2Rr

sinh(r/R)

cosh(r/R) − cos(w/R)
. (38)

The second term on the right hand side of Eq. (33) is the first
order derivative of Eq. (38) respect to r . Then Eq. (33) is
straightforwardly obtained.

Now using the fact that the function V (�r , w) is periodic,
the Fourier series can be given by

V (�r , w) =
∑

n∈Z

(
an(r) + iθbn(r)∂0

)
einw/R, (39)

where the Fourier coefficients are

an(r) = − V0

2r R
e−|n|r/R,

bn(r) = −V0

[ 1

2Rr2 + |n|
2R2r

]
e−|n|r/R (40)

Finally we arrive at

V (�r , w) = − V0

2r R

∑

n∈Z

[
1 + iθ

(1

r
+ |n|

R

)
∂0

]

× e−(|n|r−inw)/R . (41)

Equation (33) can also be expanded using the Fourier series
as follows:

V (�r , w) = − V0

2r R

∑

n∈Z

[
1 + iθ

(1

r
+ |n|

R

)
∂0

]

× e−(|n|r−inw)/R, (42)

and the radial equation takes the form

[ d2

dr2 + 2

r

d

dr
− n2

R2 + α2 + u

r
− v

r2

]
ψn(r) = 0, (43)

where α2 = 2mE
h̄2 ; v = λ4 − mV0Eθ

h̄3R
, u = mV0

h̄2R
. The solution

of this equation leads to the same results as given in (27) and
(31).

4 Discussion and conclusion

In this paper we have found that the noncommutativity of
spacetime can help to compute the exact expression of the

energy spectrum of the hydrogen atom in (4+1) dimensions
with one compactified extra dimension. Unfortunately, it is
clear that this method cannot be used in higher dimensions.
To be more precise, let us consider the particular case where
D = 6, the compactified one dimension x6 gives the potential

V (�r , w) = − q2
e

(2Rr)2

(
R

r

sinh(r/R)

cosh(r/R) − cos(w/R)

+ cosh(r/R) cos(w/R) − 1

[cosh(r/R) − cos(w/R)]2

)

+ iθ q2
e

8r4R3
(

cos(w/R) − cosh(r/R)
)3

×
[
(r2 + 3R2) sinh(r/R) cos(2w/R)

+ cos(w/R)
(
(r2 − 6R2) sinh(2r/R)

+3r R(cosh(2r/R) + 3)
)

+3 sinh(r/R)
(
R2 cosh(2r/R) + 2R2 − r2

)

−3r R cosh(r/R)
(

cos(2w/R) + 3
)]

∂0. (44)

This relation can be expanded in a Fourier series as

V (�r , w) = − q2
e

(2Rr)2

∑

n∈Z

[( R

r
+ |n|

)

+iθ
(3R

r2 + 3|n|
r

+ n2

R

)
∂0

]
e−|n|r/Reinw/R,

(45)

in which the radial part of the Schrödinger equation becomes
(

d2

dr2 + 2

r

d

dr
− λ4

r2 − n2

R2 +α2+ 2mq2
e

4h̄2r3R
+ 3mq2

e Eθ

2h̄3r4R

)
ψn(r)=0.

(46)

The solution of this equation is not yet understood. Surpris-
ingly, we have also shown that, despite this noncommutativ-
ity, the energy spectrum does not depend on the deformation
parameter θ and therefore might be considered as the energy
solution of commutative space, with one compactified extra
dimension, solved in [17] and [18]. Finally let us mention
that in the case of higher dimensions higher than 4 + 1 the
compactified several extra dimensions may be considered.

Let us examinate the case of the Klein–Gordon (KG) equa-
tion:

(
i h̄∂0 − V (�rnc)

)2
ψ(�rnc, t)

= m2c4ψ(�rnc, t) − h̄2c2�ψ(�rnc, t), (47)

where the potential V (�rnc) is

V (�rnc) = −℘
h̄c

|�rnc|D−2 . (48)

123
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℘ is related to the fine structure constant and c is the light
speed. For D = 4, by taking into account the fact that
�rnc = �r − i �θ∂0, and writing the extra dimension x4 =
w − 2πRk, k ∈ Z, we get

V (r, w) = −℘h̄c
∞∑

n=−∞

{
1

r2 + (w − 2πnR)2

+ 2irθ
(
r2 + (w − 2πnR)2

)2 ∂0

}
. (49)

The left hand side of Eq. (47), using (49), gives
(
i h̄

∂

∂t
− V (r, w)

)2
ψ(�r , t)

=
[

− h̄2∂2
0 + ℘h̄2c

(
2i A(r, w)∂0 + 3θ

∂A(r, w)

∂r
∂2

0

)

+℘2h̄2c2
(
A2(r, w) − iθ

∂A2(r, w)

∂r
∂0

)]
ψ(�r , t) (50)

where A(r, w) is written as

A(r, w) = 1

2Rr

sinh(r/R)

cosh(r/R) − cos(w/R)
, (51)

with the Fourier series

A(r, w) = 1

2r R

∑

n∈Z
einw/Reinw/R . (52)

After some technical handling, we can show that the quantity
A2(r, w) is expanded as

A2(r, w) = 1

(2Rr)2

∑

n∈Z

[
|n| + coth

( r

R

)]
e− |n|r

R e
inw
R .

(53)

By replacing (52) and (53) in (50) and separating variables
as ψ(�r , t) = �(�r)e−i Et/h̄ and �(�r) = �(r)Y(3)

� such that

l̂2Y�
(3) = �(�+ 2)Y�

(3) = λ4Y�
(3) we find the radial equa-

tion:
[

1
r2

d
dr

(
r2 d

dr

)
+ Veff(r) + E2

h̄2c2 − m2c2

h̄2 − n2

R2

]
�n(r) = 0,

(54)

where the effective potential Veff(r) is

Veff(r) = −λ4

r2 + 3θ℘E2

2r2Rh̄2c
+ ℘E

r Rh̄c
+ ℘2

(2Rr)2 coth(r/R)

+ θ℘2E

(2Rr)2h̄

(
2

r
coth(r/R) + r

sinh2(r/R)

)
. (55)

Equation (54) can be solved numerically using the approx-
imation method (Fig. 1). Consider the Taylor expansion of
Veff by using the fact that

coth(r/R) = R

r
+ r

3R
+ · · ·

sinh(r/R) = r

R
+ · · · . (56)

0.5 1.0 1.5 2.0 2.5 3.0
r

–80

–60

–40

–20

20

40

Veff(r)

Fig. 1 Plot of the potential Veff (r), with R = 0.01, θ = 0.01, h̄ =
c = 1, ℘ = 1/137, E = 1, � = 1

Then (54) becomes

d2�n(r)

dr2 + 2

r

d�n(r)

dr
+

4∑

j=0

b j

r j
�n(r) = 0, (57)

with b4 = θ℘2E
2Rh̄ , b3 = θ℘2E

4h̄ + ℘2

4R , b2 = θ℘2E
6R3h̄

+ 3θ℘E2

2Rh̄2c
−

λ4, b1 = ℘2

12R3 + ℘E
Rh̄c , b0 = E2

h̄2c2 − m2c2

h̄2 − n2

R2 .

We shall first examine the wave functions �n(r) in the
asymptotic range, r → ∞. The potential Veff(r) vanishes,
in this limit, i.e.,

Veff(r∞) → 0. (58)

In the region r∞ Eq. (57) gives the solution of the form

�∞
n (r) = U

e−√−b0r

r
, U ∈ R. (59)

The general solution of Eq. (57) takes the form

�n(r) = U (r)
e−√−b0r

r
, (60)

where U (r) satisfies the differential equation

U ′′(r) − 2
√−b0U

′(r) +
4∑

j=1

b j

r j
U (r) = 0. (61)

The investigation of the numerical solution of this equation
can be made in forthcoming work.
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