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Abstract The near horizon geometries are usually con-
structed by implementing a specific limit to a given extreme
black hole configuration. Their salient feature is that the
isometry group includes the conformal subgroup SO(2, 1).
In this work, we turn the logic around and use the confor-
mal invariants for constructing Ricci-flat metrics in d = 4
and d = 5 where the vacuum Einstein equations reduce to a
coupled set of ordinary differential equations. In four dimen-
sions the analysis can be carried out in full generality and the
resulting metric describes the d = 4 near horizon Kerr–NUT
black hole. In five dimensions we choose a specific ansatz
whose structure is similar to the d = 5 near horizon Myers–
Perry black hole. A Ricci-flat metric involving five arbitrary
parameters is constructed. A particular member of this fam-
ily, which is characterized by three parameters, seems to be a
natural candidate to describe the d = 5 near horizon Myers–
Perry black hole with a NUT charge.

1 Introduction

Motivated by the Kerr/CFT-correspondence [1], the near
horizon black hole geometries in various dimensions attract-
ed recently considerable attention.1 Following the original
work of Bardeen and Horowitz on the d = 4 near horizon
Kerr black hole [4], such geometries are usually constructed
by implementing a specific limit to a given extreme black hole
configuration (for a detailed discussion see, e.g., Ref. [5]).
In general, the limit yields a metric which can be interpreted
as describing a complete vacuum spacetime on its own. Its
remarkable property is that the isometry group is extended to
involve the conformal subgroup SO(2, 1), which motivates
the holographic applications. The near horizon conformal
symmetry of rotating black holes also proved useful in the

a e-mail: galajin@tpu.ru
b e-mail: orekhovka@tpu.ru

study of superconformal mechanics [6] and superintegrable
models [7].

Denoting the temporal, radial, and azimuthal coordinates
by t , r , and φi , i = 1, . . . , n, one can write the SO(2, 1)-
transformations in the form

t ′ = t + α; t ′ = t + βt, r ′ = r − βr;
t ′ = t + (t2 + 1

r2 )γ, r ′ = r − 2trγ, φ′
i = φi − 2

r
γ,

where the infinitesimal parameters α, β, and γ correspond
to the time translations, dilatations and special conformal
transformations, respectively. Note that latitudinal coordi-
nates remain inert under the action of the conformal group.
Focusing on axially symmetric metrics which do not explic-
itly depend on the azimuthal angular variables φi , the confor-
mal invariants which typically enter the near horizon metrics
read

r2dt2 − dr2

r2 , rdt + dφi , dφi − dφ j .

These are accompanied by coefficients which depend on lat-
itudinal angular coordinates only.

One may wonder what happens if the logic is turned
around and the conformal invariants are used to construct
Ricci-flat metrics in diverse dimensions. It is well known
that not any SO(2, 1)-invariant geometry can be linked to a
black hole predecessor (see, e.g., Ref. [3]). Yet, such geome-
tries are definitely amenable to holographic applications and
in some instances they may provide useful insights into the
structure of a black hole progenitor.

The goal of this work is to address this issue for the cases
of four and five dimensions for which the vacuum Einstein
equations reduce to a coupled set of ordinary differential

1 By now there exists a very extensive literature on the subject. For
reviews and further references see, e.g., Refs. [2,3].
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equations. In four dimensions the analysis can be carried out
in full generality. In the next section we demonstrate that the
d = 4, SO(2, 1)-invariant configuration corresponds to the
near horizon Kerr–NUT black hole. In five dimensions the
number of conformally invariant terms to be included into
a metric grows notably. So in Sect. 3 we choose a specific
ansatz whose structure is similar to the d = 5 near horizon
Myers–Perry black hole. A Ricci-flat metric which includes
five arbitrary parameters is constructed. Setting two of them
to vanish, one obtains a solution which seems to be a nat-
ural candidate to describe the d = 5 near horizon Myers–
Perry black hole with a NUT charge. In Sect. 4 we discuss
the results obtained in this work as well as possible further
developments. Some technical issues related to the material
presented in Sect. 3 are gathered in the appendix.

2 d = 4 near horizon Kerr–NUT geometry

Given the conformal invariants, the most general d = 4 met-
ric invariant under the action of SO(2, 1) reads2

ds2 = a(θ)

(
r2dt2 − dr2

r2 − dθ2
)

− b(θ)(rdt + dφ)2, (1)

where θ is the latitudinal angular variable. The vacuum Ein-
stein equations yield a coupled set of ordinary differential
equations to determine the coefficients a(θ) and b(θ). A
thorough investigation shows that they can be reduced to
the nonlinear ordinary differential equation for a(θ)

4a2 + 2a′′(a − a′′) + 3a′(a′ + a(3)) = 0, (2)

while b(θ) is fixed provided a(θ) is known,

b = 4

3

(
a + a′′) − a′2

a
. (3)

It is worth mentioning that the near horizon extreme Kerr
geometry which is characterized by the coefficients [4]

a(θ) = L1(1 + cos2 θ), b(θ) = 4L1 sin2 θ

1 + cos2 θ
, (4)

where L1 is a constant related to the rotation parameter, does
provide a particular solution to Eqs. (2) and (3). As (2) is a
third order ordinary differential equation, its general solution
involves three constants of integration. It is easy to verify that
shifting θ in (4) by a constant one obtains a new solution to
(2) and (3). However, the new parameter is physically irrele-
vant as it does not alter the metric. It is then natural to expect

2 Note that one more possible term of the type p(θ)dθ(rdt + dφ) can
always be removed by redefining the variables θ and φ.

that the Bardeen–Horowitz solution (4) can be extended to
include one more arbitrary parameter, the latter to be identi-
fied with a NUT charge.

In order to solve (2) in full generality, we first note that it
is homogeneous in a(θ) and its derivatives. This justifies the
substitution

a(θ) = eq(θ), (5)

which is consistent with the signature of the metric chosen
and gives a simpler third order differential equation for q(θ).
As the latter does not involve θ and q(θ) explicitly, the two
consecutive substitutions

q ′(θ) = p(θ), p′(θ) = s(p(θ)) (6)

reduce it to a first order equation for s(p). The latter can be
further simplified by introducing the new variable

y = p2, (7)

which yields

(4 + 5y + y2) + s
(
2 + 5y − 2s + 6ys′) = 0, (8)

where s′(y) = ds(y)
dy . This is a variant of the Abel equation

which can be explicitly solved in some exceptional cases
only. Representing s(y) in the form

s(y) = −(1 + y) + u(y) (9)

where −(1 + y) is a particular solution to (8), one converts
(8) into the equation for u(y)

−2u2 − 6y(1 + y)u′ + 3u(2 + y + 2yu′) = 0 (10)

with the coefficients in front ofu(y) andu′(y)being quadratic
polynomials in y. The latter fact prompts one to search for
the general solution to Eq. (10) in the parametric form

y = w(z), u(y) = zw(z), (11)

which ultimately yields

w(z) = −9 + 6z + 2c1
√−3 + 4z

2z2 , (12)

where c1 is a constant of integration.
When returning back to a(θ), it proves technically con-

venient to keep the variable z explicit until the very last step

a(z) = c3z

−3 + 4z
,

θ(z) = c2 − arctan
−9+2c1

√−3+4z

3
√

−9 + 4c1
√−3 + 4z+3(−3+4z)

,

(13)
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where c2 and c3 are constants of integration. Solving the
rightmost equation for z and removing c2 by redefining θ ,
one finally gets

a(θ) = L1(1 + cos2 θ) + L2 cos θ, (14)

where L1 and L2 are arbitrary parameters. The form of the
function b(θ) follows from (3)

b(θ) = (4L2
1 − L2

2) sin2 θ

a(θ)
. (15)

Note that the resulting metric (1) has the Lorentzian signature
provided

4L2
1 > L2

2, (16)

while for L1 = 0 the solution is of the ultrahyperbolic sig-
nature (2, 2).

Remarkably enough, the metric which we constructed by
providing the general solution to Eq. (2) precisely coincides
with the near horizon limit of the extreme Kerr–NUT black
hole [8]. L1 can be linked to the rotation parameter, while
L2 represents a NUT charge. We thus conclude that in four
dimensions the SO(2, 1)-invariance allows one to unambigu-
ously fix the NUT-extension of the near horizon Kerr geom-
etry.

3 NUT-extension of d = 5 near horizon Myers–Perry
geometry

In five dimensions the number of SO(2, 1)-invariant terms
to be included into a metric grows notably. So we choose a
specific ansatz

ds2 = a(θ)

(
r2dt2 − dr2

r2 − dθ2
)

− b(θ)(rdt + dφ1)
2

− c(θ)(rdt + dφ2)
2 + d(θ)(dφ1 − dφ2)

2, (17)

with a(θ), b(θ), c(θ), d(θ) to be determined, whose structure
is similar to the d = 5 near horizon Myers–Perry black hole
[5]3

ds2 = α(θ)

(
r2dt2 − dr2

r2 − dθ2
)

− a2(1 − sin θ)(2a1 + α(θ))

α(θ)
(rdt + dφ1)

2

− a1(1 + sin θ)(2a2 + α(θ))

α(θ)
(rdt + dφ2)

2

+ a1a2 cos2 θ

α(θ)
(dφ1 − dφ2)

2,

α(θ) = a1 + a2 + (a1 − a2) sin θ, (18)

3 As compared to the notation in [5], we redefined the latitudinal angular
variable 2θ → θ − π

2 and omitted the overall factor 1
2 (a1 + a2).

wherea1 anda2 represent the rotation parameters.Throughout
this work we consider the case of nonzero and unequal rota-
tion parameters.

A careful analysis of components of the Ricci tensor con-
structed from the metric (17) shows that Rtφ1 , Rtφ2 , Rrr ,
Rφ1φ2 produce the coupled set of second order ordinary dif-
ferential equations

a′′ = (2a(b + c) − 4a2 + a′2)g − aa′g′

2ag
, (19)

b′′ = −(2b(b + c) + a′b′)g + ab′g′ + 2ab(c′d ′ − b′c′ + b′d ′)
2ag

,

(20)

c′′ = −(2c(b + c) + a′c′)g + ac′g′ + 2ac(c′d ′ − b′c′ + b′d ′)
2ag

,

(21)

d ′′ = −(2bc + a′d ′)g + ad ′g′ + 2ad(c′d ′ − b′c′ + b′d ′)
2ag

, (22)

where we denoted4

g = bc − d(b + c), (23)

while Rθθ yields the compatibility condition

c′d ′ − b′c′ + b′d ′ = (4a2 − a(b + c) + a′2)g + 2aa′g′

a2 .

(24)

One more compatibility condition comes from the definition
(23) and Eqs. (19)–(22)

g′′ = −(2(b + c)g + a′g′)g + ag′2

2ag
. (25)

Other components of the Ricci tensor prove to vanish iden-
tically, provided Eqs. (19)–(22) and (24) hold.

The system of ordinary differential equations exposed
above can be solved in full generality. Gathering technical
details in the appendix, we display below a solution which,
in our opinion, seems to be a natural candidate to describe
the d = 5 near horizon Myers–Perry black hole with a NUT
charge

a(θ) = L1 + L2 sin θ + L3 sin2 θ,

d(θ) = a(θ)b(θ)c(θ) − N cos2 θ

a(θ)(b(θ) + c(θ))
,

4 It is worth mentioning that g is proportional to the determinant of the
metric det(gi j ) = 4a3g.

123



477 Page 4 of 7 Eur. Phys. J. C (2016) 76 :477

b(θ) = (L1 − L2)(2L1 + L2 − 2(L1 − L3(1 + 2L1/L2)) sin θ − L2 sin2 θ)

2a(θ)
,

c(θ) = 2L1(L1 + L3) − L2
2 + 2L2(L1 − L3) sin θ + (L2

2 − 2L3(L1 + L3)) sin2 θ

a(θ)
− b(θ),

N = (L1 − L2)
2(L1L2(L1 + L2) − 2L3L2

1 − L2
3(2L1 + L2))

2

2L2
2(L1 − L3)(L2

1 − L2
2 + L3(2L1 + L3))

,

(26)

where L1, L2, and L3 are constants. A more detailed form
of the function d(θ) is given in the appendix.

As follows from Eq. (18), L1 and L2 can be linked to the
rotation parameters via

L1 = a1 + a2, L2 = a1 − a2. (27)

By analogy with the d = 4 case, it seems natural to interpret
L3 as a NUT charge. In particular, in the limit L3 → 0 the
solution (26) reduces to (18). Note that the metric has the
Lorentzian signature provided

(L1 − L3)(L
2
1 − L2

2 + 2L1L3 + L2
3) > 0. (28)

As is shown in the appendix, the functions b, c, and d in
(26) can be deformed to include two more arbitrary parame-
ters in such a way that the resulting metric (17) still provides
a solution to the vacuum Einstein equations. A geometrical
or physical interpretation of the extra parameters remains a
challenge.

4 Discussion

To summarize, in this work we employed the invariants of
the conformal group SO(2, 1) so as to construct Ricci-flat
metrics in four and five dimensions. Our consideration was
primarily concerned with d = 4 and d = 5 because in these
cases the vacuum Einstein equations reduced to a coupled set
of ordinary differential equations which could be analyzed
in full generality. In four dimensions the resulting metric
reproduced the near horizon Kerr–NUT black hole [8]. To the
best of our knowledge, the five-dimensional metric presented
in Sect. 3 is new. It involves five arbitrary parameters. Setting
two of them to vanish, one obtains a natural candidate to
describe the d = 5 near horizon Myers–Perry black hole
with a NUT charge.

The NUT-charged rotating black hole geometries in arbi-
trary dimension have been constructed in Refs. [9,10]. They
were built by appropriately equating rotation parameters
and making use of a special coordinate system. In partic-
ular, according to the results in [9,10], in five dimensions a
NUT charge is bogus as it can be removed by redefining the
variables. This implies that our metric in Sect. 3 cannot be
obtained as the near horizon limit of that in [9,10].

In odd dimensions the NUT charges enter the metric in
[10] as additive constants. Note, however, that in the absence
of rotation parameters NUT charges typically accompany
terms involving the latitudinal angular variables and they are
not just additive constants (see, e.g., the construction in Ref.
[11]). In this regard the d = 4 and d = 5 metrics constructed
above are universal and involve a NUT charge in a uniform
way.

Turning to possible further developments, it is worth
mentioning that in Ref. [12] yet even more general five-
dimensional solution has been constructed which involves
one extra parameter over and above the rotation parameters
characterizing the Myers–Perry black hole. It would be inter-
esting to study the near horizon limit of the metric in [12] and
confront it with that in Sect. 3. In this regard the important
thing to understand is how the coordinate systems used in
[12] is related to that in this work. A generalization to d > 5,
including the case of a nonvanishing cosmological constant,
is an important open problem. In this case, in order to solve
the vacuum Einstein equations, one has to deal with a cou-
pled set of partial differential equations which are technically
much more difficult. Finally, it would be interesting to con-
struct integrable systems associated with NUT-charged near
horizon black hole geometries in the spirit of [7].
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Appendix

In this appendix we discuss some technical issues involved
in the construction of the solution (26) to the system of ordi-
nary differential equations (19)–(22) and the compatibility
conditions (24) and (25).

Multiplying Eqs. (19) and (25) by g and a, respectively,
and taking the sum, one gets the simple differential equation
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(ag)′′ = (ag)′2

2ag
− 2ag,

whose general solution reads

ag = c1 cos2 (θ + c2),

where c1 and c2 are constants of integration. In the following
we disregard c2 as it can be eliminated by redefining θ . Taking
into account the definition (23), one concludes that one of the
functions a, b, c, or d can be algebraically expressed in terms
of the others. For definiteness, we choose

d = abc − c1 cos2 θ

a(b + c)
.

One more algebraic relation is obtained by substituting
the solution for the product ag into Eq. (19), which yields

b + c = a′′ + 2a − a′
(

tan θ + a′

a

)
.

Taking into account this expression and computing the sum
of Eqs. (20) and (21), one gets the fourth order ordinary
differential equation to fix a(θ)

a
(

3a′ cos 2θ sec2 θ tan θ + a′′(7 − 3 sec2 θ) + a(4)
)

− a′ (a′(−2 + 3 sec2 θ) + 3a′′ tan θ + a(3)
)

= 0.

In order to simplify it, we introduce the new variable

y = sin θ,

represent a in the form

a(θ) = eq(y(θ)),

and implement two consecutive substitutions

q ′ = p, p3 + 3pp′ + p′′ = u,

where the prime denotes the derivative with respect to y.
Then the fourth order equation for a reduces to the first order
equation for u

(1 − y2)u′ − 6yu = 0,

which has the simple solution

u(y) = u0

(y2 − 1)
3 ,

where u0 is a constant of integration. The general solution to
the equation p3 + 3pp′ + p′′ = u is obtained by making use
of the substitution

p = w′

w
,

which raises the order of the equation by one

w(3)

w
= u0

(y2 − 1)
3 .

Taking into account the relations q ′ = p and p = w′
w

, one
concludes that a(θ) coincides with w(y(θ)) up to a constant
factor. The integration of the equation for w then gives

a(y) = (y2 − 1)

⎛
⎜⎝a1

(
y − 1

y + 1

)a4

+ a2

(
y + 1

y − 1

) a4+
√

4−3a2
4

2

+ a3

(
y + 1

y − 1

) a4−
√

4−3a2
4

2

⎞
⎟⎠ ,

where y = sin θ anda1,a2,a3,a4 are constants of integration.
Since in this work we are primarily concerned with the

construction of a NUT-extension of the d = 5 near horizon
Myers–Perry geometry and a(y) in the preceding formula is
a transcendental function, in the following we choose a4 to
take one of the three integer values −1, 0, or 1, which yield5

a(θ) = L1 + L2 sin θ + L3 sin2 θ,

where L1, L2, and L3 are arbitrary parameters. A comparison
with (18) shows that the first two constants can be linked to
the rotation parameters via L1 = a1 + a2 and L2 = a1 − a2,
while L3 can be interpreted as a NUT charge.

Given the explicit form of the function a, one can imme-
diately compute g, (b + c), and c′d ′ − b′c′ + b′d ′. At this
stage, the linear ordinary differential equation (20) can be
integrated to yield

b(θ) = b1(L2 + 2L3 sin θ) + b2(2L1 sin θ + L2 sin2 θ)

a(θ)
,

where b1, b2 are constants of integration and the functions
they accompany represent the two linearly independent solu-
tions to Eq. (20). Because in this work we are concerned with
the construction of a NUT-deformation of the d = 5 near
horizon Myers–Perry geometry, we choose to fix b1 and b2

in such a way that the resulting metric reduces to (18) in the
limit L3 → 0. This gives

b1 = 1

2L2

(
2L2

1 − L2(L1 + L2)
)

, b2 = 1

2
(L2 − L1),

5 It is likely that irrational values of a4 lead to trivial solutions. For
example, choosing a1 = a3 = 0, a4 = 1

4 (1 − √
13), one finds a(θ) =

a2 cos θ(1 + sin θ). It is straightforward to verify that this form of a(θ)

implies b(θ) = c(θ) = 0, which lead to the divergent metric.
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which ultimately yield b(θ) of the form

b(θ) = (L1 − L2)(2L1 + L2 − 2(L1 − L3(1 + 2L1/L2)) sin θ − L2 sin2 θ)

2a(θ)
.

Because Eq. (21) for c has exactly the same form as that
for b, its solution has a similar structure,

c(θ) = C1(L2 + 2L3 sin θ) + C2(2L1 sin θ + L2 sin2 θ)

a(θ)
,

where C1 and C2 are constants of integration. Taking into

account the relation b+ c = a′′ + 2a − a′
(

tan θ + a′
a

)
, one

can relate C1 and C2 to b1, b2, L1, L2, and L3. The ultimate
result reads

c(θ) = L1L2 − L2
2 + 2L2

1 + 4L3L1 + 2(L2
1 + L1L2 + L3(L1 − L2 − 2L2

1/L2)) sin θ

2(L1 + L2 sin θ + L3 sin2 θ)

+ (L2(L1 + L2) − 4L3(L1 + L3)) sin2 θ

2(L1 + L2 sin θ + L3 sin2 θ)
.

It remains to fix the function d. The simplest way to solve
Eq. (22) is to start with the ansatz

d(θ) = d1 + d2 sin θ + d3 sin2 θ

a(θ)
(29)

and then determine the constants d1, d2, and d3 from Eq. (22)
and the compatibility conditions (23) and (24). This fixes d
unambiguously. In order to facilitate the comparison with
(18), below we represent the constants as power series in L3,

d1 = (L1 − L2)
(
L1(L1 − L2)L

2
2(L1 + L2)

2

+ L3L2(L1 + L2)(4L
3
1 + L2

1L2 + L3
2)

− L2
3L1(2L1 + L2)(2L

2
1 − 3L1L2 + 3L2

2)

− L3
3(2L1 + L2)(2L

2
1 − L1L2 + L2

2)
)/

d4,

d2 = L3(L1 − L2)
(
−4L1L

3
2(L1 + L2) + 2L3L2(L1 + L2)

× (4L2
1 + 2L1L2 + L2

2) − 8L2
3L

2
1L2

− 4L3
3L2(2L1 + L2)

) /
d4,

d3 = − (L1 − L2)
(
L1(L1 − L2)L

2
2(L1 + L2)

2

− L3L2(L1 + L2)(4L
3
1 − 5L2

1L2 − L3
2)

+ L2
3L1(4L

3
1 − 4L2

1L2 − L1L
2
2 − L3

2)

+ L3
3(4L

3
1 − 3L1L

2
2 − 3L3

2)
) /

d4,

where d4 reads

d4 = 4L2
2

(
L1(L

2
1 − L2

2) + L3(L
2
1 + L2

2) − L2
3L1 − L3

3

)
.

In the process one also determines the constant c1 which
enters the expression for d exposed above,

c1 = (L1 − L2)
2(L1L2(L1 + L2) − 2L3L2

1 − L2
3(2L1 + L2))

2

2L2
2(L1 − L3)(L2

1 − L2
2 + L3(2L1 + L3))

.

In our previous discussion we have fixed the arbitrary con-
stants b1 and b2 entering the function b(θ) so as to conform

to the d = 5 near horizon Meyers–Perry metric which shows
up in the limit L3 → 0. Leaving them arbitrary, one can
construct a two-parametric deformation of the solution (26)

b̃(θ) = b(θ) + P1L2 + 2(P2L1 + P1L3) sin θ + P2L2 sin2 θ

a(θ)
,

c̃(θ) = c(θ) − P1L2 + 2(P2L1 + P1L3) sin θ + P2L2 sin2 θ

a(θ)
,

d̃(θ) = d(θ) + d̃1 + d̃2 sin θ + d̃3 sin2 θ

a(θ)
,

where P1 and P2 are the new parameters. The function a(θ)

maintains its form (26), while the constants d̃1, d̃2, d̃3 are
expressed via L1, L2, L3, P1, and P2 as follows:

d̃1 = (−2P2L1(−L3
1L2 + (L1 − P1)L

3
2

+ 2L1(L
2
1 + P1L2 − L1L2)L3

+ (2P1L2 + (L1 − L2)(2L1 + L2))L
2
3) − P1(P1L1L

3
2

− 2L2(L
3
1 + 2L2

1L2 + P1L
2
2

− L1L
2
2)L3 + 2L1(2L

2
1 − 2L1L2

+ L2(P1 + L2))L
2
3 + 2(2L2

1 + P1L2 − L1L2)L
3
3)

− P2
2 L1L2(−L2

2 + 2L1(L1 + L3)))/d̃4,

d̃2 = L2(P
2
1 L2(L

2
2 − 4L1L3)

+ 2P1(L
2
1(L1 − 2P2)L2 + (P2 − L1)L

3
2

+ 2L2
1(L2 − L1)L3 + (2L2

1 + L1L2 + L2(L2 − 2P2))

× L2
3 − 2L1L

3
3 − 2L4

3) + P2(4L
2
1(L2 − 2L3)

123
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× L3 + 2L3
1(L2 + 2L3) + L2

2(P2L2 + 2L2
3)

− 2L1(L
3
2 + L2(2P2 − L3)L3 + 2L3

3)))/d̃4,

d̃3 = (−P2
2 L2(2L

3
1 − 2L1L

2
2 + 2L2

1L3 + L2
2L3)

− P1L3(−P1L
3
2 − 2L3

1(L2 − 2L3)

+ 2(P1 − L2)L2L
2
3 + 4L2

1L3(L3 − L2)

+ 2L1L2(L
2
2 + (P1 − L3)L3))

− 2P2(−L4
1(L2 − 2L3) + 2P1L1L2L

2
3

+ 2L3
1L3(L3 − L2) + L2

1L2(L
2
2 − 2L2L3 +

+ (2P1 − L3)L3) + L2
2L3(−P1L2 + L2

3)))/d̃4,

d̃4 = 2L2(L1 − L3)(L1 − L2 + L3)(L1 + L2 + L3).

It is straightforward to verify that the modified functions do
provide a solution to the vacuum Einstein equations which
reduces to (26) in the limit P1 → 0, P2 → 0. A geometrical
or physical interpretation of the extra parameters remains a
challenge.
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