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Abstract Expanding upon [arXiv:1404.4472,
arXiv:1511.06079], we provide a further detailed analysis
of Bañados geometries, the most general solutions to the
AdS3 Einstein gravity with Brown–Henneaux boundary con-
ditions. We analyze in some detail the causal, horizon, and
boundary structure, and the geodesic motion on these geome-
tries, as well as the two classes of symplectic charges one can
associate with these geometries: charges associated with the
exact symmetries and the Virasoro charges. We elaborate on
the one-to-one relation between the coadjoint orbits of two
copies of the Virasoro group and Bañados geometries. We
discuss that the information as regards the Bañados goeme-
tries falls into two categories: “orbit invariant” information
and “Virasoro hairs”. The former concerns geometric quan-
tities, while the latter are specified by the non-local surface
integrals. We elaborate on multi-BTZ geometries which have
a number of disconnected pieces at the horizon bifurcation
curve. We study multi-BTZ black hole thermodynamics and
discuss that the thermodynamic quantities are orbit invari-
ants. We also comment on the implications of our analysis
for a 2d CFT dual which could possibly be dual to AdS3

Einstein gravity.
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1 Introduction

Three-dimensional gravity has very interesting features and
has been long viewed as a testing ground for ideas in semi-
classical and quantum gravity [1–4]. 3d Einstein gravity on
flat (or AdS3, dS3) backgrounds does not have propagating
degrees of freedom and all solutions to these theories are
locally flat (or AdS3, dS3). Nevertheless, it is well known
that it admits nontrivial solutions [5,6], including black holes
[7,8]. One can in fact classify all the solutions to this the-
ory with prescribed boundary conditions. In this paper we
will focus on the AdS3 gravity case and analyze a family of
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locally AdS3 geometries with Brown–Henneaux boundary
conditions [9], namely with flat 2d metric at the boundary.1

These solutions, the Bañados geometries, which were first
discussed in [11], are specified by two arbitrary periodic func-
tions L+ = L+(x+) and L− = L−(x−), L±(x± + 2π) =
L±(x±). Although all Bañados geometries are locally AdS3

and locally diffeomorphic to each other, it is now established
that these geometries are physically distinct, as one can spec-
ify them with quasi-local, conserved surface charges; see [12]
and the references therein for a recent detailed study. The lat-
ter feature is also reflected in the fact that there are no every-
where smooth coordinate transformations which respect the
periodicity in x± and can render these geometries global or
Poincaré patches AdS3 [12] (see also [13–15]).

In fact, one can distinguish two kinds of such conserved
charges: those associated with exact symmetries (Killing
symmetries) of the Bañados solutions and those which are
in the family of symplectic symmetries.2 See [12,16] for a
detailed discussion on the concepts and the terminology.

If we denote the generators of the exact symmetries by
J± and those of symplectic symmetries by Ln, L̄n , one can
show that the latter form two (left and right) copies of Vira-
soro algebras at Brown–Henneaux central charge c [9] and
that J± commute with each other and also with all Ln, L̄n

[12]. Since these two sets are commuting, one may hence
label the geometries by J± as well as the Virasoro charges.
As discussed in [12] (see also [14,15,17,18]) one may then
classify Bañados geometries by the product of the two, left
and right, Virasoro coadjoint orbits [19,20]. Each Virasoro
coadjoint orbit which is in correspondence with a “represen-
tation” (an orbit) of the Virasoro group, is generically labeled
by an integer and a continuous real number3 and then “states”
in a given orbit are fully specified once we also give their Vira-
soro charges, the “Virasoro hairs”. The goal of this paper is
to elaborate on the results of [12,21] and on the one-to-one
relation between two copies of Virasoro orbits and Bañados
geometries.

The picture we depict here will correct and complete
the one given in [21]: The information as regards Bañados
geometries available to local observables of the usual clas-
sical GR, the geometric notions such as geodesic length,
and causal and boundary structure, and the black hole
(thermo)dynamics quantities like surface gravity and horizon
angular velocity, entropy, concerns “orbit invariant quanti-

1 More general solutions are also possible on relaxing these boundary
conditions [10].
2 Note that the notion of symplectic symmetries extends the notion of
asymptotic symmetries discussed in [9], in the sense that the charges
are not only defined at the AdS3 boundary, but also on any codimension
two, compact, space-like curve in the bulk.
3 As we will discuss in detail in Sect. 4, these two labels are not enough
to uniquely specify the orbit and we need to also specify the type of the
orbit.

ties”. That is, all geometries which fall into the same orbit
share these properties, regardless of their “Virasoro hair”. On
the other hand, the information as regards the Virasoro hair
is semiclassical, in the sense that it is of the form of surface
non-local (“quasi-local”) charges; the Virasoro charges may
be viewed as the “hair” on classical geometries which all have
the same mass, angular momentum, and causal structure.
Given this picture, one may hope to obtain a full quantum
description upon quantization of Virasoro coadjoint orbits.
We shall provide some discussion of the latter point in the
end; a thorough analysis is left to upcoming work.

To this end, in Sect. 2 we analyze geometric aspects of
Bañados solutions. This includes reviewing their Killing vec-
tors [21], analyzing the horizon, causal and boundary struc-
ture of these geometries and the geodesic motion on these
geometries. In Sect. 3, we analyze charges associated with
Bañados metrics. In Sect. 4, after reviewing Virasoro coad-
joint orbits and their classification, we discuss the 3d Bañados
geometry associated with Virasoro coadjoint orbits. The last
section is devoted to a summary and outlook. In an appendix
we have given detailed analysis of special, but important
cases, the geometries corresponding to Virasoro coadjoint
orbits with constant character representative.

2 Bañados geometries and their causal structure

In this paper we focus on the most general solutions to the
AdS3 Einstein gravity equations,

Rμν = − 2

�2 gμν , (2.1)

with Brown–Henneaux boundary conditions [9]. These solu-
tions are all locally AdS3 with local sl(2,R) × sl(2,R)

isometries and their causal boundary is a 2d cylinder (in
orthonormal coordinates). One may relax the behavior at the
boundary and get more general class of solutions [10,22].
The Bañados solutions in the Fefferman–Graham gauge [23]
is given by [11]

ds2 = �2 dr2

r2 −
(

rdx+ − �2

r
L−dx−

)(
rdx− − �2

r
L+dx+

)
,

(2.2)

where L+ = L+(x+) and L− = L−(x−) are arbitrary,
smooth, periodic functions, L±(x± + 2π) = L±(x±). We
assume here that x± ∈ [0, 2π ] and parametrize two circles.
The x±, r coordinate system used in (2.2) will be called a
Bañados coordinate system or a Bañados gauge. A similar
solution in other gauges, e.g. in the Gaussian null coordinates
(also called BMS gauge) has been constructed and analyzed
[12,24]. For the metrics (2.2),

det g = − �2

4r6 (r4 − r4
0 )2, r4

0 ≡ �4L+L−. (2.3)
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On the range of the r coordinate The metric (2.2) may be
written in terms of r2 (and not just r ). Therefore, in principle,
r2 can assume positive or negative real values. However, at
large |r2|, the metrics (2.2) take the form

ds2 ≈ �2 dr2

r2 − r2dx+dx−,

and without loss of generality one may choose x± = τ ±
ϕ, where ϕ ∈ [0, 2π ] is a space-like circle, while τ is a
time-like coordinate. This is in accord with the fact that the
causal boundary of the geometry is (part of) the cylinder
parametrized by x±. With this choice, to avoid the appearance
of closed time-like curves (CTCs), |r2| cannot take a large
negative value. We shall cut the r2 range from a negative
value, r2

CTC1, where CTC develops and we take r2
CTC1 <

r2. This range of r2, however, is not necessarily CTC free.
As we will argue in the next section, there is still a range
r2

CTC2 < r2 < 0, with r2
CTC1 ≤ r2

CTC2 < 0, where we have
CTCs. We should cut out this range too. The acceptable range
of r2 will then contain two disconnected pieces: r2

CTC1 ≤
r2 ≤ r2

CTC2 < 0 and r2 > 0. Moreover, as we will argue
this allowed range of r2 covers the geometry twice. As a
rough argument for the latter, note that if r4

0 > 0 then in the
r2 � 1 region the metric essentially takes the same form
as r2 � 1 region. This will become more clear in the level
Penrose diagrams shown in the next section. For illustrative
purposes we discuss the special case of a BTZ black hole
[7,8], corresponding to constant positive L± in the appendix
and compare the relation between Bañados and the more
standard BTZ-coordinate systems.

2.1 Diffeomorphisms preserving the Bañados gauge

The geometries (2.2) are written in a specific coordinate sys-
tem, the Bañados gauge. This coordinate system extends the
Fefferman–Graham coordinates (which are usually defined
near the boundary at large r ), to arbitrary r . The Bañados
gauge is hence defined by the “gauge fixing conditions”

grr = 1

r2 , gr+ = gr− = 0. (2.4)

One may then ask what the “residual” diffeomorphisms are
[25] which preserve the Bañados gauge. This question was
explored and answered in [12]:

χ [ε+, ε−] = χr∂r + χ+∂+ + χ−∂−, (2.5a)

χr = − r

2
(ε′+ + ε′−), χ+ = ε+ + �2r2ε′′− + �4L−ε′′+

2(r4 − �4L+L−)
,

χ− = ε− + �2r2ε′′+ + �4L+ε′′−
2(r4 − �4L+L−)

, (2.5b)

where ε± = ε±(x±) are two arbitrary, periodic functions, i.e.
ε±(x±) = ε±(x± + 2π), and the prime denotes a derivative
with respect to the argument.

Although χ diffeomorphisms keep the form of the metric
invariant, they generically shift the functions L±. From the
Lie derivative of the metric Lχ gμν one can read off [12]

δχ L+ = −1

2
ε

′′′
+ + ε+L ′+ + 2ε′+L+,

δχ L− = −1

2
ε

′′′
− + ε−L ′− + 2ε′−L−. (2.6)

2.2 Killing vectors of Bañados geometries

Killing vectors ζ , with Lζ g = 0, should have the form (2.5)
but for specific ε’s satisfying δζ L± = 0. We will denote the
corresponding ε’s by K±. Therefore, the Killing vectors are
of the form [21]

ζ [K+, K−] = ζ r∂r + ζ+∂+ + ζ−∂−, (2.7a)

ζ r = − r

2
(K ′+ + K ′−), ζ+ = K+ + �2r2 K ′′− + �4L−K ′′+

2(r4 − �4L+L−)
,

ζ− = K− + �2r2 K ′′+ + �4L+K ′′−
2(r4 − �4L+L−)

, (2.7b)

where now K± should satisfy the following equations:

K
′′′
+ − 4K ′+L+ − 2K+L ′+ = 0,

K
′′′
− − 4K ′−L− − 2K−L ′− = 0.

(2.8)

Since the notion of a Killing vector is a local one, all solu-
tions to (2.8) generate a Killing vector, regardless of the fact
that the corresponding K± are periodic or not. The above
third order equations have six linearly independent solutions.
These solutions constitute the six local isometries of Bañados
geometries which satisfy the sl(2,R) × sl(2,R) algebra, as
expected, recalling that Bañados geometries are locally AdS3

[21]. The K±(x±) functions which solve (2.8) are not neces-
sarily periodic. Therefore, not all of the associated six Killing
vector field are “globally defined”.

It was noted in [20,21] that (2.8) may be solved through
a second order Schrödinger type equation:

ψ ′′ − L+ ψ = 0, φ′′ − L− φ = 0. (2.9)

If the two linearly independent solutions to the above equa-
tions are denoted ψ1, ψ2, and φ1, φ2, then it is easy to verify
that

K −+ ≡ 1

2
ψ2

1 , K ++ ≡ 1

2
ψ2

2 , K 0+ ≡ 1

2
ψ1ψ2,

K +− ≡ 1

2
φ2

1 , K +− ≡ 1

2
φ2

2 , K 0− ≡ 1

2
φ1φ2

provide the three linearly independent solutions to (2.8)
where we adopt the normalization
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ψ ′
1ψ2 − ψ1ψ

′
2 = 1, φ′

1φ2 − φ1φ
′
2 = 1. (2.10)

Recalling that L± are periodic smooth functions, the Flo-
quet theorem implies that [21,26]

ψ1 = eT+x+
P1(x+), ψ2 = e−T+x+

P2(x+),

φ1 = eT−x−
Q1(x−), φ2 = e−T−x−

Q2(x−),
(2.11)

where Pi , Qi are periodic smooth functions and T± are two
constants built from L±. In generalT± are two complex num-
bers and without loss of generality we can take Re(T±) ≥ 0.
The discussion of [26] reveals that, although Pi , Qi are
generically 4π periodic, P1 P2 and Q1 Q2, and hence combi-
nations like ψ1ψ2, ψ1/ψ2, ψ

′
1/ψ1, and ψ ′

2/ψ2, which have
geometric meaning, are all 2π periodic. Therefore, in the
general case with Re(T±) 
= 0, only two of the six Killing
vectors, those generated by K 0+, K 0−, are periodic. Hereafter,
we will use the notation

K+ = ψ1ψ2, K− = φ1φ2, (2.12)

for the functions generating the two periodic global Killing
vectors, which will be denoted by ζ+ and ζ−. In other words,
the Bañados geometriesin general have U (1)+×U (1)− com-
pact isometries.4

The above construction makes it clear that solutions to
(2.9), and hence solutions to (2.8), are implicit functions of
L±, i.e. K+ = K+(L+(x+)), K− = K−(L−(x−)). In par-
ticular, we note that K± are only functions of L± and not
their derivatives L ′±.

2.3 Horizon and asymptotic boundary behavior

Any linear combination of two global Killing vector fields
ζ± is also a Killing vector. One may easily check that with
the normalization (2.10) and (2.12), |ζ+|2 = |ζ−|2 = �2/4,
while ζ+ · ζ− 
= 0 is a nontrivial function. There is a certain
combination of the two Killing vectors which are normal to
each other:

ζH± ≡ ζ+ ± ζ−. (2.13)

The norm of these vectors is given as

|ζH± |2 = ∓ψ1ψ2φ1φ2

r2 (r2 − r2
1±)(r2 − r2

2±), (2.14)

where

r2
1+ = �2 ψ ′

1φ
′
1

ψ1φ1
, r2

2+ = �2 ψ ′
2φ

′
2

ψ2φ2
, r2

1− = �2 ψ ′
1φ

′
2

ψ1φ2
,

r2
2− = �2 ψ ′

2φ
′
1

ψ2φ1
. (2.15)

4 There are special Re(T+) and/or Re(T−) = 0 cases where more
Killing vectors are periodic. These cases may have four or six global
Killing vectors. The latter happens only for global AdS3 with L± =
−1/4, T± = 0 where we have an Sl(2,R) × Sl(2,R) global isometry.

For later use we note that r2
1+r2

2+ = r2
1−r2

2− and

r2
1+ − r2

1− = �2

φ1φ2

ψ ′
1

ψ1
, r2

2+ − r2
2− = − �2

φ1φ2

ψ ′
2

ψ2
,

r2
1+ − r2

2− = �2

ψ1ψ2

φ′
1

φ1
, r2

2+ − r2
1− = − �2

ψ1ψ2

φ′
2

φ2
.

(2.16)

Using these identities one may readily check that

ζH+ · ζH− = 0, |ζH± |2
∣∣∣∣|ζH∓ |2=0

= �2 . (2.17)

Note Although most of the statements in this subsection
are also true for generic T± [cf. (2.11)], in Sects. 2 and 3, we
will be assuming that T± are real-valued.

2.3.1 Killing horizons and bifurcation surfaces

At the surfaces where the Killing vectors ζH± become null
we have Killing horizons. Explicitly, either of the four codi-
mension one surfaces Hασ ,

Hασ : r2 = r2
ασ , α = 1, 2, σ = +,−, (2.18)

defines a null surface along the corresponding null Killing
vector.

We will show below that:

• If r2
ασ is in the acceptable range [where geometry is CTC

free, cf. the discussion in the paragraph below (2.3)], then
we have Killing horizons.

• These horizons are generically (not always) bifurcate-
Killing horizons. We specify what is the bifurcation
curve.

• When they exist, these Killing horizons are either event
horizon (outer horizon) or Cauchy horizon (inner hori-
zon); if the event horizon is generated by ζH± , the inner
horizon is generated by ζH∓ .

• Then Hα± null surfaces for α = 1, 2 correspond to two
branches of the event horizon and vice versa, and the
inner and outer bifurcation curves are H1± ∩ H2±, and
they are given by the equation r2 = r2

1± = r2
2±.

To ensure the existence of horizons and whether they
are inner or outer horizons, we need to analyze the signs,
zeros, and infinities of r2

α± and |ζH± |2. As discussed, the

range of r coordinate can contain r2 < 0 regions. The
CTC appears in the regions where both of ζH± are space-
like. If the condition for the existence of horizons cannot
be met in all of the x± ∈ [0, 2π ] region, we are forced to
cut some parts (due to CTC). Moreover, since in general

123



Eur. Phys. J. C (2016) 76 :493 Page 5 of 22 493

ψ and φ have zeros, the horizon and boundary regions are
not simply connected and will generically have some dis-
connected patches. Another point we will discuss below is
that the allowed range for r2 gives a double cover of space-
time. The latter fact, that the r2 < 0 should also be included
in the coordinate range and the existence of CTC’s, may
be seen very explicitly for the BTZ case of constant, posi-
tive L±, which is discussed in Appendix A.1. The analysis
of the causal structure will be quite different for constant
and the nonconstant cases and they need to be discussed
separately.

Case I: constant L± This case is the more studied and bet-
ter understood case; see, e.g., [12,21] and the references
therein. For the case where L± ≥ 0 we have BTZ black
holes. This case will be discussed in some detail in the
appendix. For the BTZ case, as is well known [7,8], we gener-
ically have a (bifurcate) simply connected horizon which is a
circle.

Case II: generic L± case Unlike Case I, in this case ψ and φ

functions can have roots and zeros. Here and below, unless
mentioned explicitly, we will be considering nonconstant
generic L± cases. Before starting the analysis, we note the
facts that, as implied by (2.9) and (2.10):

• ψ1, ψ2 are smooth functions and can only have simple
roots.

• ψ ′
1, ψ

′
2 are also smooth and can only have simple roots.

• The number of simple roots of ψ1 in x+ ∈ [0, 2π ] is
equal to the number of roots of ψ2 in the same range. Let
us denote this number by n+. One may show that ψ ′

1, ψ
′
2

have the same number of roots [26].
• Between any two roots of ψ1 (ψ2), there is a root of ψ2

(ψ1), and similarly for their derivatives [26].
• If the roots of ψ2, ψ

′
1, ψ

′
2, ψ1 are, respectively, denoted

by x+
1,i , x+

2,i , x+
3,i , x+

4,i , i = 1, . . . , n+, we have x+
1,i <

x+
2,i < x+

3,i < x+
4,i and x+

4,i < x+
1,i+1. Note that we are

using the normalization (2.10).
• Considering the roots, we can divide the [0, 2π ] range

into 4n+ regions:

I1,1 = [0, x+
1,1), I2,1 = (x+

1,1, x+
2,1),

I3,1 = (x+
2,1, x+

3,1), I4,1 = (x+
3,1, x+

4,1),

I1,2 = (x+
4,1, x+

1,2), I2,2 = (x+
1,2, x+

2,2), . . . ,

I3,n+ = (x+
2,n+ , x+

3,n+), I4,n+ = (x+
3,n+ , x+

4,n+). (2.19)

The range (x+
4,n+ , 2π ] is identified with the I1,1 region.

• Let us focus on the i th roots, i.e. the Ia,i , a = 1, 2, 3, 4
regions. One can always choose the overall sign of ψ1

and ψ2 functions such that

Function Region
I1,i I2,i I3,i I4,i I1,i+1

ψ1 + + + + −
ψ2 + − − − −
ψ ′

1 + + − − −
ψ ′

2 − − − + +
ψ1ψ2 + − − − +
ψ ′

1/ψ1 + + − − +
ψ ′

2/ψ2 − + + − −

Note that for 2π periodic functions like ψ1ψ2 and
ψ ′

α/ψα , the first and fifth column are the same.
• In a similar fashion the φ functions may have n− roots,

with the same properties and ordering.

On the existence of horizons The horizons, if they exist,
should be at the roots of |ζH± |2. To distinguish which one is
the inner horizon and which one the outer, we need to study
the sign of r2

α± functions. Given the above analysis on the
roots and signs of ψ, φ’s, we learn that r2

1±, r2
2± in the I +

a,i

and I −
b, j regions, have the signs given in Table 1.

The event horizon The outer (event) horizon is by definition
the null surface which is the boundary of all the past or future
light-cones of points at the AdS3 boundary. For the AdS3

case, the Killing vector field generating the event horizon
remains time-like at the boundary,5 while becoming null at
the horizon. In order to distinguish which of rα+ or rα− gives
the outer (event) horizons we need to distinguish which of
ζH± are time-like at the boundary (large r2 region). From

(2.14) we learn that for large r2

|ζH± |2 ≈ ∓r2�, � ≡ φ1φ2ψ1ψ2, (2.20)

and the sign of � in different regions is given in Table 2.

Inner and outer horizons and horizon radius differences The
criterion above will distinguish which of the r2

α+ or r2
α− cor-

respond to bifurcate event horizon(s). One may distinguish
which is the inner (Cauchy) horizon noting the following:
The outer horizon is by definition the one which is closer to
the boundary than the inner horizon. That is, the outer hori-
zon should occur at a larger radius than the inner horizon.
The signs of horizon radius differences are given in Table 3.

How to build full 4n+×4n− tables We note that, as discussed
above, if in general the functions ψ and φ have, respectively,
n+ and n− zeros, then the above tables, instead of being 5×5
should have 4n+×4n− = 16n+n− regions. The way to build

5 We note that this is a generic property of AdS3 black holes and is
unlike the asymptotic flat black holes like the Kerr black hole. In the
Kerr case the horizon generating Killing vector is generically space-
like in the asymptotic region of the spacetime, and it becomes time-like
only in a region very close to the axis of rotation (usually denoted by
θ = 0, π ).
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Table 1 Left and right top tables, respectively, show sign of r2
1+ and

r2
2+. Left and right bottom tables, respectively, show the signs of r2

1− and
r2

2−. Note that the change of sign for either of these functions happens

at places where they vanish, or when they become infinite. The former
happens at zeros of derivatives ψ ′, φ′, while the latter occurs at zeros
of ψ and φ

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i + + − − +
I+2,i + + − − +
I+3,i − − + + −
I+4,i − − + + −
I+1,i+1 + + − − +

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i + − − + +
I+2,i − + + − −
I+3,i − + + − −
I+4,i + − − + +
I+1,i+1 + − − + +

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i − + + − −
I+2,i − + + − −
I+3,i + − − + +
I+4,i + − − + +
I+1,i+1 + +

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i − − + + −
I+2,i + + − − +
I+3,i + + − − +
I+4,i − − + + −
I+1,i+1 + +

Table 2 Sign of �. Sign of norm of |ζH± |2 near the boundary is ∓�

x+ x−

I −
1, j I −

2, j I −
3, j I −

4, j I −
1, j+1

I +
1,i + − − − +

I +
2,i − + + + −

I +
3,i − + + + −

I +
4,i − + + + −

I +
1,i+1 + − − − +

these bigger tables from those given here is simply copying
the above tables n− times on the rows, identifying the last
and first columns in each copy; and copying n+ times the
columns and then identifying the last and first rows in each
copy.6 In the end, we should also identify the first row and
the last rows, and the first column and the last column. This
last identification is to implement the 2π periodicity of the
� and r2

α± functions.
We also note that the tables here denote the cylinder

spanned by x± with x± ∈ [0, 2π ]. These tables are hence,
in fact, depictions of the AdS3 boundary.

2.3.2 More on causal and boundary structure

Equipped with the information of the signs of |ζH± |2 and

r2
α±, we are now ready to build the full causal structure of

6 As we can explicitly see, in our 5 × 5 tables the first and fifth rows
and columns are the same.

the Bañados geometries and discuss horizon properties like
geometry of inner and bifurcation curves, and the horizon
angular velocity and surface gravity. As we will discuss, the
geometry, the boundary, and the event horizon in general
consists of some number of causally disconnected pieces. To
gain a better intuition and picture, however, we would like
to invite the reader to go through Appendix A.1 where we
discuss the simpler case of constant L±.

Surface gravity One may show

− 1

4
|∇ζH± |2

∣∣∣∣|ζH± |2=0
= 1, (2.21)

implying that the “un-normalized surface gravity” at the
Killing horizons are equal (up to a sign). We stress that this
equation is true for all four choices of roots of |ζH± |. To read
the physical surface gravity and determining its sign, how-
ever, we need to fix the normalization of the Killing vectors.

Fixing the normalization of Killing vectors It is well known
that in order to read off the horizon’s kinematical properties,
like the horizon angular velocity and surface gravity, one
needs to choose an appropriate normalization for the cor-
responding Killing vectors. In particular, we are interested
in finding the horizon properties associated with the outer
horizon, the horizon causally connected to the AdS3 bound-
ary. The Killing vector generating this outer (event) horizon
should remain time-like in the r2 > r2

H region. This outer
horizon can be generated by ζH+ (ζH− ) in the regions where
ψ1ψ2φ1φ2 is negative (positive). If the outer horizon is gen-
erated by ζH+ (ζH− ) the horizon radius is r2

α+ (r2
α−), where

r2 = r2
1+ and r2 = r2

2+ (r2 = r2
1− and r2 = r2

2−) denote the
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Table 3 Left and right top tables, respectively, show, the signs of r2
1+ − r2

1− and r2
1+ − r2

2−. Left and right bottom tables, respectively, show the
signs of r2

2+ − r2
1− and r2

2+ − r2
2−. To deduce the above tables we have used (2.16)

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i + − − − +
I+2,i + − − − +
I+3,i − + + + −
I+4,i − + + + −
I+1,i+1 + − − − +

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i + + − − +
I+2,i − − + + −
I+3,i − − + + −
I+4,i − − + + −
I+1,i+1 + + − − +

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i + − − + +
I+2,i − + + − −
I+3,i − + + − −
I+4,i − + + − −
I+1,i+1 + + +

x+
x−

I−1,j I−2,j I−3,j I−4,j I−1,j+1

I+1,i + − − − +
I+2,i − + + + −
I+3,i − + + + −
I+4,i + − − − +
I+1,i+1 + +

two branches of the bifurcate horizon. We will return to this
point later.

To fix the normalization of the horizon generating Killing
vectors, we focus on the regions where ψ1ψ2 and φ1φ2 are
both positive, and hence the event horizon is generated by
ζH+ . A similar analysis may also be repeated for the other
regions, including cases with negative �, where the outer
(event) horizon is generated by ζH− . Let us study the large
r , asymptotic behavior of the Killing vector ζH+ . One may
readily see from (2.7) that at large r

ζ+ ∼ K+∂+, ζ− ∼ K−∂−. (2.22)

The “appropriate” normalization is hence the one in which
ζ± are along the coordinates. Noting (2.10) and (2.12) we
learn that

ζ+ ∼ 1

2T+
∂X+ , ζ− ∼ 1

2T−
∂X− , (2.23)

where

X+ = 1

2T+
ln

ψ1

ψ2
, X− = 1

2T−
ln

φ1

φ2
. (2.24)

In the above the normalization factors 1
2T± are chosen

recalling (2.11), such that X± are 2π periodic; explicitly,
X±(x± +2π) = X±(x±)+2π . The appropriate asymptotic
time and angular variable, τ, ϕ are hence

τ = �(X+ + X−)/2, ϕ = (X+ − X−)/2. (2.25)

With the above normalization and recalling (2.21), we learn
that the physical surface gravity κ is

2

κ
= 1

T+
+ 1

T−
. (2.26)

H1±,H2± intersecting the boundary, number of discon-
nected pieces at the boundary Let us focus on the regions
where ψ1ψ2 and φ1φ2 are both positive, and hence the event
horizon is generated by ζH+ . A similar analysis may also be

repeated for the other regions. The “horizon radii” r2
α+ can

range from minus infinity to plus infinity. The places r2
1+ or

r2
2+ that become infinite is where the horizon H1+ or H2+

intersect the AdS3 boundary. To be explicit, in our 5×5 tables,
the segments of the boundary are in the (1, 1), (2, 2) and in
(4, 4), (5, 5) parts of the table. From the tables we also see
that there are (3, 3) and parts of (2, 2), (4, 4) regions where
ζH+ can have zeros at r2 < r2

0 [cf. (2.3)].
In fact, one can readily see that the extrema of the functions

r2
α± occur at7

∂+r2
α± = 0, ∂−r2

α± = 0 �⇒ r2
α±|extremum = r2

0 . (2.27)

The extrema are minima in regions where r2
ασ can become

very large (and become infinite at the boundaries of the
region) and maximum in the regions where at its bound-
aries r2

ασ can become zero. That is, in region (3, 3) we have a
maximum; in regions (1, 1), (5, 5) we have a minimum and
in regions (2, 2) and (4, 4) we have a maximum and a min-
imum. One can show (e.g. see Appendix A for the case of
BTZ black holes) that the r2 > r2

0 and 0 < r2 < r2
0 regions

are geometrically the same, corresponding to the regions I
and I’ on the Penrose diagram in Fig. 2. The Bañados coor-

7 Note that at
(

ψ ′
ψ

)′ = 0,
(

ψ ′
ψ

)2 = L+, and similarly for φ and hence

the extremum of ψ ′
ψ

φ′
φ

occurs at
√

L+L−.
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dinates cover these parts twice. So, we would not count the
event horizons appearing in the 0 < r2 < r2

0 region as inde-
pendent.

We next note that in the region � < 0, the outer horizon
may be generated by ζH− . In these regions r2

1− or r2
2− may

become infinite. In terms of our 5 × 5 tables, this happens
at the boundaries of (4, 1) and (5, 2) regions (where r2

1−
becomes infinite) and at the boundaries of (1, 4) and (2, 5)

(where r2
2− becomes infinite). The regions (2, 3), (3, 4) and

(3, 2), (4, 3) are again a repetition of these parts and we do
not count them separately.

Summarizing, the above analysis shows that we have
(n+ +1)(n− +1) causally disconnected regions in the range
x± ∈ [0, 2π ] at the boundary. These regions are separated
by the roots of ψ ′

1, ψ
′
2, φ

′
1 and φ′

2. Note that this is exactly the
place where |ζH± |2 around the small r region changes sign.
It is also instructive to recall the case of BTZ black holes and
in particular Fig. 2.

Regions enclosed by the boundary and the event horizon Let
us consider the case where the outer horizon is generated
by ζH+ , i.e. where � > 0. The two surfaces r2 = r2

1+ and

r2 = r2
2+ define the two branches of the bifurcate (event)

horizon.8 As discussed there are also patches defined by the
intersection of H1− or H2− and the boundary (in the � < 0
regions). There are (n+ + 1)(n− + 1) causally disconnected
regions bordered by the two branches of the event horizon
and the boundary.

Bifurcation curve � As in the previous discussion, let us
focus on the regions where ψ1ψ2 and φ1φ2 are both positive,
and hence the event horizon is generated by ζH+ . A similar
analysis may also be repeated for the other regions. As men-
tioned the H1+ and H2+ are two-dimensional null surfaces
generated by the Killing vector field ζH+ . In the terminol-
ogy of the usual Penrose diagram or Kruskal coordinates,
we introduced u, v null coordinates, that is, H1+ and H2+
are along constant u and constant v surfaces. They can inter-
sect on a space-like one-dimensional curve � (which is at
u = v = 0). In the usual terminology �+ is the bifurca-
tion curve. Similarly to H1+ and H2+, �+ is not necessarily
simply connected and may have some disconnected pieces.
Below we discuss some properties of the bifurcation curve
�+:

1. The Killing vector field which generates the horizon van-
ishes at �+. In the region we are discussing the horizon
is generated by ζH+ and

8 In the BTZ case r2
1+ = r2

2+ = r2+, and as usual on the Penrose diagram
(see Fig. 2) the event horizon is specified by r = r+. Note, however,
the difference between the BTZ and the Bañados coordinate systems
(cf. Appendix A.1).

ζH+ |�+ = 0. (2.28)

This may be checked by a straightforward computation
at �+ = H1+ ∩H2+. To this end, it is useful to note that
at �+:

�+ : ψ ′
1ψ2 = −φ′

2φ1, ψ ′
2ψ1 = −φ′

1φ2. (2.29)

In a similar way, one may check that the above is also true
when the horizon is generated by ζH− with the bifurcation
curve �−, �− = H1− ∩ H2−. For the �−, however, we
have

�− : ψ ′
1ψ2 = φ′

1φ2 , ψ ′
2ψ1 = φ′

2φ1.

2. �± is along the Killing vector ζH∓ One can readily show

that the tangent to the curve at the intersection of r2 ≡
r2
H1± and r2 ≡ r2

H2± surfaces is along ζH∓ . In other
words, �± is generated by the flow of ζH∓ at H1± or
H2±. Moreover, recalling (2.17), we see that ζH∓ are
space-like at �±.

3. One may calculate the Bañados metric (2.2) at �+ to
obtain

ds2
∣∣
�+ = �2d�2+,

�+ = 1

2
ln

ψ ′
1ψ1

φ′
1φ1

= −1

2
ln

ψ ′
2ψ2

φ′
2φ2

. (2.30)

To show the second equality above we have used (2.29).
The above, together with (2.17), implies that ζH− |�+ =
∂�+ .
If the outer horizon is generated by ζH− , with the bifur-
cation curve �−, the metric at �− is given by

ds2
∣∣
�− = �2d�2−,�− = 1

2
ln

ψ ′
1ψ1

φ′
2φ2

= −1

2
ln

ψ ′
2ψ2

φ′
1φ1

.

(2.31)

The coordinate �− is along the Killing vector ζH+ .
4. Using (2.11) we learn that

�± = T+x+ ∓ T−x− + P±(x+) + Q±(x−), (2.32)

where P±,Q± are periodic functions, P±(x+) =
P±(x+ + 2π),Q±(x−) = Q±(x− + 2π).

5. Horizon angular velocity From (2.32) and (2.24) we learn
that

�± = R±
H(ϕ − �±

H
τ

�
) + “periodic part”, (2.33)
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where

R±
H = T+ ± T−, �+

H = 1

�−
H

= T+ − T−
T+ + T−

. (2.34)

One may readily show that we have the same horizon
angular velocity if we considered the event horizon gen-
erated by ζH− and the bifurcation curve �−.9

6. Length of �+, “area” of horizon As can be explicitly
seen from (2.30) and (2.33), � is a curve of finite length,

AH = 2π�(T+ + T−). (2.35)

One may readily see that �− has the same “length” as
above.

7. Bifurcation curve � has (n+ + 1)(n− + 1) disconnected
pieces The bifurcation curves �+, as parametrized by �+
coordinate (2.32), consist of some disconnected pieces.
To distinguish the disconnected pieces, we should check
where the equations defining �+ (2.29) have solutions
and also where � is real-valued. Given the information
in our tables, we learn that �+ has the same number of
disconnected pieces as the Hα+. Considering the outer
(event) horizons generated by ζH+ , the bifurcation curve
of the event horizon has (n+ + 1)(n− + 1) disconnected
pieces.

Inner horizons Associated with any event horizon there is,
generically, an inner horizon. The region “inside” the inner
horizon region is bounded between the inner horizon (which
is where we have a null Killing vector field) and the region
we develop a CTC. Inside this region the horizon generat-
ing Killing vector should remain time-like. When the event
horizon is generated by ζH± the inner (Cauchy) horizon is
generated by ζH∓ . We note that, as is seen in Table 3, in the

regions the event horizon is given by r2
2+ (r2

1+), r2
2+ − r2

2−,
and r2

2+ − r2
1− (r2

1+ − r2
1− and r2

1+ − r2
2−) are both positive,

confirming the picture that outer horizons occur at a larger
r -coordinate value than the inner horizon. This statement is
also true when the event (outer) horizons are generated by
ζH− .

As commented in footnote 9, regardless of whether the
Killing horizon generating the inner horizon is ζH∓ , one may
show that the coordinate along the inner horizon is �− [cf.
(2.30), (2.31)].

Summary of subsection We argued that the two Killing vec-
tors ζH± which are everywhere orthogonal can become null

9 Note that if the event horizon is generated by ζH− , one should revisit
the definition of X± (2.24), by taking either of X− or X+ to minus
themselves. In this way the coordinate covering the event horizon will
always keep the form �+. As we will discuss, �− will be the coordinate
on the inner horizon.

on some different patches of spacetime. These null surfaces
can intersect the boundary in different places. As discussed
boundary and horizon, in general, have (n+ + 1)(n− + 1)

disconnected pieces. When the outer horizon is generated by
ζH± the corresponding inner horizon is generated by ζH∓ .
Regardless of which ζ produces the horizon, the coordinate
spanning the bifurcation curve of the event horizon is �+
and that of the inner horizon is �−. The length of the event
horizon is always 2π�R+

H and that of the inner horizon is
2π�R−

H. We have summarized the above information in the
Penrose diagram Fig. 1.

Fig. 1 Penrose diagram for generic Bañados geometry. To draw this
causal diagram we have used the analysis of the simpler case of BTZ
(cf. Appendix A.1) and the analysis made in this section. In the Penrose
diagram, as usual, we have suppressed a space-like compact direction
(here the one along �+ or �− coordinates). Our discussions in this
section reveal that Penrose diagrams for generic n± are essentially the
same as those of usual BTZ geometries discussed in [7,8]. However,
we cut the regions which have CTCs and we should make appropriate
identifications, and hence we are left with a geometry whose Penrose
diagram is an (n+ + 1)(n− + 1) multiple repetition of that of a single
BTZ geometry (Fig. 2)
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2.4 Geodesic motion on generic Bañados geometries

To gain a better intuition about the Bañados geometries we
present a brief analysis of geodesic motion on these back-
grounds. A similar study has been performed for constant
L± case, cases which include BTZ black holes, in the liter-
ature. For clarity and completeness we have presented those
analyses in Appendix A.2. Here, we give a discussion for
generic L± functions.

As discussed, any Bañados geometry generically has two
global Killing vectors ζ± and four local ones, and altogether
we have six Killing vectors which form a sl(2,R)× sl(2,R)

algebra. We may use these facts to construct the geodesics.
Let us consider the geodesic velocity vector vμ = dxμ/ds,
where s is the affine parameter on the geodesic. The velocity
along the Killing vectors is a constant of motion. Therefore,
P±,

P± = v · ζH± , (2.36)

are constants of motion. Having two constants of motion, we
can completely solve for the velocity vector using the fact
that

v2 = σ, σ = −1, 0,+1

respectively, for time-like, null, and space-like geodesics.

(2.37)

To write out the above equation explicitly, let us define an
orthogonal basis, ζH± and η, with

�−1η = ηr∂r + η+∂+ + η−∂−, (2.38)

where η · ζH± = 0 and

ηr = − K+K−
�2r

(
r4 − r2

H1
r2
H2

)
,

η± = K±K ′∓

−�2r2 K ′±(K ′′∓ − 4L∓K∓) + �4 K ′∓(K ′′± − 4L±K±)

2(r4 − l4L+L−)
,

(2.39)

and one may show that

|η|2 = −|ζH+ |2|ζH− |2. (2.40)

We can then expand the velocity vector v as

v = P+
|ζH+ |2 ζH+ + P−

|ζH− |2 ζH− + Z

|η|2 η, (2.41)

where Z = v · η and

Z2 = |η|2
(

σ − P2+
|ζH+ |2 − P2−

|ζH− |2
)

= |η|2σ + P2+|ζH− |2 + P2−|ζH+ |2. (2.42)

What will be important in our further discussions in Sects. 4
and 5 is that Z2, P± are diffeomorphism invariant quantities.
Therefore, geodesic observers can only probe a part of the
information encoded in the functions L±, which specify the
geometric properties of the background.

2.5 Summary of Bañados geometries and outlook
of the section

We argued that in general, irrespective of the details of the
functions L±, Bañados metrics (2.2) have U (1)+ × U (1)−
global isometries. The corresponding Killing vectors may
be constructed through the solutions to the Hill equations
(2.9), the ψ and φ functions. In general, for nonconstant L±
cases, the norm of the Killing vector fields ζH± can vanish at
four surfaces given in (2.15). As discussed two of these four
surfaces provide the outer (event) bifurcate horizon, while
the other two lead to the bifurcate inner Killing horizon. The
Bañados coordinate system, once the range r2 < 0 is also
included, covers the regions outside the outer horizon (all
the way to the boundary) and the inside the inner horizon
(all the way to the CTC region). It does not necessarily cover
the (whole) region between the two horizons. Moreover, as
discussed, in the allowed region for r2, it provides a double
cover of the part of spacetime in covers.10

As discussed in some detail, in the x± ∈ [0, 2π ] range
the horizons intersect the boundary in (n+ + 1)(n− + 1)

distinct regions, where n+, n− are, respectively, the number
of zeros of the ψ and φ functions. Moreover, we showed
that the inner and outer bifurcation curves �± also have the
same number of disconnected pieces. The surface gravity κ ,
angular velocity �H, and length AH of the outer horizon are
given in terms of the Floquet indices of the ψ and φ solutions,
T±, as

2

κ
= 1

T+
+ 1

T−
, �H = T+ − T−

T+ + T−
,

AH = 2π�(T+ + T−). (2.43)

There is a closely related construction for multi-BTZ
geometries due to Brill [27–29]. This construction is based on
the fact that a constant time slice for AdS3 has the line element
ds2 = (dz2+dx2)/z2, which is nothing but a 2d hyperboloid
H2. The latter may also be viewed as the Poincaré disk. It is
well known that one may construct all 2d surfaces of genus
g ≥ 2 from orbifolds of H2, by making identifications on it
with a discrete subgroup of its sl(2,R) isometry. It is then
argued that if we add back the time direction, the 3d geometry
we obtain in this way is a black hole geometry with a multi-
sector horizon and boundary. In a different terminology, one

10 It is instructive to see the analysis of Appendix A.1 for the simpler
case of constant L±.
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may cut through the maximally extended multi-BTZ geome-
try at the constant time slice passing through the horizon. In
this way, one observes that the multi-BTZ geometry is indeed
a wormhole with a number of handles g [30,31].

In the “Brill diagrams” [27–29], the construction is based
upon a time-direction suppressed 3d geometry. In our tables,
we discuss the x±, while suppressing the radial direction
r and in a Penrose diagram (see Fig. 1) we are suppress-
ing the “compact �” direction. In a sense these three are
complementary to each other. Making a thorough compari-
son and working out the details of connection between our
multi-sector geometries and those of Brill is postponed to
upcoming work.

3 Bañados geometries and the associated conserved
charges

As was discussed in [12], to a given Bañados geometry one
may associate two kind of charges, the Virasoro charges and
the charges associated to Killing vectors ζ±. It was shown
in [12] that the usual Lee–Wald [32] or Barnich–Brandt [33]
symplectic structure vanishes on-shell for Bañados geome-
tries, and hence within the covariant phase space method (see
e.g. [16] for a review) one can define symplectic symmetries.
That is, the surface charges could be defined by integration on
a space-like one-dimensional curve everywhere in the geom-
etry and not necessarily at the boundary.

It was argued in [16] that symplectic symmetries as
defined above, may be in either of the two groups: The gener-
ator of the symmetry could be an exact symmetry, in our set-
ting a Killing vector, or it can be a nontrivial diffeomorphism
which is not an exact symmetry. The former may hence be
called a “symplectic exact symmetry” (SES) and the latter a
“symplectic non-exact symmetry” (SNS). In our example the
SNSs are generated by diffeomorphisms along the χ vector
field (2.5) and the SESs are generated by the Killing vectors
ζ± (2.7) [12].

In this section we give the expression for the charges asso-
ciated with SNS and SES. The first part of this section is
essentially a review of [12]. However, the second part is a
completion of [12] along the analysis of [16].

3.1 Charges associated with symplectic non-exact
symmetries (SNSs)

In the covariant phase space method, we first define charge
variations associated with field variations/perturbations gen-
erated by a vector field, e.g. χ , and then we integrate these
charge variations over a given path in the phase space to
define the charge itself. The integrability condition, which
is checked to hold in our case [12], then guarantees that the

charges do not depend on the integration path in the phase
space.

For the Bañados geometry with L± functions, if we denote
the charges associated with χ [ε+ = einx+

, ε− = 0] and
χ [ε+ = 0, ε− = einx−] [cf. (2.5)], respectively, by Ln, L̄n ,
their explicit form is [12]

Ln[g] = �

8πG

∮
dx+L+(x+)einx+

,

L̄n[g] = �

8πG

∮
dx−L−(x−)einx−

. (3.1)

These charges form two Virasoro algebras at the Brown–
Henneaux central charge:

[Ln, Lm] = (n − m)Ln+m + c

12
δm+nn3 ,

[Ln, L̄m] = 0, [L̄n, L̄m] = (n − m)L̄n+m + c

12
δm+nn3,

(3.2)

with

c = 3�

2G
, (3.3)

where G is the 3d Newton constant. Note that unlike the
usual Brown–Henneaux case [9], (1) our charges are defined
everywhere and not just close to the boundary; (2) the charges
are defined around an arbitrary Bañados solution and not
just AdS3 (in Poincaré patch). This latter item brings about
two interesting features: first, the charges are associated with
each Bañados geometry and, second, the charges become
field dependent, their expression explicitly depends on the
background functions L±. Therefore, to obtain the algebra of
charges one needs to consider an “adjusted bracket”, which
includes the change made the background functions when
computing charge variations; see [12] for detailed discus-
sions and analysis.

3.2 Charges associated with symplectic exact symmetries
(SESs)

In [12] it has been argued that one can associate the following
conserved charges to U(1)± Killing vectors of the geometry
(2.2). Using the analysis of [16], we obtain11

δ J± = �

8πG

∫ 2π

0
K0±δL± dx±, (3.4)

where, using the Floquet form of the solutions (2.11) and
(2.12),

K0+ = 2T+ · ψ1(x+; T+)ψ2(x+; T+),

K0− = 2T− · φ1(x−; T−)φ2(x−; T−) (3.5)

11 To simplify the notation and avoid cluttering here we use δX for
denoting what was called parametric variations in [16]. In the latter
paper, this was denoted by δ̂X .
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and

δL± = ∂L±
∂T±

δT±. (3.6)

The numeric coefficients 2T± in (3.5) are twice the Floquet
index (2.11) and have been added recalling the discussions
surrounding (2.24) in Sect. 2.3.2.

Using (2.9) and (2.10) we learn that

K0+δL+ = 2T+
(
ψ2δψ

′′
1 − ψ ′′

2 δψ1
)

= 2T+
(
ψ2δψ

′
1 − ψ ′

2δψ1
)′

, (3.7)

and similarly for the right-movers (the case labeled by a
minus index). In the above a prime denotes derivative w.r.t.
the argument x± and δ denotes variations w.r.t. the Floquet
index T±. Therefore,

δ J+ = � T+
4πG

[
ψ2δψ

′
1 − ψ ′

2δψ1
]2π

0 ,

δ J− = � T−
4πG

[
φ2δφ

′
1 − φ′

2δφ1
]2π

0 . (3.8)

One may now use the Floquet form (2.11) and the normal-
ization condition (2.10) to further simplify the above:

[
ψ2δψ

′
1 − ψ ′

2δψ1
]2π

0 = [
x+δT+

]2π

0 = 2πδT+,[
φ2δφ

′
1 − φ′

2δφ1
]2π

0 = [
x−δT−

]2π

0 = 2πδT−.

To get the charges J± we need to integrate over δ J± on path
in the T± space, i.e.

J± = �

2G

∫ T±

T±0

dT̃±T̃± = �

4G
(T 2± − T 2±0) = c

6
(T 2± − T 2±0),

(3.9)

where T±0 is a reference point which has zero J±. As we will
discuss in the next section two standard choices are T 2±0 =
−1/4 (when J± are measured w.r.t. global AdS3) or T 2±0 = 0
when the reference point is chosen as AdS3 in a Poincaré
patch (massless BTZ).

The very important point discussed in [12] is that the J±
charges above commute with the Virasoro generators Ln, L̄n ,

[J±, Ln] = [J±, L̄n] = 0, ∀n ∈ Z. (3.10)

BTZ case For the BTZ black hole solution, where L± = T 2±
and T 2±0 = 0, we get

J± = �

4G
T 2± = �MBTZ ± JBTZ. (3.11)

Also, in this case the normalization factor 2T± is the temper-
ature in the left and right moving sectors.

3.3 Entropy, the first law and Smarr relation for Bañados
geometries

As in the standard Wald formulation [34,35] the charge asso-
ciated with the outer (event) Killing horizon is S/2π where
S is the black hole entropy. In our case the charge associ-
ated with the Killing horizon generating vector fields ζH± is
[12,16]

δS

2π
= �

8πG

∫
(K+δL+ + K−δL−). (3.12)

Using the discussions of the previous subsection we learn
that

δS

2π
= β+δ J+ + β−δ J−, β± = 1

2T±
. (3.13)

Note that δ in the above denotes a variation in the Floquet
indices T±. Here β± is the inverse temperature associated
with the left and right sectors. The above is nothing but the
first law for a generic Bañados geometry. One can integrate
(3.12) in the parameter space, over the T± parameters, to
obtain the Smarr relation for the Bañados geometries,

S

2π
= �

4G
(T+ + T−) = 2(β+ J+ + β− J−). (3.14)

We can write the entropy as a Cardy-type formula, using
(3.9)12

S =2π

(√
c(J+ + J+0)

6
+

√
c(J− + J−0)

6

)
, J±0 = c

6
T 2

0±.

(3.15)

One may also compute the conserved charge associated with
the inner horizon generating a Killing vector field. Straight-
forward computation, as performed above, leads to

Sinner

2π
= �

4G
(T+ − T−). (3.16)

This conserved charge may be written in terms of the other
two conserved charges J±. In particular one may note that

S · Sinner = π2�

G
(J+ − J−).

4 Virasoro coadjoint orbits and their associated
geometries

It is well known that the Virasoro algebra,

[Ln, Lm] = (n − m)Ln+m + c

12
n(n2 − 1)δn+m, (4.1)

12 We thank D. Klemm for this remark.
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is associated with the algebra of infinitesimal diffeomor-
phisms on a circle, diff(S1). That is,

x → x + ξ(x), ξ(x + 2π) = ξ(x), (4.2)

where [ξ(x)∂x , ρ(x)∂x ] produces the Witt algebra, the Vira-
soro algebra without the central term. The Virasoro group,
on the other hand, is associated with finite orientation-
preserving coordinate transformations on the circle Diff(S1),
which is generated through

x → h(x), h(x + 2π) = h(x) + 2π, h′ > 0. (4.3)

Being infinite dimensional, representations of the Vira-
soro group, the corresponding “Virasoro multiplets”, are
also infinite dimensional. To be precise, we usually deal
with “coadjoint orbits” instead of the representations of
the Virasoro group. The Virasoro coadjoint orbits are in
one-to-one correspondence with Virasoro multiplets [19,36–
38]. The elements in the Virasoro coadjoint orbits are of
course specified by periodic functions on the circle. How-
ever, given an arbitrary function f (x) on S1 there are ele-
ments in Di f f (S1) under which f does not change. One
may then use this fact to distinguish functions (elements)
which belong to the same or different orbits. Explicitly, let
us recall that from the form of the algebra (4.1) under the
transformation (4.2),

δξ f = ξ ′′′ − 4 f ξ ′ − 2 f ′ξ, (4.4)

where the third order derivative appears due to the presence
of the central term. 13 Therefore, all the functions in the same
orbit are generated by the solutions to δξ f = 0, the stabilizer
equation [19,36,37]:

ξ ′′′ − 4 f ξ ′ − 2 f ′ξ = 0. (4.5)

The orbits associated with function f (x), O f are then [19,
36–38]

O f = Diff(S1)/Tξ [ f ], (4.6)

where Tξ [ f ] is the subgroup of Diff(S1) generated through
the periodic solution(s) to the stabilizer equation (4.5); note
that only a periodic ξ(x) can be “exponentiated” to give an
element of the Virasoro group. So the problem of classifica-
tion of Virasoro coadjoint orbits reduces to classifying the
periodic solutions of the stabilizer equation (4.5). This clas-
sification is well established and standard references on the
topic are [19,36–38]; however, we will use the method based
on the SL(2,R) monodromy discussed in [20] and follow its
notations.

13 As is implied by the AdS/CFT correspondence the δξ f shows how
the energy momentum tensor of a 2d CFT, f , transforms under confor-
mal transformations.

Before moving further, we make the first remarkable cor-
respondence between the analysis of orbits and the Baña-
dos geometries: the stabilizer equation (4.5) is exactly the
same equation as appeared in the analysis of Killing vec-
tors of Bañados metrics, and the group Tξ [ f ] is nothing but
the group of global isometries of Bañados metrics with a
given f .

The rest of the analysis of solutions to (4.5) goes as dis-
cussed in the previous section, through the Hill equation,

ψ ′′ − f (x)ψ = 0, f (x + 2π) = f (x), (4.7)

where x ∈ [0, 2π ] parametrizes a circle of unit radius. It is
straightforward to check that upon the coordinate transfor-
mation in the Virasoro group (4.3), the pair (ψ(x), f (x)) in
(4.7) transform to (ψ̃(x), f̃ (x)) where [20]

f (x) → f̃ (x) = h′2 f (h(x)) − S(h; x),

ψ → ψ̃(x) = 1√
h′ ψ(h(x)), (4.8)

where S(h; x) is the Schwartz derivative

S(h; x) = h′′′

2h′ − 3h′′2

4h′2 . (4.9)

Each coadjoint orbit will hence be specified by a “rep-
resentative character f (x),” the ψ and the corresponding
“conformal descendants” [constructed through (4.8)]. The
“little group” Tξ [ f ] by which we mod out the Diff(S1),
is generically generated by ψ1ψ2, where ψi are the two
linearly independent solutions to Hill’s equation (4.7) in
the Floquet form (2.11). However, in the special case of
f = −n2/4, n ∈ Z Hill’s equation has three periodic solu-
tions (with 2π/n periodicity). In these cases Tξ [ f ] is an n-
fold cover of P L S(2, R), P L S(n)(2, R) [20].14

As reviewed in [20], one can recognize two general classes
of such coadjoint orbits: those with a constant representative
and the other with x-dependent representative.

4.1 Constant representative coadjoint orbits

There are four classes of such orbits:

• Exceptional orbits En , with representative:

fn = −n2

4
, ψn =

√
2

n
sin

nx

2
,

√
2

n
cos

nx

2
, n ∈ Z

+.

(4.10)

14 As discussed in the next subsection, the case f (x) = 0 is also special
as ψ1, ψ2 do not strictly have the Floquet form.
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One may write the ψ’s in another Floquet form:

ψn =
√

1

in
einx/2,

√
1

in
e−inx/2. (4.11)

• Elliptic orbits C(ν), with

fν = −ν2

4
, ψν =

√
2

ν
sin

νx

2
,

√
2

ν
cos

νx

2
, ν /∈ Z

+,

(4.12)

or in the Floquet form

ψν =
√

1

iν
eiνx/2,

√
1

iν
e−iνx/2.

Note that there is no overlap between exceptional and
elliptic orbits.

• Zeroth hyperbolic orbits B0(b), with

fb = b2 , ψb =
√

1

2b
ebx ,

√
1

2b
e−bx , b ∈ R

+.

(4.13)

• Zeroth order parabolic orbit P+
0 ,

f = 0, ψ = x√
2π

,
√

2π. (4.14)

Some comments as regards constant representative orbits are
in order:

1. For all of the above orbits the Floquet index is either a real
number (for hyperbolic orbits B0(b)) or a pure imaginary
number for exceptional or elliptic orbits Cν .

2. The exceptional case En is special as it has two Floquet
forms, as written in (4.10) and (4.11). The Floquet index
in these two cases is either zero or in.

3. The parabolic case is also special in the sense that the
corresponding ψ are not in a strict Floquet form, the ψ1

is “quasi-periodic”, ψ1(x +4π) = ψ1(x)+2ψ2(x). The
generator of the “periodic” Killing case is ψ2

2 (instead of
ψ1ψ2).

4. The b = 0 hyperbolic orbit overlaps with the n = 0
exceptional orbit, and both have f = 0. However, this is
still different from the parabolic orbit P+

0 , which again
has f = 0.

5. Note that the above functions are for the “representative”
of the orbit. A generic element in the orbit may be con-
structed from these upon the action (4.8) with (4.3). For
a generic element in the orbit, hence, the function f is
not a constant.

4.2 Nonconstant representative coadjoint orbits

There are two such orbits, parabolic ones P±
n and hyperbolic

ones Bn(b):

• Parabolic orbits P±
n , with

f ±
n = n2

2Hn
− 3n2(1 ± 1

2π
)

4H2
n

,

ψn = 1√
Hn

(
± x

2π
sin

nx

2
− 2

n
cos

nx

2

)
,

1√
Hn

sin
nx

2
, n ∈ N, (4.15)

where

Hn(x) = 1 ± 1

2π
sin2 nx

2
. (4.16)

As one can explicitly see, the ψ’s are not in the stan-
dard Floquet form, and as the parabolic orbit P+

0 , ψ2 is
periodic and ψ1 is quasi-periodic,

ψ1(x + 4π) = ψ1(x) ± 2ψ2(x).

The generator of “periodic” Killing is ψ2
2 (instead

of ψ1ψ2). One may easily observe that Hn(x) =
Hn=1(nx), f ±

n (x) = n2 f ±
n=1(nx). Moreover, f ±

n (x) +
n2/4 is not a positive definite function.

• Hyperbolic orbits Bn(b), with

fn,b = b2 + b2 + 4n2

2F
− 3n2

4F2 ,

ψn,b = ebx

√
F(x)

√
2

n

(
b

n
cos

nx

2
+ sin

nx

2

)
,

e−bx

√
F(x)

√
2

n
cos

nx

2
, b ∈ R

+, n ∈ N, (4.17)

where

Fn,b(x) = cos2 nx

2
+

(
sin

nx

2
+ 2b

n
cos

nx

2

)2

. (4.18)

One may check that

Fn,b(x) = Fn=1,b/n(nx), fn,b(x) = n2 fn=1,b/n(nx),

ψn,b(x) =
√

2

n
ψn=1,b/n(nx). (4.19)

Moreover, one may check that fn,b+n2/4 is not a positive
definite function.

Some comments and points about the nonconstant repre-
sentatives are in order:
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1. The n = 0 hyperbolic and parabolic orbits cannot
be obtained from the above nonconstant representative
orbits by setting n = 0.

2. The character function fn of the above orbits is a function
with 2π/n periodicity.

3. The function fn for nonconstant representatives can
become negative. The integral of fn +1/4, which is often
called the “energy” [20], has a negative value, except
for the P−

1 orbit. For hyperbolic orbits this “energy” is
unbounded from below (as a functions of b). One may
show that this “energy” does not have a definite sign either
for the descendants of the representative.

4. As the equations above indicate, the representative ele-
ment of n > 1 orbits may be expressed through n = 1
ones, though with replacing x with nx . In particular, for
the hyperbolic ones one should also replace the b param-
eter with b/n.

5. A generic element in these orbits can be obtained from
the above “representatives” upon the action (4.8) with
(4.3). For a generic element of the orbit then the character
function f and the ψ’s are just 4π periodic (and not 4π/n
periodic).

6. One may readily see that the hyperbolic orbits Bn(b) and
the exceptional orbits En overlap at b = 0.

7. n in fact determines the number of zeros of ψ functions
in the [0, 2π ] range.

4.3 Orbit invariant quantities

As discussed, a Virasoro coadjoint orbit is specified by a
representative function and a character, ψ, f , and then the
elements in the orbit, the descendants, are constructed from
this upon the action (4.8). So, each orbit consists of infinitely
many (countable though, because h(x) is a periodic function)
functions/states. Since we built the orbit from the represen-
tative, one would expect that the parameters specifying the
representative functions should be readable from any ele-
ment in the orbit (and not just the representative of the orbit).
Explicitly, there should be some “orbit invariant” charges and
quantities.

In Sect. 3, we have in fact laid the basic foundation
for specifying these charges and quantities: any element
in an orbit is specified by two kinds of charges: the Vira-
soro charges (specified by a combination of Virasoro gen-
erators Ln , �{nk }L−nk ) and the J charges, which spec-
ify the representative. These two charges commute with
each other. Our construction of the J charges in Sect.
3.2 makes it explicit that this charge is an orbit invariant
quantity.

Now that we have discussed the orbit classification, we can
be more explicit about these charges. In general any orbit is
specified by a discrete integer label n and/or a continuous
label b (for hyperbolic orbits) and ν (for elliptic orbits). By

construction, the charge J can only be associated with the
continuous label on the orbit. The reason is that the method
discussed in [16], which is reviewed and used in Sect. 3.2, is
suited for computing charge variations within a given class
of solutions with exact symmetry. This means that within a
class of given orbits, e.g. the hyperbolic orbit with a given
n, the orbits may be uniquely specified by the continuous
label. This continuous parameter is related to the conserved
charge J , as given in (3.9). We note that the parameter T ,
which specifies the charge J , is the Floquet index defined as
exp(4πT ) = ψ1(x + 4π)/ψ1(x). With this definition, and
recalling (4.8), one immediately sees that T is orbit invariant,
because

e4πT = ψ̃(x + 4π)

ψ̃(x)
= ψ(h(x + 4π))/

√
h′

ψ(h(x))/
√

h′

= ψ(x + 4π)

ψ(x)
. (4.20)

The discrete label on the orbits is also an orbit invariant
quantity. This index is given by the number of zeros of ψ1 or
ψ2 functions in the [0, 2π ] range. To see the orbit invariance
of this label, we recall (4.8), which states that the ψ func-
tions of any two states in the same orbit are related to the
representative element as

ψ̃(x) = 1√
h(x)

ψ(h(x)),

h(x + 2π) = h(x) + 2π, h′ > 0. (4.21)

The above clearly shows that the number of zeros of ψ̃ and
ψ are the same. We note that the X± coordinates defined in
(2.24) are also orbit invariant.

Unlike the continuous label, the Floquet index, there are
no “Noether-type” conserved charges associated with the dis-
crete label n. There are however, topological charges (invari-
ants) related to it.

4.4 Bañados geometries/Virasoro orbits correspondence

With the discussions and analyses of earlier sections, we
are now ready to match the Virasoro coadjoint orbits on the
left and right sectors and the Bañados geometries. A dis-
cussion of this was presented in Sect. 4 of [12]; our main
addition to that list is the cases involving generic hyper-
bolic orbits.15 In general, depending on the L+ and L−
functions, the Bañados geometry will be in an O+ ⊗ O−
orbit, where the O± denote the orbits associated with the
left and right sectors. Here we will mainly consider the cases
where the left and right sectors are from the same class of
orbits. Some of the “mixed cases” have been discussed in
Appendix A.3.

15 A similar analysis and the geometric picture associated with the BMS
group has also been discussed in, e.g., Refs. [39–41].
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Note that geometries in the same orbits, the descendants,
are related to each other by a specific class of diffeomor-
phisms generated by a vector field χ ; see (2.5). Being dif-
feomorphic to each other, the geometries in the same orbit
share the causal, boundary, and horizon structure, and they
are of course described with the same J± charges and the
same horizon temperatures T±.

Constant representative cases

• En+ ⊗ En− orbits. These are geometries which are
descendant of n±-fold covers of AdS3 with P L S(n+)

(2,R) × P L S(n−)(2,R) isometry. We note that this is
the symmetry (isometry) group of the representative of
the orbit and the “descendants” generically have only
U (1)+ × U (1)− global isometry. Note that, while the
representatives have L± = −n2±/4, the geometries in
this family do not generically have a constant character
function L±. Geometries in this orbit are horizon free and
their global and boundary structure is like N -fold cover
of AdS3 (see Appendix A.3 for more details). The global
AdS3 is the representative element of the n± = 1 orbit.

• C(ν+) ⊗ C(ν−) orbits include geometries which are
descendants of particles of given mass and angular
momentum on the N -fold covers of AdS3 (see Appendix
A.3). These geometries do not have a horizon and are not
black holes.

• B0(b+) ⊗ B0(b−) orbits. These geometries include BTZ
black holes and their (conformal) descendants. We stress
that all the geometries in this class (with a given b±)
have the same J± charges. Unlike the usual lore, as
we have discussed the correct charge assignment to
these geometries is J± with the “energy” in the left and
right sectors and not L0 and L̄0. As reviewed in the
appendix, the geometry corresponding to the represen-
tative of the orbit has constant, positive L±, and it is
the usual BTZ geometry. The other geometries descend-
ing from this constant L ones, are uniquely specified
by their Virasoro charges, “Virasoro hairs”, while shar-
ing the causal, boundary, and horizon structure of their
BTZ parent geometry. All these geometries have the
same horizon area, surface gravity, and horizon angular
velocity.

• P+
0 ⊗ P+

0 orbit. The representative of this orbit corre-
sponds to a null-self-dual AdS3 orbifold [42] and the
other states in this orbit have J± = 0. These geometries
may be obtained in the near horizon limit of the geometry
in the orbit of massless BTZ black holes [43]. The global
isometry group in this class is SL(2,R) × SL(2,R),
where the two U (1) factors in SL(2,R)’s can be non-
compact.

• P+
0 ⊗B0(b)orbits. The representative of these geometries

is an AdS3 self-dual orbifold [44]. Geometries in this

class of orbits are not black holes (do not have event
horizons). Nonetheless, they may be obtained as the near
horizon limit of extremal BTZ [12,45]. The geometries
in this class have four global Killing vectors, forming
an SL(2,R) × U (1) isometry group. Nonetheless, the
U (1) ∈ SL(2,R) is noncompact [12].16

• P+
0 ⊗ C(ν) orbits with 0 < ν < 1. These orbits show

“chiral particles” (those with equal mass and angular
momentum) on AdS3 and their descendants.

Geometry of hyperbolic orbits, Bn+(b+) ⊗ Bn−(b−) As fol-
lows from the discussions of Sect. 3, these are geometries
which in general have inner and outer horizons and their
boundary has some disconnected pieces. As a general, but
rough, picture one may consider an N -fold cover of AdS3

and perform the same construction of BTZ black holes [7,8]
on each patch of this N -fold cover, such that all the geome-
tries have the same horizon temperatures T±. The horizon
and boundary contain an N -fold copy and when one starts
from a given patch on the boundary, one can only access a
specific patch of the horizon (and the geometry). This is the
picture we have for multi-BTZ black holes in Brill’s con-
struction [27–29]. In the Euclidean version the boundary is
a 2d surface with (n+ + 1)(n− + 1)-handles. Irrespective of
from which patch at the boundary we look into the bulk, one
would see exactly the same geometry, with the same mass
and angular momentum.

As we discussed, one can associate positive, definite
charges J± to these geometries, while the integral of the
character fn,b (which has been called the “energy” in the
literature, e.g. see [20]) is not necessarily positive definite.
We also note that for these orbits generic n and n = 1 cases
they are related as (4.19). This, together with the relation for
the entropy (3.14), may suggest that different patches of the
horizon, while at the same temperature, carry an equal por-
tion of the entropy, and that each patch has its own “first law”
(3.13).

5 Concluding remarks and outlook

In this work we elaborated on the Bañados geometries. This
work was a continuation of [12,21]. Below we provide a
quick summary and a general picture arising from our anal-
ysis.

1. Different probes can access different kinds of informa-
tion from the geometry. The “classical” probes, like

16 We comment that geometries in the E1 ⊗ B0(b) orbits, too, have four
global Killing vectors forming an SL(2,R) × U (1) isometry group,
where the two U (1)’s here are compact. These geometries are not black
holes either.
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geodesics, have only access to “classical, geometric”
information. These geometric pieces of information are
“orbit invariant” and include geodesic distances, charges
associated with the exact Killing symmetries J±, and
causal and boundary structures. Classical observers are
blind to Virasoro charges, “Virasoro hair”.

2. The Virasoro charges are semiclassical ones, they are
given by “surface integrals,” integrals over codimen-
sion two space-like curves (that is, integrals over one-
dimensional curves in our 3d case). This information is
not available to local classical probes.

3. There is a one-to-one relation between two copies of
Virasoro coadjoint orbits and Bañados geometries, which
are specified by two general holomorphic functions. All
geometries in the same orbit share the “geometric” infor-
mation, while they can be distinguished by their “Vira-
soro hairs”. The geometric pieces of information are orbit
invariant.

4. It is possible that at the level of the geometry we have
extra requirements like the absence of CTCs, which need
to be considered.

5. Both the charges associated with exact symmetries J±
and the Virasoro hairs are “symplectic charges” [12,16].
That is, these charges may be defined by integration over
any space-like compact curve in the 3d spacetime; this
curve does not need to be at the boundary of the space or
at its horizon.

6. Our analysis suggests the following general picture: dif-
ferent geometries which are diffeomorphic to each other
share the “geometric information”. This is what we
learn in standard GR courses. However, there could be
a measure-zero set of diffeomorphisms producing semi-
classically different geometries, and they may be dis-
tinguished by their other surface charges, “semiclassical
hairs”. The states sharing the classical geometric infor-
mation fall into orbits of the semiclassical symmetry alge-
bra. This symmetry algebra is a symplectic symmetry of
the phase space constituted from diffeomorphic but dis-
tinguishable, geometries. If the geometry we are dealing
with is a black hole, then the geometries which share the
geometric information may be viewed as “hairs” on this
black hole. This, we hope, provides a handle on the black
hole microstate problem. We have established this pic-
ture for the AdS3 case. Similar ideas have been worked
through for near horizon extremal geometries [46,47].
We think this picture should be more general and appli-
cable to any black hole. This picture which was sum-
marized and sharpened in [25] fits well with the recent
ideas and analyses [48–50]. We hope to provide further
evidence for this picture in more general settings.

7. Although we worked in a specific gauge, the Bañados
coordinate system, we believe the above picture is gauge
independent. First explicit steps in this direction were

taken in [12], where it was shown that similar results
hold in the Gaussian null cordinates (also known as the
BMS gauge).

8. At a perhaps more technical level, Bañados geometries
form a phase space. Elements in this phase space are clas-
sified by the Virasoro coadjoint orbits. One may hence
use this picture to perform a quantization of the AdS3

gravity. We hope this viewpoint can shed further light
on the question of AdS3 gravity quantization, e.g. see
[51–55] and references therein.
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Appendix A: More on constant representative orbits and
their geometries

In this appendix we give more detailed discussions and com-
putations on the constant L± geometries and the associated
orbits. This class includes BTZ black holes and conic spaces
(particles on AdS3).

A.1: More on geometry of constant L± cases

We discussed in Sect. 4 that there are four classes of solutions
to the Hill’s equation with a constant representative which are
elliptic orbits, exceptional orbits, and the zeroth of parabolic
and hyperbolic orbits. This gives totally 10 classes of geom-
etry solutions. Four of them correspond to cases with the left
and right sectors in the same orbit and others to the mixed
orbits. The number of global Killing vectors can be two, four
or six. Two general Killing vectors are ∂+ and ∂−. We assume
two linearly independent combinations of these two Killing
vectors, denoted by ζ± = ∂+ ± k∂− (with a real non-zero k).
The norm of these vectors is given by

|ζ±|2 = ∓ (r2 ∓ �2kL−)(kr2 ∓ �2L+)

r2 ,

ζ+ · ζ− = �2(L+ − k2L−) . (A.1)
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Depending on the relative signs of L+ and L−, one can
distinguish different possibilities. When L+ and L− have
opposite signs, the inner product does not vanish anywhere,

while |ζ±| vanish at r2 = ± �2 L+
k , r2 = ±k�2 L−. When they

have similar relative signs, we may take k2 = L+
L− , leading to

|ζ±|2 = ∓
√

L+
L−

(r2 ∓ �2√L+L−)2

r2 , ζ+ · ζ− = 0, (A.2)

therefore r2 = ±�2√L+L− is potentially the position of the
bifurcate horizon.

When the L± are constant, we can use the coordinate
transformation

ρ2 =
(
r2 + �2L+

) (
r2 + �2L−

)
r2 ,

t = �

2
(x+ + x−), ϕ = 1

2
(x+ − x−) (A.3)

and rewrite the metric in the “BTZ form”

ds2 = −F(ρ)dt2 + dρ2

F(ρ)
+ ρ2 (

dϕ − Nϕdt
)2

, (A.4)

where

F(ρ) = (ρ2 − ρ2+)(ρ2 − ρ2−)

�2ρ2 , Nϕ = ρ+ρ−
�ρ2 (A.5)

and

ρ± = �(
√

L+ ± √
L−). (A.6)

In this coordinate system, (A.2) takes the form

|ζ±|2 = ∓
(

ρ+ + ρ−
ρ+ − ρ−

) (
ρ2 − ρ2±

)2
. (A.7)

As we see for generic L± with arbitrary signs, ρ± need not
be real-valued, and we hence need to consider the three cases
of L± > 0, L± < 0, and L+L− < 0 separately.

L+, L− > 0, the BTZ case In this case both ρ± are real-
valued and denote the horizon radii. As (A.6) shows, ρ+ (ρ−)
is the radius of the outer (inner) horizon. The event horizon
is generated by ζH, where

ζH = ∂t + �∂ϕ, � = ρ−
�ρ+

.

The surface gravity is given by

κ = ρ2+ − ρ2−
�ρ+

.

To avoid the CTC we need to limit ρ2 to the ρ2 > 0 region.
Using (A.3) we can readily find where in the Bañados radial
coordinate r2 is CTC free. This is depicted in Fig. 2.17

17 We would like to thank Ali Seraj for discussions of these diagrams.

The conserved charges J± are related to the mass and
angular momentum of the BTZ black hole as in (3.11). In
this case the appropriate choice for T±0 is zero, so that this
BTZ has vanishing mass and angular momentum.

L+, L− < 0, the conic spaces In this caseρ2± are negative and
hence there are no Killing horizons (|ζ±| = 0) in the region
which there are no CTC. These geometries are hence horizon-
free and are not black holes. These correspond to particles
on AdS3 (the spaces with conical defects) [5,6]18. These
particles are specified by the mass M and angular momentum
J ,

�M ± J = J± = c

6

(
1

4
+ L±

)
. (A.8)

The above is nothing but (3.9) with T 2±0 = −1/4.
To write the metric explicitly, we may introduce ρ̃2± =

−ρ2± > 0. Then the metric has the same form as (A.4) with

F(ρ) = (ρ2 + ρ̃2+)(ρ2 + ρ̃2−)

�2ρ2 , Nϕ = − ρ̃+ρ̃−
�ρ2 . (A.9)

To avoid the existence of CTC (see Fig. 3), we must restrict
ourselves to the ρ2 > 0 region, corresponding to

r2 > 0, r2 /∈ (�2|L−|, �2|L+|). (A.10)

L+L− < 0, the mixed case Without loss of generality we
may choose L+ > 0, L− < 0.

In this case the ρ± turn out to be complex conjugate of
each others and the metric is given by (A.4) with Fig. 4

F(ρ) =
[
ρ2 − �2(L+ + L−)

]2 − 4L+L−
�2ρ2 ,

Nϕ = �(L+ + L−)

ρ2 . (A.11)

A.2: Geodesic motion on massless BTZ

Starting with an AdS3 solution, corresponding to L+ =
L− = 0, the metric can be written as

ds2 = �2dρ2

ρ2 − ρ2dy+dy−. (A.12)

The geodesic equations are given by

ρ̈ − ρ̇2

ρ
+ r3 ẏ+ ẏ−

�2 = 0, ÿ+ + 2ρ̇ ẏ+

ρ
= 0,

ÿ− + 2ρ̇ ẏ−

ρ
= 0, (A.13)

18 See [56] for some discussion of the quantization of conic spaces and
the corresponding orbits.
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Fig. 2 Left coordinate transformation (A.3) plotted for the BTZ case
of L+ > L− > 0. The vertical axis denotes ρ2 and the horizontal
axis r2. The (red) dotted line, where ρ2 < 0, is the location of CTC.
Therefore, the CTC-free region in the Bañados coordinate system is
−�2 L+ < r2 < −�2 L− and r2 > 0. The region on vertical axis in gray
color, ρ2− < ρ2 < ρ2+, is not covered in the Bañados coordinate sys-
tem, while the other ρ2 > 0 regions are covered twice. The four regions
−�2 L+ < r2 ≤ −r2

0 , −r2
0 ≤ r2 < −�2 L−, 0 < r2 ≤ r2

0 , and r2 ≥ r2
0

(with r2
0 = �2√L+L−) which are also color-coded in the Left figure,

correspond to the four regions, four diamonds, on the Penrose diagram

(Right). Right Penrose diagram for the BTZ case of L+ > L− > 0
[7,8,57]. Region II (which lies between the inner and outer horizons)
is not covered in the Bañados coordinate system. Regions I and I’,
respectively, correspond to the 0 < r2 ≤ r2

0 and r2 ≥ r2
0 regions and

regions III and III’ to −�2 L+ < r2 ≤ −r2
0 , −r2

0 ≤ r2 < −�2 L−. The
shaded regions are where we have CTCs and correspond to the (red)
dotted regions in the left figure. We have used the same color-coding
in the left and right figures to indicate the range of the r2 coordinate.
This figure shows how the Bañados and BTZ-coordinate systems are
complementary to each other

where a dot denotes the derivative with respect to the proper
time τ . The norm of velocity is given by

|ρ̇∂ρ + ẏ+∂+ + ẏ−∂−|2 = �2

ρ2 ρ̇2 − ρ2 ẏ+ ẏ−, (A.14)

which is equal to 1 for time-like geodesies and 0 for null
geodesies. This equation can be solved to find ρ̇ in terms of
ẏ± for the null and time-like geodesies separately; then one
may use Eq. (A.13) to solve ẏ±.

Null geodesies Combining (A.14) and (A.13) for the null
geodesy gives us ρ̈ = 0, which gives ρ = 2

�

√
p+ p−τ (after

a shift in τ ). Using this solution we can solve y±

y+ − y+
0 = �2

2τp+
, y− − y−

0 = �2

2τp−
, p+ p−, τ ≥ 0.

(A.15)

Zero angular velocity geodesics correspond to p+ = p−.
In this case

y+ − y+
0 = y− − y−

0 = �

ρ
. (A.16)

Time-like geodesies For the time-like geodesic, by combining
(A.14) and (A.13) we get ρ̈ − �−2ρ = 0, which gives ρ =
p+e

τ
� − p−e− τ

� . Using this solution we can solve for y±,

y+ − y0+ = �pme− τ
�

p+(p+e
τ
� − p−e− τ

� )
,

y− − y0− = �e− τ
�

p+e
τ
� − p−e− τ

�

. (A.17)

Null and time-like geodesies of BTZ black holes

Next let us consider a BTZ black hole, i.e., constant non-
zero L±s. Note that in this case we have only two global
Killing vectors ∂±. Using the fact that K .v = const. where
K is a Killing vector and v is the velocity vector, we get the
following equations:
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Fig. 3 Coordinate transformation (A.3) plotted for the conic space
with L+ < L− < 0. The CTC region, where ρ2 < 0, is denoted by a
(red) dotted curve. Extending the coordinate to negative r2 gives a CTC.
Positive values of r2 with r2 > −�2 L+ gives one cover denoted by the
yellow color in the above figure and r2 < −�2 L− gives another cover
which is denoted by a pink color. The region −�2 L− < r2 < −�2 L+
gives a CTC. Therefore, in the CTC-free range there is no horizon. This
is compatible with the fact that conic spaces correspond to particles on
AdS3 and not black holes

Fig. 4 Coordinate transformation (A.3) plotted for L+ > 0 and L− <

0. The regions r2 > −�2 L− and −�2 L+ < r2 < 0 are the CTC-free
regions. The geometry does not have a horizon in this region. The two
CTC-free pieces both correspond to the same coordinate range ρ2 > 0
in the BTZ-coordinate system

�2 L+ ẋ+ − r4 + �2L+L−
2r2 ẋ− = p+,

�2L− ẋ− − r4 + �2L+L−
2r2 ẋ+ = p− . (A.18)

These equations give two components of the velocity vector,

ẋ± = −2r2(r4 p∓ + 2�2 L∓ p±r2 + �4L+L− p∓)

(r4 − �2L+L−)2 . (A.19)

The norm of the velocity vector field is given by

|v|2 = �2ṙ2

r2 − 4r2(p+r2 + �2 L+ p−)(p−r2 + �2 L− p+)

(r4 − l4L+L−)2

= 0, 1. (null, time-like) (A.20)

Therefore we can read ṙ for the null and time-like geodesies.

A.3: More on geometries of constant representative orbits

As discussed in Sect. 4, Bañados geometries are in one-to-
one relation with Virasoro coadjoint orbits on the left and
right sectors. Here we discuss geometries corresponding to
orbits of constant representative in more detail.

Similar constant orbits As we have discussed, the geometric
properties, such as the horizon and causal structure, of all the
solutions in the same orbit are the same. We will hence only
focus on the geometry of the representative element of the
orbit.

• En+ ⊗ En− orbits In this case the representative element

has L± = − n2±
4 with integer n±. n+ = n− = 1 cor-

responds to the global AdS3 geometry. For general n±
once again we get six global Killing vectors. However,
the periodicities of the Killing vectors are 2π

n± . If we scale
coordinates with the least common multiple of n+ and
n− as follows:

r → Nr, x± → N−1x±, N = lcm(n+, n−), (A.21)

the metric turns out to be

ds2 = �2dr2

r2 −
(

rdx+ − ν2−�2

4r
dx−

)

×
(

rdx− − ν2+�2

4r
dx+

)
, (A.22)

where ν± = n±
N .

When n+ = n− = N , ν± = 1 and we get an n-fold
cover of AdS3. Explicitly if we perform the coordinate
transformation (A.3), we arrive at the following metric:

ds2 = −ρ2 + �2

�2 dt2 + �2 dρ2

ρ2 + �2 + ρ2dϕ2,

ϕ ∈ [0, 2π N ]. (A.23)

For general n+ 
= n− it is clear that ν± < 1, and the
metric is like (A.4) with (A.5),

ρ2± = −�2

4
(ν+ ± ν−)2, ϕ ∈ [0, 2π N ] . (A.24)

This metric is representing particles on an N -fold cover
of AdS3; see below.

• C(ν+) ⊗ C(ν−) orbits When L± = − ν2±
4 are negative

constants with non-integer ν, the corresponding geom-
etry is a particle in AdS3, if ν± < 1. As discussed in

123



Eur. Phys. J. C (2016) 76 :493 Page 21 of 22 493

Appendix A.1 this geometry does not have an event hori-
zon.
When one or both of ν± are larger than one, we can rewrite
the metric as described for the En+ ⊗ En− case above,
with

ρ2± = −�2

4
(ν̃+ ± ν̃−)2, ν̃± = ν±

N
,

N = lcm([ν−], [ν+]). (A.25)

As we see, ν̃± < 1.
• B0(b+) ⊗ B0(b−) orbits When both of L± are constant

positive (L± = b2± > 0) the corresponding geometry is
a BTZ black hole. This solution is discussed in Appendix
A.1 in detail.

• P+
0 ⊗ P+

0 orbits The zeroth order of the parabolic
orbit has L = 0. This can also happen in the constant
hyperbolic orbits with zero character. The corresponding
geometry with L± = 0 in the parabolic sector is the null
self-dual orbifold [42]. The solution is identical to the
near horizon limit of a massless BTZ black hole solution
[43]. One should note that solutions to the Hill equation
in this case do not have the Floquet form, and to con-
struct the global Killing vectors we use only the constant
solution. We comment that for the cases with parabolic
orbit P+

0 we have the possibilities of having one and three
global Killing vectors for each left or right sector. When
we have three Killing vectors, the U (1) ∈ SL(2,R)

isometry is not compact.

Mixed constant orbits There are six possible combinations
of the left and right sectors with different constant orbits.

• En ⊗P+
0 orbits The geometry admits four Killing vectors

with periodic generators. The geometry associated with
the representative of the orbit in this case has the form
(A.4) with

F(ρ) = (ρ2 + �2)2

�2ρ2 , Nϕ = �

ρ2 , ϕ ∈ [0, 2πn].
(A.26)

• B0(b)⊗C(ν) orbits The corresponding geometry admits
only two Killing vectors ∂+ and ∂−.The metric of the
representative element takes the general form (A.4) with
(A.11).

• B0(b)⊗En orbits This geometry has four periodic Killing
vectors, three of them with period 2π

n . The metric for the
representative element takes the general form (A.4) with
(A.11) with now L+ = b2, L− = −n2/4.

• B0(b) ⊗ P+
0 orbits In this case the metric of the repre-

sentative corresponds to the self-dual orbifold of AdS3

[44]. A generic element in this orbit can be obtained as

the near horizon limit of the geometry corresponding to
B0(b) ⊗ B0(b), the extremal BTZ black hole orbit [45].

• C(ν) ⊗ En orbits The corresponding geometry admits
four Killing vectors; three of them have period 2π

n . The
geometries correspond to chiral particles (those with
equal mass and spin) on an N -fold (N = lcm(n, [ν])
cover of AdS3.

• C(ν) ⊗ P+
0 orbits The representative geometry corre-

sponds to a chiral particle on AdS3 in a Poincaré patch.
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